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Abstract

We describe MITRE’s submission to the
SemEval-2016 Task 6, Detecting Stance in
Tweets. This effort achieved the top score in
Task A on supervised stance detection, pro-
ducing an average F1 score of 67.8 when as-
sessing whether a tweet author was in favor or
against a topic. We employed a recurrent neu-
ral network initialized with features learned
via distant supervision on two large unlabeled
datasets. We trained embeddings of words and
phrases with the word2vec skip-gram method,
then used those features to learn sentence rep-
resentations via a hashtag prediction auxiliary
task. These sentence vectors were then fine-
tuned for stance detection on several hundred
labeled examples. The result was a high per-
forming system that used transfer learning to
maximize the value of the available training
data.

1 Introduction

This paper describes a system for performing au-
tomatic stance detection in social media messages.
Our approach employs a recurrent neural network
which was initialized from pre-trained features
learned in successive attempts to encode world
knowledge via weak external supervision.

Stance detection is the task of determining
whether the author of a text is in favor or against
a given topic, while rejecting texts in which neither
inference is likely. This task is distinct from senti-
ment analysis in that an in favor or against stance
can be measured independently of an author’s emo-
tional state. In stance detection we attempt to mea-

sure how an author’s opinion is expressed in sponta-
neous, unstructured messages rather than the explicit
prompts of formal opinion polls.

Declarations of stance are often couched in fig-
urative language that can be difficult for machines
to unravel. Consider the texts We don’t inherit the
earth from our parents we borrow it from our chil-
dren and Last time I checked, Al Gore is a politi-
cian, not a scientist. To the human observer mes-
sages like these contain an interpretable stance rel-
evant to the topic of climate change. But to under-
stand rhetorical devices like sarcasm, irony, analogy,
and metaphor, a reader often uses personal experi-
ence to infer broader context. For machines, matters
are additionally complicated by use of informal vo-
cabulary, grammar, and spelling. Furthermore, train-
ing data is often expensive or difficult to collect in
bulk. These challenges motivated our efforts to seek
transfer learning of broad world knowledge through
feature pre-training using large unlabeled datasets.

2 Related Work

It is common for machine learning approaches to be-
gin learning of any new task from scratch, for exam-
ple by randomly initializing the parameters of a neu-
ral network. This disregards any knowledge gained
by similar algorithms when solving previous tasks.
Transfer learning approaches, on the other hand,
store the knowledge gained in one context and ap-
ply it to different, related problems. This type of ap-
proach is particularly appealing when one lacks suf-
ficient quantity of in-domain labeled training data,
such as when there are only a few hundred known
examples of a target.
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One strategy for performing transfer learning is to
train the parameters of a neural network on multiple
tasks: first on an auxiliary task with plentiful data
that allows the network to identify meaningful fea-
tures present in the corpus, then a second time using
actual task data to tune and exploit those features
learned in the first pass.

Deep neural networks trained for image classifi-
cation can be improved when initialized with fea-
tures learned from distant tasks, for example Yosin-
ski et al. (2014). In natural language processing
domains, sentence representations learned on unla-
beled data have been shown to be useful across a va-
riety of classification and semantic similarity tasks
(Kiros et al., 2015; Dai and Le, 2015; Hill et al.,
2016). Weston et al. (2014) used a hashtag predic-
tion task to learn sentence representations that im-
prove a downstream content-based recommendation
system.

Previous work in stance detection is significant
(Mohammad, 2016), often with a focus on analysis
of congressional debates or online forums (Thomas
et al., 2006; Somasundaran and Wiebe, 2009; Mu-
rakami and Raymond, 2010; Walker et al., 2012)
in which discourse and dialogue features offer clues
for identifying oppositional speakers. Rajadesingan
and Liu (2014) study stance detection in Twitter con-
versations and use a retweet-based label propagation
approach. This objective of this work differs in that
we attempt to detect an author’s stance purely from
analysis of the text of a single message.

3 Task and Evaluation

Detecting Stance in Tweets, Subtask A: Supervised
Frameworks (Mohammad et al., 2016) was a shared
task organized within SemEval-2016.

