
Proceedings of SemEval-2016, pages 396–400,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

pkudblab at SemEval-2016 Task 6 : A Specific Convolutional Neural
Network System for Effective Stance Detection

Wan Wei, Xiao Zhang, Xuqin Liu, Wei Chen, Tengjiao Wang
Key Laboratory of High Confidence Software Technologies, Ministry of Education,

School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China

{wanw, zxcs, xuqinliu, pekingchenwei, tjwang}@pku.edu.cn

Abstract

In this paper, we develop a convolutional neu-
ral network for stance detection in tweets. Ac-
cording to the official results, our system ranks
1st on subtask B (among 9 teams) and ranks
2nd on subtask A (among 19 teams) on the
twitter test set of SemEval2016 Task 6. The
main contribution of our work is as follows.
We design a ”vote scheme” for prediction in-
stead of predicting when the accuracy of vali-
dation set reaches its maximum. Besides, we
make some improvement on the specific sub-
tasks. For subtask A, we separate datasets
into five sub-datasets according to their tar-
gets, and train and test five separate models.
For subtask B, we establish a two-class train-
ing dataset from the official domain corpus,
and then modify the softmax layer to perform
three-class classification. Our system can be
easily re-implemented and optimized for other
related tasks.

1 Introduction

There are several requirements for stance detect-
ing applications on the internet. However it is un-
practical for humans to classify massive amounts of
tweets. Twitter stance detection aims to automat-
ically determine the emotional tendency of tweets.
To classify tweets polarity, mainstream approaches
are based on Pang (Pang et al., 2002), like regression
problem, using machine learning algorithm to build
classifiers from tweets with manually annotated po-
larity to classify the polarity of a tweet(Jiang et al.,
2011; Hu et al., 2013; Dong et al., 2014). In this
direction, most studies focus on designing effective

features to obtain better classification performance
(Pang and Lee, 2008; Liu, 2012; Murakami and
Raymond, 2010). For example, Mohammad (Mo-
hammad and Turney, 2013) implements some sen-
timent lexicons and several manually-selected fea-
tures. To leverage massive tweets containing pos-
itive and negative emoticons for automatically fea-
ture learning, Tang (Tang et al., 2014) proposes to
learn sentiment-specific word embedding. We trans-
fer this method to detect tweets stance.

In this paper, we develop a specific convolu-
tional neural network learning model for stance de-
tection. Firstly, we learn word embedding from
Google News database as the input of our system.
Afterwards, we train the CNN model with the Se-
mEval2016 Task 6 dataset. Finally, we design a
”vote scheme” using the softmax results to predict
the label of test set. We also make some task specific
improvement. For subtask A, we separate datasets
into five sub-dataset, and train and test five sepa-
rate models. For subtask B, we establish a two-
class training dataset from the official domain cor-
pus based on several special expressions. We eval-
uate our deep learning system on the test set of Se-
mEval2016 Task 6. Our system ranks 1st on subtask
B and 2nd on subtask A. The good performance in
the Task 6 evaluation verifies the effectiveness of our
model and schemes.

2 Architecture overview

The architecture of our convolutional neural network
is mainly inspired by the architecture proposed by
Kim, which performs well and efficiently in sen-
tence classification tasks (Kim, 2014). The reason

396

Figure 1: Main archtecture of our convolutional neural network.

why we base on Kim’s model is that there is much in
common between stance detection task and sentence
classification task when the amount and the distribu-
tion of dataset is rather reasonable. Our architecture
is shown on Fig. 1.

In the following, we give a brief introduction of
the main components of our network architecture
in the connecting order: look-up table, input ma-
trix, convolutional layer, activation function, pool-
ing layer and softmax layer. We also describe the
approach to train this model.

2.1 Look-up table

Look-up table is a huge word embedding matrix.
Each column of the table, which is d-dimensional,
corresponds to a word. Word embedding in the
look-up table are pre-trained vectors published by
word2vec team (Mikolov et al., 2013)1. These vec-
tors are trained on part of Google News dataset
(about 100 billion words).

