Quantifying the Language of Schizophrenia in Social Media

Margaret Mitchell
Microsoft
memitc@microsoft.com

Kristy Hollingshead
IHMC
kseitz@ihmc.us

Glen Coppersmith
Qntfy
glen@qntfy.io

Abstract

Analyzing symptoms of schizophrenia has traditionally been challenging given the low prevalence of the condition, affecting around 1% of the U.S. population. We explore potential linguistic markers of schizophrenia using the tweets\(^1\) of self-identified schizophrenia sufferers, and describe several natural language processing (NLP) methods to analyze the language of schizophrenia. We examine how these signals compare with the widely-used LIWC categories for understanding mental health (Pennebaker et al., 2007), and provide preliminary evidence of additional linguistic signals that may aid in identifying and getting help to people suffering from schizophrenia.

1 Introduction

Schizophrenia is a group of mental disorders that affect thinking and emotional responsiveness, documented throughout history (e.g., The Book of Hearts, 1550 BCE). Today it is diagnosed and monitored leveraging self-reported experiences.\(^2\) This may be challenging to elicit from schizophrenia sufferers, as a hallmark of the disease is the sufferer’s belief that he or she does not have it (Rickelman, 2004; National Alliance on Mental Illness, 2015). Schizophrenia sufferers are therefore particularly at-risk for not leveraging help (Pacific Institute of Medical Research, 2015). This suggests that techniques that leverage social language shared by schizophrenia sufferers could be greatly beneficial in treatment of the disease. Early identification and monitoring of schizophrenia can increase the chances of successful management of the condition, reducing the chance of psychotic episodes (Häfner and Maurer, 2006) and helping a schizophrenia sufferer lead a more comfortable life.

We focus on unsupervised groupings of the words used by people on the social media platform Twitter, and see how well they discriminate between matched schizophrenia sufferers and controls. We find several potential linguistic indicators of schizophrenia, including words that mark an irre- alis mood (“think”, “believe”), and a lack of emoticons (a potential signature of flat affect). We also demonstrate that a support vector machine (SVM) learning approach to distinguish schizophrenia sufferers from matched controls works reasonably well, reaching 82.3% classification accuracy.

To our knowledge, no previous work has sought out linguistic markers of schizophrenia that can be automatically identified. Schizophrenia is a relatively rare mental health condition, estimated to affect around 1% of the population in the U.S. (The National Institute of Mental Health, 2015; Perälä et al., 2007; Saha et al., 2005), or some 3.2 million people. Other mental health conditions with a high prevalence rate such as depression\(^3\) have recently received increased attention (Schwartz et al., 2014; De Choudhury et al., 2013b; Resnik et al., 2013; Coppersmith et al., 2014a). However, similar studies for schizophrenia have been hard to pursue, given

\(^1\)A posting made on the social media website Twitter, https://twitter.com/

\(^2\)With the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Association, 2013).

\(^3\)16.9% lifetime prevalence rate (Kessler et al., 2005)
the rarity of the condition and thus the inherent difficulty in collecting data.

We follow the method from Coppersmith et al. (2014a) to create a relatively large corpus of users diagnosed with schizophrenia from publicly available Twitter data, and match them to Twitter controls. This provides a view of the social language that a schizophrenia sufferer may choose to share with a clinician or counselor, and may be used to shed light on the illness and the effect of treatments.

2 Background and Motivation

There has been a recent growth in work using language to automatically identify people who may have mental illness and quantifying its progression, including work to help people suffering from depression (Howes et al., 2014; Hohman et al., 2014; Park et al., In press; Schwartz et al., 2014; Schwartz et al., 2013; De Choudhury et al., 2013a; De Choudhury et al., 2013b; De Choudhury et al., 2011; Nguyen et al., 2014) and post-traumatic stress disorder (Coppersmith et al., 2014b). Related work has also shown it is possible to aid clinicians in identifying patients who suffer from Alzheimer’s (Roark et al., 2011; Orimaye et al., 2014) and autism (Rouhizadeh et al., 2014). The time is ripe to begin exploring an illness that deeply affects an estimated 51 million people.