The task organizers provided training data in the
form of 2,814 tweets covering five topics, with
395 to 664 tweets per topic. The organizers used
crowdsourcing to manually annotate these tweets for
stance. Class balance varied between topics, with
some topics showing significant skew (e.g. Cli-
mate Change is a Real Concern with 4% AGAINST
and 54% FAVOR) while others were more balanced
(e.g. Feminist Movement with 49% AGAINST and
32% FAVOR). Approximately 74% of the provided
tweets were judged to be either in favor or against,

Figure 1: A recurrent neural network for stance detection.

while the remainder contained neither inference. An
additional 1249 tweets with held-out labels were
used as evaluation data. Systems were evaluated us-
ing the macro-average of F1-score(FAVOR) and F1-
score(AGAINST) across all topics.

4 System Overview

We now describe an approach to stance detection
that employs a recurrent neural network organized
into four layers of weights (shown in Figure 1). In-
put tokens are encoded in a one-hot fashion, such
that each token is represented by a sparse binary vec-
tor containing a single one-value at the index corre-
sponding to the token’s position in the vocabulary.
A sequence of these inputs are projected through
a 256-dimensional embedding layer, which feeds
into a recurrent layer containing 128 Long Short-
Term Memory (LSTM) units. The terminal output
of this recurrent layer is densely connected to a 128-
dimensional layer of Rectified Linear units trained
with 90% dropout (Srivastava et al., 2014). Finally,
this layer is fully connected to a three dimensional
softmax layer in which each unit represents one of
the output classes: FAVOR, AGAINST, or NONE.

This approach did not incorporate any manually
engineered task-specific features or inputs relevant
to the surface structure of the text. The only inputs
to the network were the sequence of indices rep-
resenting the identity of lowercased tokens (words
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or phrases) in the text. All feature pre-training was
done using weak supervision from larger unlabeled
text datasets, with a goal of automatically learning
useful representations of words and input sequences.

4.1 Pre-Training the Projection Layer

The weights for the projection layer of the network
were initialized from 256-dimensional word em-
beddings learned using the word2vec skip-gram
(Mikolov et al., 2013a) algorithm. We sampled
218,179,858 tweets from Twitters public stream-
ing API during 2015, and used this unlabeled data
as our training corpus. Retweets, duplicates, and
non-English messages were not included in this
sample. Text was lowercased and tokenized to
mimic the style of the task data. We then applied
word2phrase (Mikolov et al., 2013b) twice con-
secutively to identify phrases comprised of up to
four words, for example making a single token of
the phrase global climate change.

We then trained 256-dimensional skip-gram em-
beddings for the 537,366 vocabulary items that ap-
peared at least 100 times in our corpus, with a con-
text window of 10 words and 15 negative samples
per positive example. These hyperparameters were
chosen in advance based on our prior experience in
training embeddings for identifying word analogies
and estimating semantic similarity of sentences. Out
of vocabulary items were represented by the average
of all in-vocabulary vectors.

Note that these projection layer weights were later
tuned by backpropagation during training of the re-
current networks. Thus these initializations served
to provide the RNNs with initial feature represen-
tations intended to capture the nuances of informal
word usage observed in a large sample of text.

4.2 Pre-Training the Recurrent Layer

The second layer of our network was composed
of 128 Long Short-Term Memory (LSTM) units
(Hochreiter and Schmidhuber, 1997). This recur-
rent layer received as input a sequence of up to 30
embeddings, folding each into its hidden state in
turn. It was initialized with weights that were pre-
trained using the distant supervision of a hashtag
prediction auxiliary task. In this manner the network
learned distributed sentence representations from a
dataset containing a broad array of stance declara-

tions, rather than relying exclusively on the 2,814
explicitly labeled in-domain tweets.

We began by automatically identifying 197 hash-
tags with relevance to the topics under consider-
ation, for example #climatechange, #climatescam,
and #gamergate. These hashtags were selected on
the basis of a nearest-neighbor search of the word
embedding space. We queried the vector space using
the embeddings of the topic titles, and selected the
unique hashtags with high (top-50) cosine similarity.
These selections varied greatly in frequency and task
specificity, including a number of tags which were
related to multiple topics and others which appeared
ambiguously related. Half of the 40 most frequent
tags in this list were related to the 2016 United States
presidential elections. The final list of 197 relevant
hashtags was held constant across all experiments.

We extracted 298,973 tweets containing at least
one of these 197 hashtags from the 2015 corpus of
218 million English tweets. Text was lowercased,
tokenized, and phrase chunked according with the
preprocessing choices made during the training of
word embeddings. If a tweet contained more than
one hashtag, the most frequent tag was used as the
prediction target. Tweets were then stripped of all
hashtags, including both the correct hashtag and any
additional hashtags appearing in the tweet.

