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Abstract

VRep is a system designed for SemEval 2016
Task 1 - Semantic Textual Similarity (STS)
and Task 2 - Interpretable Semantic Textual
Similarity (iSTS). STS quantifies the seman-
tic equivalence between two snippets of text,
and iSTS provides a reason why those snip-
pets of text are similar. VRep makes ex-
tensive use of WordNet for both STS, where
the Vector relatedness measure is used, and
for iSTS, where features are extracted to cre-
ate a learned rule-based classifier. This pa-
per outlines the VRep algorithm, provides re-
sults from the 2016 SemEval competition, and
analyzes the performance contributions of the
system components.

1 Introduction

VRep competed in SemEval 2016 Task 1 - Seman-
tic Textual Similarity (STS) and Task 2 - Seman-
tic Interpretable Textual Similarity (iSTS). Both of
these tasks compute STS between two fragments of
text. Task 2 expands upon Task 1 by requiring a rea-
son for their similarity. VRep uses an STS measure
based on the Vector relatedness measure (Pedersen
et al., 2004), and a reasoning system based on JRIP
(Cohen, 1995), an implementation of the iREP algo-
rithm.

For Task 1, we are provided with paired sen-
tences, and for each pair of sentences VRep assigns
a number indicating their STS. The number ranges
from 0 to 5, 0 indicating no similarity and 5 indicat-
ing equivalence.

For Task 2, we are provided with paired sentences
and align the chunks of one sentence to the most

similar chunks in the other sentence. Next, a reason
and score are computed for that alignment. A chunk
is a fragment of text that conveys a single meaning
such as in the following example for which chunks
are bracketed.

[ Black Cow ] [ walking ] [ in a pasture ]
[ Black and white Cow ] [ sitting ] [ in the grass ]

Alignment reasons are selected from a small list
of possible labels created by the event organizers
(Agirre et al., 2015):

1. Equivalent (EQUI) - the two chunks convey an
equivalent meaning (“hot water”, “scalding wa-
ter”)

2. Opposite (OPPO) - the two chunks convey an
opposite meaning (“hot water”, “cold water”)

3. More General (SPE1) - this chunk conveys a
more general meaning than the other chunk
(“hot water”, “water”)

4. More Specific (SPE2) - this chunk conveys a
more specific meaning than the other chunk
“water”, “hot water”)

5. Similar (SIMI) - the two chunks convey a sim-
ilar meaning (“sip water”, “gulp water”)

6. Related (REL) - the two chunks are somehow
related (“boil water”, “ocean water”)

7. No Alignment (NOALI) - there are no chunks
in the other sentence that are semantically sim-
ilar to this chunk
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As in Task 1 the scores range from 0 to 5, 0 in-
dicating no similarity and 5 indicating equivalence.
VRep makes extensive use of WordNet (Fellbaum,
2005) to compute STS and assign a label in iSTS.
Vrep is written in Perl and is freely available for
download1.

2 Algorithm Description

The same measure of STS is used for both Task 1
and Task 2; however, the algorithm for Task 1 is sim-
pler and consists of only the first two steps: Prepro-
cessing and Semantic Textual Similarity. The steps
are outlined below and are expanded on in subse-
quent subsections.

1. Preprocessing - text is standardized

2. Semantic Textual Similarity - the STS between
two chunks or two sentences is computed. This
is the final step for Task 1.

3. Chunk Alignment - align each chunk of one
sentence to a chunk in another sentence. If no
chunks are similar then no alignment (NOALI)
is assigned.

4. Alignment Reasoning - assign a label to each
aligned chunk pair

5. Alignment Scoring - assign an alignment score
on a 0-5 scale

2.1 Preprocessing

In the first step, data is prepared for processing as
outlined below:

1. Tokenization - spaces are used as a delimiter

2. Lowercase All Characters - standardizes string
equivalence testing and prevents incorrect part
of speech (POS) tagging. The POS tagger tends
to tag most words that have a capital letter as
a proper noun which is often incorrect. This is
particularly problematic with the headlines data
set.

3. Punctuation Removal - standardizes string
equivalence testing

1http://www.people.vcu.edu/ henryst/

4. POS tagging - Lingua::EN::Tagger2 is used.
POS tags are used for stop word removal and
for alignment reasoning.

5. Stop Word Removal - remove any words that
are not tagged as a noun, verb, adjective, or
adverb. This reduces chunks and sentences to
content words.