2.2 Input matrix

An input matrix S, S ∈ Rd×|s|, is the representa-
tion of an input sentence: [w1,w2, ...,w|s|]. |s| is
the length of the sentence, wi is the corresponding
d-dimensional vector found in look-up table. If this
word does not exist in the look-up table, make it a
zero vector or a vector whose components are num-
bers randomly generated in a given range.

1https://code.google.com/archive/p/word2vec/

2.3 Convolutional layer

The goal of the convolutional layer is to extract pat-
terns, so that some common abstractive representa-
tion can be found among the dataset. Pattern means
specific sequential words in a sentence. Patterns can
be extracted by different filter matrixes F which are
discriminatively sensitive to different patterns.

More formally, the convolution operation
⊙

be-
tween an input sentence matrix S ∈ Rd×|s| and a
filter F ∈ Rd×m, where m is an assigned width, is
defined as follow:

ci =
∑

(S[:,i:i+m−1]

⊙
F),

where 1 ≤ i ≤ |s| −m + 1. S[:,i:i+m−1] is a matrix
slice of size m along the columns and

⊙
is the

element-wise multiplication. Both S and F have the
same d rows. As shown on Fig. 1, filter F slides
along the column dimension of S generating vector
c: [c1, c2, ..., c|s|−m+1], named feature map.

So far we have introduced how to compute a con-
volution between the input sentence matrix and a
single filter. To get a richer representation of the
dataset, we apply n filters on every input sentence
matrix to compute feature maps matrix C, C ∈
R(|s|−m+1)×n. Note that every input sentence ma-
trix has a corresponding C matrix and every column
of matrix C corresponds to a convolution result be-
tween a filter and this input sentence matrix.

In practice, we also add a bias vector b ∈ Rn to
every row of matrix C element-wise to train a more
appropriate model.

397

2.4 Activation function

To fit the non-linear boundaries better, convolutional
layer is always followed by a non-linear activation
function f() in practice. f() is applied element-wise
on feature maps matrix C. Among the most pop-
ular choices of activation functions: sigmoid, tanh
(hyperbolic tangent) and ReLU (rectified linear), we
finally choose ReLU, since it is rather simple and
sometimes more efficient2.

2.5 Pooling layer

For the purpose of simplifying the information in the
output from the convolutional layer (passed through
the activation function), pooling layer is used. We
adopt the max-pooling method, which is choosing
the maximum value from every column of f(C)
(f() is the ReLU operation), to form a condensed
representation vector. More formally, after the
max-pooling operation, f(C) ∈ R(|s|−m+1)×n →
pool(f(C)) ∈ R1×n, which is also shown on Fig. 1.

2.6 Output layer: softmax

The fully connected softmax layer is for classifica-
tion. To a K-class dataset, the probability distribu-
tion of j-th class is as follows:

P(y = j|x, s, b) = softmaxj(xTw + b)

=
exTwj+bj∑K

k=1 exTwk+bk

,

where x is the input vector (the vector produced by
pooling layer in our network), wk and bk, having
the same dimensionality as the input vector x, are
weight vector and bias vector of the k-th class re-
spectively.

Softmax layer calculates the probability of each
class and then chooses the class having the maxi-
mum value as the predict label.

2.7 Approach to train the network

The parameters trained by our network are as fol-
lows:

θ = {W; F; b; wk; bk},
2Rough experiment have been done on the training set with

different activation functions, since these experiment are not
that thoughtful, the result will not be shown in experiment ses-
sion.

where W is the word embedding of all words in
dataset, including those found in the look-up table
and those randomly assigned; F is the set of all the
filters; b is the bias vector in the convolutional layer;
wk and bk are the weight and the bias vector of k-th
class in the softmax layer.

