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Abstract

This paper describes a sentiment analysis sys-
tem developed by the bunji team in SemEval-
2016 Task 5. In this task, we estimate the
sentimental polarity of a given entity-attribute
(E#A) pair in a sentence. Our approach is to
estimate the relationship between target enti-
ties and sentimental expressions. We use two
different methods to estimate the relationship.
The first one is based on a neural attention
model that learns relations between tokens and
E#A pairs through backpropagation. The sec-
ond one is based on a rule-based system that
examines several verb-centric relations related
to E#A pairs. We confirmed the effective-
ness of the proposed methods in a target es-
timation task and a polarity estimation task in
the restaurant domain, while our overall ranks
were modest.

1 Introduction

Sentiment analysis is an important technology for
understanding users’ intentions from review texts.
Such technologies are also useful for argumentation
mining because it is necessary for readers to cap-
ture targets of interest and their polarities (Sato et
al., 2015). Shared tasks of aspect-based sentiment
analysis (ABSA) in SemEval provide a test bed for
fine-grained analysis of sentiment polarities (Pontiki
et al., 2014; Pontiki et al., 2015; Pontiki et al., 2016).

We participate in all four slots (Slot 1, 2, 1 & 2,
and 3) of the restaurant domain and laptop domain in
English. We focus on two types of models to capture
the entity-attribute relationship, especially in Slot 2

and Slot 3. The first one is a neural network based
model. The second one is a rule-based approach.

Now, we explain the problem settings of the slots
and our approaches. The following is an example
of sentences that provide positive opinions to the
FOOD#QUALITY aspect: Pizza here is good.

Slot 1 is an extraction of all aspects mentioned in
a sentence. In this example, the goal is to choose
FOOD#QUALITY among many other aspects. We
formulate the problem as a multi-label classification
problem and use a neural network-based model. Slot
2 is an extraction of opinion target expressions. The
expected output is “Pizza” in the above example.
We use a pattern matching based approach and fo-
cus on gathering resources such as dictionaries. For
Slot 1 & 2, we simply combine the prediction re-
sults of Slot 1 and Slot 2. Slot 3 is an estimation
of sentiment polarities. In this example, we esti-
mate the polarity of this sentence from the aspect
of FOOD#QUALITY. For Slot 3, we take two ap-
proaches. The first approach is a neural attention
model (Luong et al., 2015) that considers the entity
attention (FOOD) and attribute attention (QUAL-
ITY) of each token. The second approach is a pat-
tern matching-based model that examines the rela-
tionship between “Pizza” and “good” that is also
used in Slot 2.

The remainder of this paper is structured as fol-
lows: In Section 2, we describe our system of phase
A. In Section 3, we explain our system of phase B.
Finally, Section 4 summarizes our work.
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Figure 1: Structure of a neural network for Slot 1.

2 System Description of Phase A

2.1 Slot 1: Aspect Category
We formulate Slot 1 as a multi-label classification
problem. In this problem, an entity-attribute pair
is considered as a label. We use a neural model
to solve this problem. The model is illustrated in
Figure 1. Given a sequence of word vectors X =
(x1,x2, ...,xT ), this model calculates a vector y
whose element represents probability of each label
as:

y = f(X). (1)

At first, we apply Stanford Core NLP (Manning
et al., 2014) to each document to obtain word se-
quences. Then, we use word embedding generated
by Skip-gram with Negative Sampling (Mikolov et
al., 2013) to convert words into word vectors. Three
hundred dimensional vectors trained with Google
News Corpus 1 are used in Slot 1.

Then, a word vector sequence X is inputted to a
recurrent neural network (RNN). The RNN calcu-
lates an output vector st for each xt as:

st,ht = g(xt,ht−1), (2)

where ht denotes a hidden state of the RNN at
position t. We use Long Short-Term Memory
(LSTM) (Sak et al., 2014) and Gated Recurrent Unit
(GRU) (Cho et al., 2014) as implementations of
RNN units.