This corpus was divided into a training set and de-
velopment set using a 90/10 split. Each word in the
tweet was converted into a vector using the word em-
beddings. The sequence of vector representations of
the words in the tweet served as the input to a neural
network with a 128-dimensional LSTM layer, fol-
lowed by a dense softmax layer over the 197 possi-
ble candidate hashtags.

We trained the neural network with gradient de-
scent using AdaDelta and categorical cross entropy
minimization. Both the word embeddings and
the recurrent layer were tuned during this process.
Training continued until the accuracy on the devel-
opment set reached its maximum, which took seven
epochs. The final model correctly predicted devel-
opment set hashtags with 42.6% accuracy.

5 Experiments

The system described in section 4 was designed to
detect stances pertaining to a single topic. As such

472



Figure 2: F1 scores for each topic and class on both cross-validation and test conditions.

we trained five distinct classifiers, one for each of
the five topics under consideration in the evaluation.
The embedding and recurrent layers of each classi-
fier were initialized with the weights obtained from
the pre-training process described above. The re-
mainder of the weights were randomly initialized
and the network was trained with stochastic gradient
descent using a learning rate of 0.015 and momen-
tum of 0.9. These networks were trained using a cat-
egorical cross-entropy loss function, with costs for
each example weighted according to the prevalence
of the class in the training data. This placed higher
weight on rare classes. The recurrent networks were
implemented using the Keras framework (Chollet,
2015).

The training data for each topic was shuffled and
split into five chunks for cross-validation. The train-
ing process for a single topic’s classifier therefore
resulted in five distinct neural networks, each learn-
ing from 80% of the training data. These training
set sizes ranged from 316 to 532 tweets. Each net-
work was trained for 50 epochs, with early stopping
to select the model with the best validation loss. Pre-
dictions from these five trained networks were used

to select a single class via majority vote at decode
time.

Variants of this approach were considered as well.
One variant used an identical framework with a re-
current layer initialized instead from a RNN trained
on 6.5 million tweets containing the top 10,000 most
frequent hashtags (as opposed to 197 topic-relevant
hashtags). We also omitted the RNN pre-training al-
together and randomly initialized the recurrent layer.
These variants were not found to improve perfor-
mance.

6 Results

Our submission achieved an average F1 score of
67.8 on the FAVOR and AGAINST classes of the held
out test set, which contained tweets from all five top-
ics. This was the top scoring system among the 19
entries submitted to the supervised stance detection
shared task.

This same system had an average F1 of 71.1
in testing of the component systems using cross-
validation on the training set, indicating a small
amount of overfitting. Scores also varied moderately
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across topics and classes (Figure 2).
One consistent observation across all topics was

that the majority class, whether it was FAVOR
or AGAINST, significantly outperformed the corre-
sponding minority class. There was positive corre-
lation (R2 = 0.67) between the F1 score for a given
class and the raw number of training examples rep-
resenting that class.

The weight pre-training and initialization regimes
that we applied improved performance relative to
the tested alternatives. Entirely omitting pre-training
of the recurrent layer (while keeping the projection
layer pre-training) resulted in a drop of average F1
from 71.1 to 70.0 in 5-fold cross-validation. Mean-
while the RNN trained to select from among 10,000
popular hashtags led to an average F1 of 66.0, a rel-
ative reduction of 7.2% compared to the submission
initialized from the RNN trained on 197 highly rel-
evant hashtags.

7 Conclusion

We described a state-of-the-art system for automat-
ically determining the stance of an author based on
the content of a single tweet. This approach was
able to maximize the value of limited training data
by transferring features from other systems trained
on large, unlabeled datasets.

Our results demonstrated that hashtag prediction
and skip-gram tasks can result in pre-trained features
that are useful for stance detection. The selection of
domain-relevant hashtags appears to be a crucial as-
pect of this architecture, as experiments employing a
larger collection of frequent hashtags resulted in sig-
nificantly worse performance on the stance detection
task.

Transfer learning does not completely elimi-
nate the need for labeled in-domain training data.
The most frequent stance classes uniformly outper-
formed the minority classes by all metrics. It is
likely that stances which are rare in this training
set are also proportionally absent from the larger
unlabeled auxiliary hashtag task. Future experi-
ments could investigate other techniques for iden-
tifying relevant hashtags, with a goal of maximizing
the diversity of opinions represented in the auxiliary
datasets.
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