We use backpropogation algorithm to optimize
these parameters and we adopt Adadelta (Zeiler,
2012) update rule to automatically tune the learn-
ing rate. We also opt our network by another two
methods: l2-norm regularization terms for the pa-
rameters to mitigate overfitting issues and dropout
scheme (Srivastava et al., 2014), which is to set the
chosen value zero, to prevent feature co-adaptation.

3 Improvement for stance detection

In this session, we briefly introduce our improve-
ment on the CNN archtecture we described above.
The improvement is task specific.

Vote scheme. We validate our model by cross val-
idation method. For the models of subtask A and
subtask B, we design ten parallel epochs, whose val-
idation sets are randomly selected from the training
set and non-overlap.

Different from general network, we design a ”vote
scheme” for prediction instead of predicting when
the accuracy of validation set reaches its maximum.
In each epoch, we choose some iterations deliber-
ately to predict the test set. Then, when this epoch
ends, for every sentence in the test set, we appoint
the label which appears most frequently in these pre-
dictions as the result of this epoch. Finally, when
ten epochs end, we vote within results of these ten
epochs by the same method described above to de-
termine the final labels.

By performing multiple times independently and
voting twice, we get a rather robust mechanism for
predicting.

”divide and conquer” scheme. For subtask A,
we separate both training and test datasets respec-
tively into five sub-datasets according to their tar-
gets, and then train and test five separate models
with these divided datasets. The contrast experi-
ment between this ”divide and conquer” model and
the model trained by the integral dataset is shown in
Session 4.

”2-step” scheme. For subtask B, in the condition

398

Corpus Favor Against None Total
Training Dataset

Subtask A 753 1,394 766 2,913
Subtask A-Atheism 92 304 117 513
Subtask A-CC1 212 15 168 395
Subtask A-FM2 210 328 126 664
Subtask A-HC3 118 393 178 689
Subtask A-LofA4 121 354 177 652
Subtask B 2,562 3,418 — 5,980

Test Dataset
Subtask A 304 715 230 1,249
Subtask A-Atheism 32 160 28 220
Subtask A-CC1 123 11 35 169
Subtask A-FM2 58 183 44 285
Subtask A-HC3 45 172 78 295
Subtask A-LofA4 46 189 45 280
Subtask B 148 299 260 707
1 Target ”Climate Change is a Real Concern”.
2 Target ”Feminist Movement”.
3 Target ”Hillary Clinton”.
4 Target ”Legalization of Abortion”.

Table 1: Task 6 dataset.

that the official corpus is unlabeled whereas training
set is necessary for our supervised model, we come
up with a solution having two steps: 1. Build a two-
class training dataset; 2. Modify the softmax layer
to perform three-class classification on the two-class
training dataset.

According to some expressions and hashtags re-
vealing a distinct tendency, for example, ”go trump”
and ”#MakeAmericaGreatAgain” reveal favor ten-
dency whereas ”idiot” and ”fired” reveal against
tendency, we finally establish a two-class training
dataset, which has about 2000 favor tweets and
about 3000 against tweets, from the domain corpus
for subtask B (Mohammad et al., 2016). Then, we
modify the softmax layer. For a test sentence, if the
absolute value of the subtraction between the prob-
ability values of the two classes is less than a ran-
domly selected real number α(α ∈ [0.05, 0.1]), pre-
dict this sentence as ”None” stance. Otherwise, pre-
dict it the class having the greater probability value.

4 Experiments and evaluation

Dataset. For subtask A, the training set is the official
training data for Task A (Mohammad et al., 2016).
For subtask B, the training set is described in Session
3. Details about datasets are shown in Table 1.