We use a bi-directional RNN (BiRNN) (Schuster
and Paliwal, 1997) in order to consider both forward
context and backward context. A BiRNN consists of

1Word embedding is available at
https://code.google.com/archive/p/word2vec/

a forward RNN that processes tokens from head to
tail and a backward RNN that processes tokens from
tail to head. We concatenate forward output −→st and
backward output←−st into st.

The sentence vector v is then computed as a mean
of RNN outputs st:

v =
1
T

T∑
t=1

st. (3)

Finally, the probabilities in y are calculated by us-
ing a single layered perceptron:

y = softmax(tanh(Wv + b)), (4)

where W,b denote a weight matrix and a bias vector,
respectively.

We determine that a sentence contains the i-th as-
pect if its output yi is greater than a threshold θ. The
threshold θ is determined by using development data
that is randomly sampled from training data.

We modify aspect names to a suitable format for
our neural model. Low-frequency aspects in train-
ing datasets are replaced by a new aspect “OTHER”.
The most common 10 aspects are preserved in the
restaurant domain; the most common 16 aspects are
preserved in the laptop domain. “NONE” labels
are assigned to sentences that do not have any la-
bels. The probability yi in an example of a training
dataset is defined as yi = 1/k when a target sentence
has the i-th aspect and a total of k aspects, otherwise
yi = 0.

We train the model by using backpropagation.
The loss is calculated by using cross entropy. We use
a minibatch stochastic gradient descent (SGD) algo-
rithm together with an AdaGrad optimizer (Duchi et
al., 2011). We add Dropout (Srivastava et al., 2014)
layers to the input and output of the RNN. We clip
the gradient norm when it exceeds 5.0 to improve the
stability of training. The model parameters and θ are
trained by the training dataset of the ABSA 2015,
and the hyperparameters are tuned by test dataset of
the ABSA 2015. We use random sampling to tune
the hyperparameters. The best settings are shown in
Table 1. We implement our neural systems by using
Tensorflow (Abadi et al., 2015).

2.2 Slot 2: Opinion Target Expression
In Slot 2, we extract text spans corresponding to tar-
get entities. The procedure of our proposed method
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Parameter REST LAPT
Dropout pk 0.8 0.3

Learning rate 0.945 0.374
hidden unit size 128 64
minibatch size 20 20

max epochs 100 840
cell LSTM GRU

max token num 40 50
threshold 0.048 0.11

Table 1: Hyperparameter setting for Slot 1. pk denotes a ratio

to keep values in a Dropout layer.

is as follows:

1. Creating dictionaries of food names and drink
names by extracting targets in a training
dataset,

2. Collecting food names and drink names in
Knowledge Base and adding them to dictionar-
ies,

3. Applying dictionary matching to sentences in a
test dataset,

4. Extracting restaurant names by using syntactic
rules, and

5. Checking relationship between targets ex-
tracted by step 3 and step 4 and attribute ex-
pressions.

Three key features of our method are the dictio-
nary creation in step 2, the syntactic rules in step 4,
and the estimation of the entity-attribute relationship
in step 5.

Dictionary Creation
Coverage of dictionaries is crucial to improve re-

call metrics. In the training dataset, we observe var-
ious instances of FOOD entities such as bread, fo-
caccia and gazpacho. Therefore, we try to import
world knowledge written in Knowledge Base. We
use DBpedia 2 as Knowledge Base to expand the
dictionaries. We write a SPARQL query to retrieve
labels (rdfs:label) of entities as dictionary entries.
First we prepare a list of target types. For exam-
ples, we use http://dbpedia.org/ontology/Food and
http://dbpedia.org/ontology/Fish as types of FOOD
entities. We also prepare a list of types to be ignored
such as “dbo:Beverage”. Names of DRINK are also
retrieved in the same manner as FOOD.