2.2 Semantic Textual Similarity (STS)

STS is computed in the same way for both tasks;
however it is computed between two sentences for
Task 1 and between two chunks for Task 2. While
describing the computation of STS we refer to
chunks; for Task 1 a sentence can be conceptual-
ized as a chunk. VRep’s STS computation is shown
in Equation (1) and is similar to the method de-
scribed by NeRoSim (Banjade et al., 2015) and
Stefanescu (Ştefănescu et al., 2014). chunkSim
takes two chunks (c1, c2) as input and computes the
weighted sum of maximum word to word similar-
ities, sim(wi, wj). To do this, the sim(wi, wj) is
found for each word in c2 against c1, and the maxi-
mum is added to a running sum.

chunkSim(c1, c2) =

∑n
i=1 maxmj=1 sim(wi, wj)

min(n,m)
(1)

where c1 and c2 are two chunks, n and m are the number of words in
c1 and c2, wi is word i of c1, wj is word j of c2

sim(wi, wj) is defined differently for words in
WordNet and words not in WordNet. For words
in WordNet, sim(wi, wj) is the Vector relatedness
measure3 (Pedersen et al., 2004) with a threshold
applied. The Vector measure was chosen for several
reasons. Firstly it returns values scaled between 0
and 1 which is beneficial for applying thresholds in
both chunk alignment and alignment reasoning. A
known scale also allows for a direct mapping from
the weighted sum to the answer space of Task 1
(scaled 0-5). Secondly the Vector measure works
well whenwi andwj are different parts of speech be-
cause it does not rely on WordNet hierarchies. When
calculating sim(wi, wj) all possible senses of both
wi and wj are used, and sim(wi, wj) is chosen as

2http://search.cpan.org/ acoburn/Lingua-EN-Tagger/
3WordNet::Similarity::Vector
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the maximum value. This eliminates the need for
word sense disambiguation (WSD). After comput-
ing the measure, a threshold is applied that reduces
any value less than 0.9 to 0.0. This value was tuned
separately using the training data for both tasks via
a grid search and 0.9 was found to be optimum for
both. The threshold prevents dissimilar terms from
impacting the STS which improves the accuracy and
prevents noisy chunk alignments.

For words not in WordNet, chunkSim(wi, wj) is
a binary value: 1 if all the characters in both words
match, 0 otherwise. Words not in WordNet tend to
be proper nouns, abbreviations, or short words such
as “he” or “she”, “is” or “in”, all of which are gener-
ally spelled identically making this a suitable mea-
sure.
chunkSim is defined as the sum of maximum

word to word similarities normalized by the number
of words in the shorter of the chunk pair. Normal-
ization prevents similarity scores from increasing as
chunk length increases. It also scales chunkSim
within a predictable range of about 0.0− 1.0.
chunkSim is used directly in Task 1 where it is

linearly scaled by 5 to produce final output. We ex-
perimented with multiple regression fits (linear, ex-
ponential, logarithmic, power, and polynomial) be-
tween our chunkSim output and the provided gold
standard values with little to no improvement, so the
linear scaling of 5 was chosen for simplicity.

2.3 Chunk Alignment
chunkSim is computed between each chunk of
two aligned sentences and the chunk with the high-
est chunkSim is selected for alignment. Multi-
ple alignments are allowed for a single chunk. If
all chunks have a similarity of 0, no alignment
(NOALI) is assigned. Due to the high sim(wi, wj)
threshold, no threshold is required for chunkSim as
with NeRoSim(Banjade et al., 2015).

2.4 Alignment Reasoning
Alignment Reasoning takes as input a chunk pair
and provides a reason why that chunk pair is
aligned. VRep’s alignment reasoning is inspired
by NeRoSim (Banjade et al., 2015), and SVCTSTS
(Karumuri et al., 2015). Both these systems clas-
sify a chunk pair using features extracted from the
chunk pair itself. NeRoSim’s features tend to focus

more on the semantic relationship between chunk
pairs, such as whether or not the two chunks contain
antonyms, synonyms, etc. The features of SVCSTS
focus more on the syntactic form of the chunks, such
as the number of words or counts of parts of speech
in a chunk pair. VRep combines the two approaches
and extracts a total of 72 syntactic and semantic fea-
tures for each chunk pair.