The term schizophrenia, derived from the Greek words for “split mind”, was introduced in the early 1900s to categorize patients whose thoughts and emotional responses seemed disconnected. Schizophrenia is often described in terms of symptoms from three broad categories: positive, negative, and cognitive. Positive symptoms include disordered thinking, disordered moving, delusions, and hallucinations. Negative symptoms include a flat affect and lack of ability to begin and sustain planned activities. Cognitive symptoms include poor ability to understand information and make decisions, as well as trouble focusing.

Some symptoms of schizophrenia may be straightforward to detect in social media. For example, the positive symptoms of neologisms, or creating new words, and word salad, where words and sentences are strung together without a clear syntactic or semantic structure, may be expressed in the text written by some schizophrenia sufferers. Negative symptoms may also be possible to find, for example, a lack of emoticons can reflect a flat affect, or a lower proportion of commonly used terms may reflect cognitive difficulties.

As we discuss below, natural language processing (NLP) techniques can be used to produce features similar to these markers of schizophrenia. For example, perplexity may be useful in measuring how unexpected a user’s language is, while latent Dirichlet allocation (Blei et al., 2003) may be useful in characterizing the difference in general themes that schizophrenia sufferers discuss vs. control users. All NLP features we describe are either automatically constructed or unsupervised, meaning that no manual annotation is required to create them. It is important to note that although these features are inspired by the literature on schizophrenia, they are not direct correlates of standard schizophrenia markers.

3 Data

We follow the data acquisition and curation process of Coppersmith et al. (2014a), summarizing the major points here: Social media, such as Twitter, contains frequent public statements by users reporting diagnoses for various medical conditions. Many talk about physical health conditions (e.g., cancer, flu) but some also discuss mental illness, including schizophrenia. There are a variety of motivations for users to share this information on social media: to offer or seek support, to fight the stigma of mental illness, or perhaps to offer an explanation for certain behaviors.

We obtain messages with these self-reported diagnoses using the Twitter API, and filtered via (case-insensitive) regular expression to require “schizo” or a close phonetic approximation to be present; our expression matched “schizophrenia”, its subtypes, and various approximations: “schizo”, “skitzo”, “skitso”, “schizotypal”, “schizoid”, etc. All data we collect are public posts made between 2008 and 2015, and exclude any message marked as ‘private’ by the author. All use of the data reported in this

4 Anecdotally, many of the users in this study tend to be talking about a recent diagnosis (looking for information or support) or fighting the stigma of mental illness (by sharing their struggles).
paper has been approved by the appropriate Institutional Review Board (IRB).

Each self-stated diagnosis included in this study was examined by a human annotator (one of the authors) to verify that it appeared to be a genuine statement of a schizophrenia diagnosis, excluding jokes, quotes, or disingenuous statements. We obtained 174 users with an apparently genuine self-stated diagnosis of a schizophrenia-related condition. Note that we cannot be certain that the Twitter user was actually diagnosed with schizophrenia, only that their statement of being diagnosed appears to be genuine. Previous work indicates that inter-annotator agreement for this task is good: $\kappa = 0.77$ (Coppersmith et al., 2014a).

For each user, we obtained a set of their public Twitter posts via the Twitter API, collecting up to 3200 tweets. As we wish to focus on user-authored content, we exclude from analysis all retweets and any tweets that contain a URL (which often contain text that the user did not author). We lowercase all words and convert any non-standard characters (including emoji) to a systematic ASCII representation via Unidecode.

For our community controls, we used randomly-selected Twitter users who primarily tweet in English. Specifically, during a two week period in early 2014, each Twitter user who was included in Twitter’s 1% “spritzer” sample had an equal chance for inclusion in our pool of community controls. We then collected some of their historic tweets and assessed the language(s) they tweeted in according to the Chromium Compact Language Detector. Users were excluded from our community controls if their tweets were less than 75% English.