2http://wiki.dbpedia.org/

Domain Team Precision Recall F1
REST bunji 48.86 78.20 60.14

baseline 54.19 67.03 59.93
Ranked 1st 72.45 73.62 73.03

LAPT bunji 44.09 35.92 39.59
baseline 45.92 31.66 37.48

Ranked 1st 56.85 47.81 51.94
Table 2: Official results of Subtask 1 Slot 1

Domain Team Precision Recall F1
REST bunji 62.61 67.32 64.88

baseline 51.42 38.56 44.07
Ranked 1st 75.49 69.44 72.34

Table 3: Official results of Subtask 1 Slot 2

Restaurant Name Extraction
We use syntactic rules to extract restaurant names.

We define a set of verb-centric rules such as “A1 vis-
ited A2” where A1 is a subject, and A2 is an object.
A2 is likely to be restaurant names. We manually
create 15 rules from training data.

Entity-Attribute Relationship Estimation
We observe entities not related to sentimental

expressions in dictionary-match results, which de-
crease precision scores. Therefore, we filter entities
related to sentiment expressions. We use the same
method as that in Slot 3.

2.3 Results

Table 2 shows the results of Slot 1. Our system
marked the highest recall score among all of the
teams in the restaurant domain, while our precision
score is lower than that of the baseline system. This
is partly because of the determination of threshold
values that may be overfitted to the development
sets. One possible solution is to use cross validation
to estimate more reliable threshold values.

Table 3 shows the results of Slot 2. We can ob-
serve improvement of both the precision score and
the recall score from those of the baseline system.
The recall score is comparable to that of the ranked
1st team, while there is much room for improvement
of the precision scores.

Table 4 shows the results of Slot 1 & 2. We can
observe the similar tendency to Slot 1’s results be-
cause we simply merged the results of Slot 1 and
Slot 2, and Slot 1 performs worse than Slot 2.
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Domain Team Precision Recall F1
REST bunji 35.41 49.01 41.11

baseline 36.56 39.12 37.80
Ranked 1st 52.95 52.27 52.61

Table 4: Official results of Subtask 1 Slot 1 & 2

Domain Team Precision Recall F1
REST bunji 72.71 88.37 79.78

baseline 90.65 69.55 78.71
Ranked 1st 87.00 81.19 83.99

LAPT bunji 66.84 46.32 54.72
baseline 86.55 37.86 52.68

Ranked 1st 72.49 51.83 60.45
Table 5: Official results of Subtask 2 Slot 1

Table 5 shows the results of Slot 1 of Subtask 2.
We merge the sentence-wise results into document-
wise results.

3 System Description of Phase B

3.1 Slot 3: Sentiment Polarity

Neural Approach

Our method is inspired by a Deep Learning
method proposed by Wang and Liu (Wang and Liu,
2015). They used estimated probabilities of Slot 1
as weights of a target entity-attribute pair, and then
they inputted weighted tokens to a convolutional
neural network. Instead of probabilities of Slot 1,
we directly calculate entity attention and attribute
attention at each token by using a neural attention
model (Luong et al., 2015). The model is illustrated
in Figure 2. We calculate a vector yp that repre-
sents probabilities of polarities (positive, negative,
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Figure 2: Structure of a neural network for Slot 3.

and neutral) as:

yp = f(X,ve,va), (5)

where ve and va denote vectors corresponding to a
target entity and a target attribute. At first we calcu-
late RNN outputs st with Eq. 2 similarly to Slot 1.
Then, attention weights for both entity and attribute
are computed at attention layers. An entity-attention
layer calculates weights εt at position t. At each
position, et is computed to measure the relationship
between st and ve:

et = vT
e West. (6)

Then, we transform the scale of et and obtain an
entity-attention weight εt as:

εt =
exp(et)∑
j exp(ej)

. (7)

Similarly, the attribute attention layer has weights
αt at position t as follows:

at = vT
a Wast, (8)

αt =
exp(at)∑
j exp(aj)

. (9)

Then, we calculate a sentence vector r that is a
weighted sum of RNN output with entity attention
weights and attribute attention weights as:

r =
∑

t

(αtst||εtst), (10)

where || denotes a concatenation operator that cre-
ates a vector in R2d from two vectors in Rd.