Gold Standard chunk pairs of the SemEval 2015
Task 2 Test Data4 were used to train our classifier,
WEKA’s (Hall et al., 2009) JRIP algorithm (Cohen,
1995) which creates a decision list for classification.
The classifier uses only 24 of original 72 features
and a series of 10 rules.

JRIP was chosen as a classifier due to its perfor-
mance (see Table 5), and its concision. The rules
generated are human readable which provides in-
sight into how the classification occurs and the types
of features that are discriminative. Classifiers were
trained with chunk pairs from every data set (stu-
dent answers, headlines, and images), both individ-
ually and combined. The best performing classi-
fier for each topic was generated from the combined
data. The set of features used and classification rules
are shown below. α and β designate the individual
chunks in the chunk pair being classified, and ~xi in-
dicates a feature vector created from a chunk pair. i
indicates the feature number in the feature list below.

Features used in Classification:
1 - unmatched content word percentage of α
2 - unmatched content word percentage of β
3 - 1 if α contains a location
4 - 1 if β contains a location
5 - 1 if α has a verb
6 - 1 if α has an adjective
7 - 1 if α has an adverb
8 - 1 if α and β contain antonyms
9 - 1 if α and β have a equivalent nouns
10 - 1 if α and β contain numeric quantities
11 - number of words in α (before stop word

removal)
12 - number of words in β (before stop word

removal)
13 - ratio of the number content words to all

words in α (before stop word removal)

4http://alt.qcri.org/semeval2016/task2/data/uploads/train
2015 10 22.utf-8.tar.gz
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14 - difference in number of content words in α
and β

15 - difference in number of words in α and β
(before stop word removal)

16 - absolute value of the difference in number of
content words in α and β

17 - absolute value of the difference in number of
words in α and β (before stop word removal)

18 - ratio of the number of content words in α to
all words in α (before stop word removal)
over the ratio of the number of content
words in β to all words in β (before stop
word removal)

19 - number of nouns in β
20 - ratio of the number of nouns in α to the

number of content words in α
21 - ratio of the number of verbs in α to the

number of content words in α
22 - ratio of the number of adjectives in α to the

number of content words in α
23 - ratio of the number of conjunctions in α to

the number of content words in α
24 - difference in the number of verbs in α and β

Algorithm 1 Alignment Reasoning Rules
1: if ~x8 ≥ 1 & ~x22 ≥ 1
2: or ~x8 ≥ 1 & ~x4 ≥ 1 & ~x5 ≥ 1 & ~x16 ≥ 1
3: or ~x8 ≥ 1 & ~x23 ≥ 1

2 & ~x1 ≥ 1
2

4: or ~x21 ≥ 1
2 & ~x7 ≥ 1 & ~x12 ≤ 1

return OPPO
5: if ~x2 ≥ 1

3 & ~x14 ≤ −1 & ~x9 ≥ 1 & ~x19 ≤ 0
& ~x13 ≥ 4

7
return SPE2

6: if ~x14 ≥ 1 & ~x9 ≥ 1 & ~x2 ≤ 0 & ~x6 ≥ 1
& ~x11 ≤ 4 & ~x24 ≤ 0

7: or ~x14 ≥ 1 & ~x17 ≥ 2 & ~x13 ≥ 5
7

8: or ~x15 ≥ 1 & ~x18 ≥ 8
9 & ~x2 ≤ 0 & ~x3 ≥ 1

9: or 1
4 ≤ ~x1 ≤ 2

3 & ~x14 ≥ 1 & ~x5 ≤ 0
& ~x20 ≤ 1

5 & ~x18 ≤ 1 & ~x13 ≥ 2
3

return SPE1
10: if ~x2 ≥ 1

2 & ~x1 ≥ 1
3 & ~x10 ≥ 1

return SIMI
11: return EQUI

It is interesting to note that there is no classifier for
the REL class. The data set was heavily skewed to-
wards the EQUI class which consisted of 60% of the
total data, leaving a small percentage to be divided
among the remaining 5 classes, with just around 5%
being REL. With a larger training set we would ex-

pect a classifier for REL to be generated.