Parameters setup. Word embedding matrix is

Corpus ”Divide”
Model

1 ”Integral”
Model

1

subtask A-all 0.6733 0.6498
subtask A-Atheism2 0.6334 0.5652
subtask A-CC2 0.5269 0.5379
subtask A-FM2 0.5133 0.5377
subtask A-HC2 0.6441 0.6172
subtask A-LofA2 0.6109 0.6098
1 Official metric: (F favor + F against) / 2.
2 Abbreviation of targets. Those have been described in

the footnote of Table 1.
Table 2: Contrast experiment results on subtask A. ”Divide”

refers that those results come from five separate model trained

by five target corpus. ”Integral” refers that those results come

from one model trained by integral subtask A corpus.

described in Session 2.1, the dimensionality d is
300. We design three different width filters, 100
in width 3, 100 in width 4 and 100 in width 5,
which means that there are 300 filters in total. We
choose ReLU as activation function and we use
max-pooling. L2-norm regularization term is set to
1e-6, the probability of dropout is set to 0.5. Bias
vector b, as well as wk and bk in softmax layer are
all set to zero vectors.

Test result. We perform contrast experiments on
subtask A. The results of the ”divide and conquer”
model and its contrast integral model, as well as the
five separate models are shown in Table 2. The de-
scription of these models is in Session 3. We can
see from Table 2 that ”divide and conquer” model
does not always have a better performance. How-
ever, since the words using in the sentences which
belong to the same target are expected to be more
similar, the ”divide” model still performs much bet-
ter on some dataset (e.g. Atheism). The ”divide and
conquer” model is the one we submit for evaluation.

Official ranking. Part of the official rankings for
both subtask A and B are summarized in Table 3. As
we can see our model performs well on both sub-
tasks. Our model ranks 2nd on subtask A, whose of-
ficial metric is only 0.5% lower than the first team.
On subtask B our model ranks 1st, and the official
metric is 56.28%, about 10% higher than the second
team.

399

Team Official Metric1 Rank
Subtask A

MITRE 0.6782 1
pkudblab 0.6733 2
TakeLab 0.6683 3

PKULCWM 0.6576 4
#Total teams: 19
Subtask B

pkudblab 0.5628 1
LitisMind 0.4466 2

INF-UFRGS
-OPINION-MINING

0.4232 3

#Total teams: 9
1 Official metric: (F favor + F against) / 2.

Table 3: Part of the official result.

5 Conclusions

We develop a specific convolutional neural network
system for detecting twitter stance in this paper. We
give a detailed description of our model and spe-
cific adaptation for different subtasks. Among 28
submitted systems, our system obtains good rank on
both subtask A and subtask B on the test set of Se-
mEval2016 Task 6. Our system has good scalability
for other related tasks.

6 Future work

Due to the tight schedule, there are still many as-
pects need to explore. For example, why the Google
news word2vec performs well in this context? How
much does this word embedding improve the score
compared with randomly initial word embedding?
Is the more suitble word embedding exists? What’s
more, the vote scheme is somewhat curt, we should
do more experiment to validate its robustness. Our
code is available in github for anyone who has a in-
terest in further exploration3.

References
Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming

Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment classi-
fication. In ACL (2), pages 49–54.

Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu. 2013.
Unsupervised sentiment analysis with emotional sig-

3https://github.com/nestle1993/SE16-Task6-Stance-Detection

nals. In Proceedings of the 22nd international confer-
ence on World Wide Web, pages 607–618. International
World Wide Web Conferences Steering Committee.

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and Tiejun
Zhao. 2011. Target-dependent twitter sentiment clas-
sification. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 151–
160. Association for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language technolo-
gies, 5(1):1–167.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Saif M. Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016. Semeval-
2016 task 6: Detecting stance in tweets. In Proceed-
ings of the International Workshop on Semantic Eval-
uation, SemEval ’16, San Diego, California, June.

Akiko Murakami and Rudy Raymond. 2010. Support or
oppose?: classifying positions in online debates from
reply activities and opinion expressions. In Proceed-
ings of the 23rd International Conference on Compu-
tational Linguistics: Posters, pages 869–875. Associ-
ation for Computational Linguistics.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using ma-
chine learning techniques. In Proceedings of the ACL-
02 conference on Empirical methods in natural lan-
guage processing-Volume 10, pages 79–86. Associa-
tion for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In ACL (1), pages 1555–1565.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

400