3.1 Age- and Gender-Matched Controls

Since mental health conditions, including schizophrenia, have different prevalence rates depending on age and gender (among other demographic variables), controlling for these will be important when examining systematic differences between schizophrenic users and community controls. In particular, we would like to be able to attribute any quantifiable signals we observe to the presence or absence of schizophrenia, rather than to a confounding age or gender divergence between the populations (Dos Reis and Culotta, 2015). To that end, we estimated the age and gender of all our users (from their language usage) via the tools graciously made available by the World Well-Being Project (Sap et al., 2014). For each user, we applied a hard threshold to the gender prediction to obtain a binary ‘Female’ or ‘Male’ label. Then, in order to select the best match for each schizophrenia user, we selected the community control that had the same gender label and was closest in age (without replacement).

3.2 Drawbacks of a Balanced Dataset

We use a balanced dataset here for our analysis (an equal number of schizophrenia users and community controls). This 50/50 split makes the machine learning and analysis easier, and will allow us to focus more on emergent linguistics that are related to schizophrenia than if we had examined a dataset more representative of the population (more like 1/99). Moreover, we have not factored in the cost of false negatives or false positives (how should the consequences of misclassifying a schizophrenia user as non-schizophrenic be weighed against the consequences of misclassifying a non-schizophrenic user as schizophrenic?). All our classification results should be taken as validation that the differences in language we observe are relevant to schizophrenia, but only one step towards applying something derived from this technology in a real world scenario.

3.3 Concomitance

Often, people suffering from mental illness have a diagnosis for more than one disorder, and schizophrenia is no exception. Of our 174 users with a genuine self-statement of diagnosis of a schizophrenia-related condition, 41 also state a diagnosis of at least one other mental illness (30%), while 15 of those state that they have a diagnosis of more than one other mental illness (11%). The vast majority of these concomitances are with bipolar (25 users), followed by depression (14), post traumatic stress disorder (8) and generalized anxi-
ety disorder (6). These comorbidity rates are notably lower than the generally accepted prevalence rates, which may be due to one of several factors. First, we rely on stated diagnoses to calculate comorbidity, and the users may not be stating each of their diagnosed conditions, either because they have not been diagnosed as such, or they choose to identify most strongly with the stated diagnosed conditions, or they simply ran out of space (given Twitter’s 140-character limit). Second, we are analyzing Twitter users, which consists of only a subset of the population, and the users that choose to state, publicly, on Twitter, their schizophrenia diagnosis, may not be an accurate representation of the population of schizophrenia sufferers. The noted concomitance of schizophrenia and bipolar disorder is frequently labeled as “schizoaffective disorder with a bipolar subtype”, with some recent research indicating shared impairments in functional connectivity across patients with schizophrenia and bipolar disorders (Meda et al., 2012). It is worth keeping in mind throughout this paper that we examine all subtypes of schizophrenia together here, and further in-depth analysis between subtypes is warranted.

4 Methods

We first define features relevant to mental health in general and schizophrenia in particular, and explore how well each feature distinguishes between schizophrenia-positive users and community controls. We then design and describe classifiers capable of separating the two groups based on the values for these features in their tweets. We reflect on and analyze the signals extracted by these automatic NLP methods and find some interesting patterns relevant to schizophrenia.

4.1 Lexicon-based Approaches

We used the Linguistic Inquiry Word Count (LIWC, Pennebaker et al. (2007)) to analyze the systematic language differences between our schizophrenia-positive users and their matched community controls. LIWC is a psychometrically validated lexicon mapping words to psychological concepts, and has been used extensively to examine language (and even social media language) to understand mental health. LIWC provides lists of words for categories such as FUTURE, ANGER, ARTICLES, etc. We treat each category as a feature; the feature values for a user are then the proportion of words in each category (e.g., the number of times a user writes “I” or “me”, divided by the total number of words they have written is encoded as the LIWC “first person pronoun” category).

4.2 Open-vocabulary Approaches

In addition to the manually defined lexicon-based features described above, we also investigate some open-vocabulary approaches. This includes latent Dirichlet allocation (LDA) (Blei et al., 2003), Brown clustering (Brown et al., 1992), character n-gram language modeling (McNamee and Mayfield, 2004), and perplexity. We now turn to a brief discussion of each approach.