2.5 Alignment Scoring

Alignment scores are assigned as either the required
scores, 0 for NOALI and 5 or EQUI, or the average
alignment score for each class as in (Karumuri et al.,
2015). The average alignment score for classes were
computed both for each topic alone and for all topics
combined. The best performing set of scores came
for all topics, came from the images data set alone.
Scores used for each class are as follows: EQUI =
5.00, OPPO = 4.00, SPE1 = 3.24, SPE2 = 3.69, SIMI
= 2.975, REL = 3.00, NOALI = 0.00.

3 Results

The performance of VRep is shown below for Se-
mEval 2016 Task 1 and Task 2 test data sets. The
baseline described by the task organizers (Agirre et
al., 2015) is shown for comparison for Task 2. Base-
line results were not made available for Task 1.

3.1 Task 1 - Semantic Similarity

For Task 1 the Pearson Correlation Coefficient be-
tween VRep’s results and Gold Standard results are
reported for the 2016 Task 1 Test Data5. A value
of 1.0 indicates perfect correlation, 0.0 indicates no
correlation. We ran VRep on five data sets with the
results of each data set shown in Table 1. More de-
tails on the data sets and evaluation metrics are de-
scribed in the competition summary6.

Data set VRep
answers-answers 0.29487

headlines 0.68185
plagiarism 0.69730
post editing 0.72966

question-question 0.49029
Mean 0.578794

Table 1: Results of VRep on SemEval 2016 Task 1 Test Data

3.2 Task 2 - Interpretable Semantic Similarity

For Task 2, we report results for the Gold Chunks
scenario (data is pre-chunked). Each data set is eval-
uated using the F1 score in four categories:

5http://alt.qcri.org/semeval2016/task1/data/uploads/sts2016-
english-with-gs-v1.0.zip

6http://alt.qcri.org/semeval2016/task1/
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(Ali) - Alignment - F1 score of the chunk
alignment
(Type) - Alignment Type - F1 score of the
alignment reasoning
(Score) - Alignment Scoring - F1 score of
alignment scoring
(Typ+Scor) - Alignment Type and Score - a
combined F1 score of alignment reasoning and
scoring

F1 scores range from 0.0 to 1.0 with 1.0 being
the best score. Data sets are available online7 and
evaluation metrics are described in more detail in the
competition summary (Agirre et al., 2015).

Data set Baseline VRep
Answers-Students

F1 Ali 0.8203 0.7723
F1 Type 0.5566 0.5249
F1 Score 0.7464 0.7014

F1 Typ+Scor 0.5566 0.5226
Headlines

F1 Ali 0.8462 0.8908
F1 Type 0.5462 0.6015
F1 Score 0.7610 0.8027

F1 Typ+Scor 0.5461 0.5964
Images
F1 Ali 0.8556 0.8539

F1 Type 0.4799 0.5516
F1 Score 0.7456 0.7651

F1 Typ+Scor 0.4799 0.5478
Table 2: Results of VRep on SemEval 2016 Task 2 Test Data

4 Component Analysis

In this section the contributions of system compo-
nents and possible additions are evaluated. VRep
can be split into two major components, STS and
Alignment Reasoning, both of which have different
evaluation criteria. Data used for this section comes
from the SemEval 2015 Task 18 training data and
SemEval 2016 Task 29 training data. Two-Tailed p-
values are shown in the Tables 3 and 4.

7http://alt.qcri.org/semeval2016/task2/data/uploads/
test goldstandard.tar.gz

8http://ixa2.si.ehu.es/stswiki/images/2/21/STS2015-en
-rawdata-scripts.zip

9http://alt.qcri.org/semeval2016/task2/data/uploads/train
2015 10 22.utf-8.tar.gz

LevenshteinMeasure =

{
β−δ
β δ < β

0 δ ≥ β
(2)

where δ is the Levenshtein distance between the two words, and β is
the threshold used

4.1 STS Component Analysis

Pearson Correlation Coefficients of STS scores of
Task 1 and the F1 Ali Task 2 are used as evaluation
metrics for the STS portion of VRep. Tables 3 and 4
show the effects of adding a component to the Basic
system. Each component and the Basic system are
described below:

1. As a baseline a Basic system which only ap-
plies Equation (1) is used. For Task 1 the re-
sult is scaled by 5. For Task 2 each chunk
is aligned with the chunk with the highest
chunkSim. No thresholding, or preprocessing
is performed.

2. Threshold adds a threshold to sim(wi, wj) in
Equation (1). A modest threshold of 0.4 was
used. The optimum threshold of 0.9 used in
the final system was found with the system as
a whole. We did not perform a grid search to
optimize the threshold for all component tests.

3. Stop Removal adds stop word removal as de-
scribed in subsection 2.1.

4. Levenshtein modifies sim(wi, wj) for words
not in WordNet. Rather than using a binary
value for exact string matching the Levenshtein
measure shown in Equation (2) is used. This al-
lows for slight differences in spelling, plurality,
tenses, etc. The measure requires a threshold
parameter, β which limits the maximum Leven-
shtein distance (δ) and scales the Levenshtein
Measure between 0.0 and 1.0. β = 2.0 was
found via a grid search to perform best. The
Levenshtein Measure is unnecessary for these
tasks most likely because, as stated in section
1, words not in WordNet tend to be proper
nouns or abbreviations for which the spelling
is the same, and for short words such as “he”
or “she”, “is” or “in”, even small edit distances
can transform the word into a completely unre-
lated word.
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F1 Ali p-value significant
Basic 65.40 - -

Threshold 0.7263 <0.0001 yes
Stop Removal 0.7349 <0.0001 yes
Levenshtein 0.6586 0.1445 no

Table 3: The effects of additional components to the core VRep

system on Task 1

F1 Ali p-value significant
Basic 0.7508 - -

Threshold 0.8812 <0.0001 yes
Stop Removal 0.7511 0.9920 no
Levenshtein 0.7524 0.7795 no

WSD 0.7799 <0.0001 yes
Threshold + WSD 0.8216 <0.0001 yes

Table 4: The effects of components to the core VRep system

on Task 2

5. Word Sense Disambiguation (WSD) should
help to reduce noisy alignments by using the
correct synset when computing the Vector re-
latedness measure. We used the entire sentence
(all chunks) as input to SenseRelate::AllWords
(Patwardhan et al., 2003). WSD improves re-
sults when used as a single component, but
when used in combination with a threshold
(Threshold + WSD) results are worse than a
threshold alone. This is likely due to the fact
that both WSD and thresholding aim to reduce
noisy STS and chunk alignments. When used
singularly they both achieve this task, but in
combination WSD errors reduce performance.

Analysis of the test data indicated that the ad-
dition of these extra components was unnecessary,
however to further analyze their contributions three
runs were submitted for the both tasks 1 and 2. Run
1 used the basic system, run 2 eliminated the stop
removal preprocessing step, and run 3 used the ba-
sic system with the Levenshtein measure described
above. Test results were mixed and data set de-
pendant, see the respective competition summaries
(Agirre et al., 2016) for complete results.

4.2 Alignment Reasoning Component Analysis

For alignment reasoning, only the assignment of a
label (Type) to a chunk pair is evaluated. We used
the gold standard alignments provided for each data
set, converted each gold standard chunk pair to the

Answers Headlines Images
Baseline 67.9 61.4 54.2

Naive Bayes 23.9 41.5 35.1
Bayes Net 49.3 58.9 51.3

SMO 69.6 65.7 54.9
Decision Table 67.5 65.7 55.8

J48 66.1 64.9 52.7
Random Forest 68.4 65.8 53.6

JRip 68.9 65.4 56.2
Table 5: The performance of different classifiers on alignment

reasoning

entire set of 72 features and tested multiple classi-
fication algorithms. All classifiers are WEKA (Hall
et al., 2009) implementations; results are shown in
Table 5. The baseline score is calculated as simply
assigning the most common class, EQUI.

5 Conclusions and Future Work

In future iterations, more analysis should be done to
refine the features used in classification. Using JRIP
and other analysis criteria we can see see why cer-
tain features are discriminative, and develop more
informative features.

Rather than relying solely on the Levenshtein
measure for words outside of WordNet, additional
metrics, such as word2vec (Mikolov et al., 2013)
could be incorporated.

Additional data should be added for training clas-
sifiers. The top performing classifier was gener-
ated from all data combined indicating that addi-
tional samples are necessary. It is likely that given
more data, topic specific classifiers will outperform
the general classifier we evaluated. Additional data
will also help to reduce the class imbalance and will
likely result in a set of rules for the REL class.

Since VRep already makes use of WordNet, it
could be easily expanded to compete in the polarity
subtask by implementing a polarity classifier using
SentiWordNet (Baccianella et al., 2010).
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