Latent Dirichlet Allocation LDA operates on data represented as “documents” to infer “topics”. The idea behind LDA is that each document can be viewed as a mixture of topics, where each topic uses words with different probabilities (e.g., “health” would be likely to come from a psychology topic or an oncology topic, but “schizophrenia” is more common from the former). LDA infers these topics automatically from the text – they do not have labels to start with, but often a human reading the most frequent words in the topic can see the semantic relationship and assign one.

In our case, all tweets from a user make up a “document”, and we use collapsed Gibbs sampling to learn the distribution over topics for each document. In other words, given a specific number of topics \(k \) (in our work, \(k=20 \)), LDA estimates the probability of each word given a topic and the probability of each topic given a document. Tweets from a user can then be featurized as a distribution over the topics: Each topic is a feature, whose feature value is the probability of that topic in the user’s tweets.

The LDA implementation we use is available in the MALLET package (McCallum, 2002).

Brown Clustering Words in context often provide more meaning than the words in isolation, so we use methods for grouping together words that occur in similar linguistic constructions. Brown clustering is

9http://en.wikipedia.org/wiki/Perplexity
a greedy hierarchical algorithm that finds a clustering of words that maximizes the mutual information between adjacent clusters; in other words, words that are preceded by similar words are grouped together to form clusters, and then these clusters are merged based on having similar preceding words, and then these clusters are further merged, etc. Each word is therefore associated to clusters of increasing granularity. We define all leaf clusters as features, and the feature value of each for a user is the proportion of words from the user in that cluster. The Brown clustering implementation we use is currently available on github, and is used with default parameter settings, including a limit of 100 clusters.

Character n-grams Character n-gram language models are models built on sequences (n-grams) of characters. Here, we use 5-grams: for all the tweets a user authored, we count the number of times each sequence of 5 characters is observed. For example, for this sentence we would observe the sequences: “for e”, “or ex”, “r exa”, “exam”, and so on. The general approach is to examine how likely a sequence of characters is to be generated by a given type of user (schizophrenic or non-schizophrenic).

To featurize character n-grams, for each character 5-gram in the training data, we calculate its probability in schizophrenic users and its probability in control users. At test time, we search for sets of 50 sequential tweets that look “most schizophrenic” by comparing the schizophrenic and control probabilities estimated from the training data for all the 5-grams in those tweets. We experimented with different window sizes for the number of tweets and different n for n-grams; for brevity, we report only the highest performing parameter settings at low false alarm rates: 5-grams and a window size of 50 tweets. An example of this can be found in Figure 1, where one schizophrenic and one control user’s score over time is plotted (top). To show the overall trend, we plot the same for all users in this study (bottom), where separation between the schizophrenics (in red) and control users (in blue) is apparent. The highest score from this windowed analysis becomes the feature value.

Note that this feature corresponds to only a sub-

10I.e., the most granular clusters for each word.
11https://github.com/percyliang/brown-cluster

Figure 1: Timeseries of schizophrenia-like tweets for each user. x-axis is the tweets in order, y-axis denotes the proportion of tweets in a window of 50 tweets that are classified as schizophrenia-like by the CLMs. Top: Example plots of one schizophrenia (red) and one control user (blue). Bottom: All users.

Perplexity The breadth of language used (to include vocabulary, topic areas, and syntactic construction) can be measured via perplexity – a measurement based on entropy, and roughly interpreted as a measurement of how predictable the language is. We train a trigram language model on one million randomly selected tweets from the 2014 1% feed, and then use this model to score the perplexity on all the tweets for each user. If a user’s language wanders broadly (and potentially has the word salad effect sometimes a symptom of schizophrenia), we would expect a high perplexity score for the user. This gives us a single feature value for the perplexity feature for each user.
5 Results

5.1 Isolated Features

We examine differences in the language between schizophrenia sufferers and matched controls by mapping the words they use to broader categories, as discussed above, and measuring the relative frequencies of these categories in their tweets. Different approaches produce different word categories: We focus on LIWC vectors, topics from latent Dirichlet allocation (LDA), and clusters from Brown clustering. We compare whether the difference in the relative frequencies of each category is significant using an independent sample t-test, 12 Bonferroni-corrected.

LIWC vectors

We did not make predictions about which LIWC categories might show deviations between our schizophrenia and control users, but instead examine all the LIWC categories (72 categories, corrected $\alpha = 0.0007$). We find that the language of schizophrenia users had significantly more words from the following major categories: COGNITIVE MECHANISMS, DEATH, FUNCTION WORDS, NEGATIVE EMOTION, and in the following subcategories: ARTICLE, AUXILIARY VERBS, CONJUGATIONS, DISCREPANCIES, EXCL. HEALTH, I. INCL., INSIGHT, IRON, PPON, PRO1, PRONOUN, TENTATIVE, and THEY. Schizophrenia users had significantly fewer words in the major categories of HOME, LEISURE, and POSITIVE EMOTION, and in the subcategories of ASSENT, MOTION, RELATIVE, SEE, and TIME.

Latent Dirichlet Allocation

We find that the difference between the two groups is statistically significant for 8 of the 20 topics, i.e., the relative frequency of the topic per user is significantly different between groups (corrected $\alpha = 0.0025$). Significant topics and top words are shown in Table 1, with the condition with the highest mean proportion in the leftmost column and indicated by color: red for schizophrenia (Sch) and blue for control (Con) topics. We then find the topic t with the maximum estimated probability for each user. To see the prevalence of each topic for each condition, see Figure 2, where each user is represented only by their LDA topic t.

Brown Clustering

To narrow in on a set of Brown clusters that may distinguish between schizophrenia sufferers and controls, we sum the relative frequency of each cluster per user, and extract those clusters with at least a 20% difference between groups. This yields 29 clusters. From these, we find that the difference between most of the clusters is statistically significant (corrected $\alpha = 0.0017$). Example significant clusters and top words are shown in Table 2.

<table>
<thead>
<tr>
<th>Cond.</th>
<th>Topic</th>
<th>Top Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sch</td>
<td>2</td>
<td>don’t (‘I’ve (I’ll feel people doesn’t) thing didn’t) time twitter won’t) make kind woman things isn’t) bad cat makes</td>
</tr>
<tr>
<td>Sch</td>
<td>9</td>
<td>don’t (‘I) love fuck fucking shh people life hell hate stop gonna god wanna die feel make kill time anymore</td>
</tr>
<tr>
<td>Sch</td>
<td>12</td>
<td>people don’t) le world mental schizophrenia (‘I’ve god jesus schizophrenic illness health care paranoid medical truth time life read</td>
</tr>
<tr>
<td>Sch</td>
<td>18</td>
<td>people work today good years time make call long find made point thought free twitter back thing days job</td>
</tr>
<tr>
<td>Con</td>
<td>6</td>
<td>lol shit nigga in the fuck ass am(‘) i love don(‘)t good niggas gotta bitch smh damn ya man back</td>
</tr>
<tr>
<td>Con</td>
<td>7</td>
<td>game rochester football girls basketball final boys bills mafia win rt valley team season sectional north play miami st soccer Con</td>
</tr>
<tr>
<td>Con</td>
<td>11</td>
<td>great love time hope today rt support custsery big happy awesome amazing easy trip toronto forever orleans hear</td>
</tr>
<tr>
<td>Con</td>
<td>19</td>
<td>lol dd love don’t) today day good happy time ddd miss hate work night back if Ill birthday tomorrow tonight</td>
</tr>
</tbody>
</table>

Table 1: LDA topics with statistically significant differences between groups. The condition with the highest mean proportion is given in column 1, where Sch=schizophrenia and Con=control.

<table>
<thead>
<tr>
<th>Cond.</th>
<th>Topic</th>
<th>Top Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sch</td>
<td>000000111</td>
<td>but because cause since maybe be until ear hopefully plus especially except</td>
</tr>
<tr>
<td>Sch</td>
<td>00001010111</td>
<td>if when sometimes unless whenever everytime someday</td>
</tr>
<tr>
<td>Sch</td>
<td>00000011100</td>
<td>know think thought care believe guess remember understand forget swear matter wonder forget realize worry imagine exist doubt kno realized decide complain</td>
</tr>
<tr>
<td>Sch</td>
<td>00001110110</td>
<td>lol haha omg lmao silh hahaha wtf smh ugl o bruh limao ha hashtag mmth exactly k bye omig hahahaha ft hahah btw jak</td>
</tr>
</tbody>
</table>

Table 2: Example Brown clusters with statistically significant differences between groups. The condition with the highest mean proportion is given in column 1, where Sch=schizophrenia and Con=control.
Perplexity: We find this to be only marginally different between groups \((p\text{-value} = 0.07872)\), suggesting that a more in-depth and rigorous analysis of this measure and its relationship to the word salad effect is warranted.

5.2 Machine Learning

In Section 4, we discussed how we featurized LIWC categories, LDA topics, Brown clusters, Character Language Models, and perplexity. We now report machine learning experiments using these features. We compare two machine learning methods: Support Vector Machines (SVM) and Maximum Entropy (MaxEnt). All methods are imported with default parameter settings from python’s scikit-learn (Pedregosa et al., 2011).

As shown in Table 3, the character language model (‘CLM’) method performs reasonably well at classifying users in isolation, and the features based on the distribution over Brown clusters (‘BDist’) performs well in a maximum entropy model. An SVM model with features created from LIWC categories and a distribution over LDA topics (‘LIWC+TDist’) works best at discovering schizophrenia sufferers in our experiments, reaching 82.3% classification accuracy on our balanced test set. Featuring the distribution over topics provided by LDA increases classification accuracy over using linguistically-informed LIWC categories alone by 13.5 percentage points.

The CLM method performed surprisingly well, given its relative simplicity, and outperformed the LIWC features by nearly ten percentage points when used in isolation, perhaps indicating that the open-vocabulary approach made possible by the CLM is more robust to the type of data we see in Twitter. Combining the LIWC and CLM features, though, only gives a small bump in performance over CLMs alone. Given the fairly distinct distribution of LDA topics by condition as shown in Figure 2, we expected that the ID of the LDA topic \(t\) would serve well as a feature, but found that we needed to use the distribution over topics (TDist) in order to perform above chance. This topic distribution feature was the best-performing individual feature, and also performed well in combination with other features, thus seeming to provide a complementary signal. Interestingly, while the CLM model out-performed the LIWC model, the combination of LIWC and TDist features outperformed the combination of CLM and TDist features, yielding our best-performing model.

5.3 Analysis of Language-Based Signals: LDA and Brown Clustering

In the previous section, we examined how well the signals we define discriminate between schizophrenia sufferers and controls in a balanced dataset. We now turn to an exploratory discussion of the language markers discovered with the unsupervised NLP techniques of LDA and Brown clustering, in the hopes of shedding some light on language-based differences between the two groups.

Refer to Tables 1 and 2. Both LDA and Brown clustering produce groups of related words, with different views of the data. We find that both methods group together words for laughing – “haha”, “lol”, etc. – and these discriminate between schizophrenia sufferers and controls. In LDA, this is Topic 6; in Brown clustering, this is Cluster 0001001. Controls are much more likely to ask someone to retweet (“rt”), pulled out in both methods as well (Topics 7 and 11; Cluster 00001). The two approaches produce word groups with time words like “today” and “tonight” that discriminate between schizophrenia sufferers and controls differently; the word “today” in particular is found in a topic and in a cluster that is more common for controls (Topic 19 and Cluster 0101101010).

LDA pulls out positive sentiment words such as “love”, “awesome”, “amazing”, “happy”, “good”, etc. (Topics 11 and 19), and topics with these words are significantly more common in controls. It also finds groups for negated words like “don’t”, “didn’t”, “won’t”, etc. (Topic 2), and this is significantly more common in the language of schizophrenia sufferers. Both decreased occurrence of positive sentiment topics and increase of negated word topics is suggestive of the flat affect common to schizophrenics. Topic 12 contains a group of words specific to mental health, including the words “mental”, “health”, and “medical”, as well as, interestingly, “schizophrenia” and “schizophrenic” – unsurprisingly occurring significantly more under the schizophrenia.
nia condition. Recall that we remove the original diagno-
sis tweet from our analysis, but this topic indicates much
more talk about the condition. One wonders whether
this might extend to other mental health conditions, and
whether the stigma of discussing mental health is re-
duced within the anonymity provided by the Internet and
social media. Figure 2 furthermore indicates that only
schizophrenia sufferers have this Topic 12 as their LDA
topic t.

Brown clustering pulls out the first person pronoun ‘I’
as a main cluster, and we find that this is significantly
more frequent in schizophrenia sufferers than in controls.
This is comparable to the LIWC category ‘I’, which we
also find to be proportionally higher in the language of
schizophrenia sufferers. Interestingly, Brown clustering
pulls out words that mark hedging and irrealis moods in
English (Cluster 010100111). This is found in phrases
such as “I think”, “I believe”, “I guess”, etc. We find
that this cluster is significantly more common in the lan-
guage of schizophrenia sufferers, perhaps related to the
dissociation from reality common to the disorder. We
also find a Brown cluster for connectives (words like
“But”, “because”, “except”) in Cluster 01011111111; and
this is also significantly more common in schizophrenia
sufferers. The use of an exclamation point (Cluster
0010111) also differs between schizophrenia sufferers
and controls. Note that markers << and >> are also
common in this cluster. This is an artifact of our text pro-
cessing of emojis; in other words, both emojis and exclama-
tion points are significantly less likely in the language of
schizophrenics. This is potentially another reflection of
the flat affect negative symptom of schizophrenia.

6 Conclusion

Given its relative rarity compared to other mental
health conditions like depression or anxiety disorders,
schizophrenia has been harder to obtain enough data
to leverage state-of-the-art natural language processing
techniques. Many such techniques depend on large
amounts of text data for adequate training, and such data
has largely been unavailable. However, we can discover a
sufficient amount of schizophrenia sufferers via publicly
available social media data, and from here we can begin
to explore text-based markers of the illness. This comes
with a notable caveat: These users battling schizophrenia
may be different in some systematic ways from the
schizophrenic population as a whole – they are Twitter
users, and they are speaking publicly about their condition.
This suggests that replication of these findings in
more controlled settings is warranted before hard conclu-
sions are drawn.

By applying a wide range of natural language pro-
cessing techniques to users who state a diagnosis of
schizophrenia, age- and gender-matched to community
controls, we discovered several significant signals for
schizophrenia. We demonstrated that character n-grams
featurized over specific tweets in a user’s history per-
forms reasonably well at separating schizophrenia suf-
ferers from controls, and further, featurizing the distribu-
tion over topics provided by latent Dirichlet allocation in-
creases classification accuracy over using linguistically-
formed LIWC categories alone by 13.5 percentage
points in an SVM machine learning approach. More-
over, the features produced by these unsupervised NLP
methods provided some known, some intuitive, and some
novel linguistic differences between schizophrenia and
control users.

Our cursory inspection here is only capturing a frac-
tion of the insights into schizophrenia from text-based
analysis, and we see great potential from future analy-
ases of this sort. Identifying quantifiable signals and clas-
sifying users is a step towards a deeper understanding
of language differences associated with schizophrenia,
and hopefully, an advancement in available technology
to help those battling with the illness.

References

American Psychiatric Association. 2013. Diagnostic
and Statistical Manual of Mental Disorders (5th Edi-

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Compu-

Glen Coppersmith, Mark Dredze, and Craig Harman.
In Proceedings of the ACL Workshop on Compu-
tational Linguistics and Clinical Psychology.

Glen Coppersmith, Craig Harman, and Mark Dredze.
2014b. Measuring post traumatic stress disorder in
Twitter. In Proceedings of the 8th International AAAI
Conference on Weblogs and Social Media (ICWSM).

Munmun De Choudhury, Scott Counts, and Michael Ga-
mon. 2011. Not all moods are created equal! Explor-
ing human emotional states in social media. In Pro-
cedings of the 5th International AAAI Conference on
Weblogs and Social Media (ICWSM).

Munmun De Choudhury, Scott Counts, and Eric Horvitz.
2013a. Social media as a measurement tool of depres-
sion in populations. In Proceedings of the 5th ACM
International Conference on Web Science.