Finally, we calculate yp by using a single layered
perceptron:

yp = softmax(tanh(Wpr + bp)). (11)

We train the Slot 3 model by using backpropa-
gation. We use a minibatch stochastic gradient de-
scent (SGD) algorithm together with the ADAM op-
timizer (Kingma and Ba, 2015). Hyperparameters
are tuned similarly to Slot 1. The hyperparame-
ter settings in Slot 3 are shown in Table 6. We
add Dropout (Srivastava et al., 2014) layers to the
input and output of the RNN. We also apply L2-
regularization to two attention layers and a softmax
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Parameter REST (U) REST (C) LAPT (C)
Dropout pk 0.9 0.9 0.9

Learning rate 1.7× 10−3 1.4× 10−3 5.8× 10−4

RNN state size 64 128 64
minibatch size 16 32 16

max epochs 12 19 6
L2 coef 1.9× 10−4 1.9× 10−4 3.3× 10−4

Table 6: Hyperparameter setting for Slot 3. pk denotes a ratio

to keep values in a Dropout layer.

layer. The attention unit size is 300. In an un-
constrained setting, we use the same word embed-
ding that has 300 dimensional vectors as Slot 1. In
a constrained setting, we use 128-dimensional vec-
tors that are initialized by uniform distribution. We
clip the gradient norm when it exceeds 5.0 to im-
prove stability of training. We set the maximum to-
ken length as 40. Initial values of entity vectors are
created by averaging word vectors in sentences that
have target entities. Attribute vectors are also initial-
ized in the same manner as the entity vectors.

Relation-Features Approach
This approach trains a linear classifier using rela-

tions of a given entity and a given attribute as fea-
tures. In the first step, we annotate the following 11
annotations of relations to all documents:

believe Showing someone’s belief such as “X likes Y”
and “X avoids Y”,

significant Showing X’s significance such as “X is im-
pressive” and “X is terrible”,

require Showing requirement such as “X needs Y”,
equivalent Showing X is equivalent to Y, such as “X

viewed Y” and “X regarded Y”,
include Showing inclusion or possession such as “X has

Y” and “X equips Y”.
contrast Comparing X with Y such as “Y is ... than X”

and “Y is ... compared to X”,
affect Showing X affects Y such as “X increases Y” and

“X causes Y”,
state Showing statement such as “X doubts that Y”,
negation Showing negations such as “not X” and “no

X”,
shift Reversing X’s polarity such as “X ban” and “X

shortage”, and
absolutize Fixing polarity of X such as “X problem” and

“X risk”.

These annotations were originally developed for
an argument-generation system (Sato et al., 2015).

In the second step, we identify an entity ex-
pression and an attribute expression that correspond

Domain Team C/U Accuracy
REST bunji(neural) U 81.02

bunji(neural) C 76.25
baseline C 76.48

Ranked 1st U 88.13
LAPT bunji(rel) U 70.16

bunji(neural) C 70.29
baseline C 70.04

Ranked 1st U 82.77
Table 7: Official results of Subtask 1 Slot 3. (neural) and (rel)

denote the neural approach and the relation-feature approach,

respectively.

to a given entity-attribute pair. We use a simple
dictionary-matching approach. In the restaurant do-
main, we use a given target annotation as an entity
expression. In the laptop domain, we prepare a list
of entities extracted from a training dataset. For both
domains, we create an attribute dictionary. Entries
of the dictionary are manually extracted from train-
ing datasets. Then, we assign a sentimental polarity
(positive, negative, or neutral) to each entry.

In the third step, we create features for a linear
classifier. Those features are generated by combin-
ing annotations to capture various relations of a tar-
get entity-attribute pair. For example, we examine
whether an affect annotation is negated or not and
whether a target entity is a subject of an affect anno-
tation or an object.

Finally, we classify a sentimental polarity by us-
ing a linear classifier. We use a linear SVM in scikit-
learn (Pedregosa et al., 2011) as an implementation
of the classifier, on the parameter C = 0.1, loss =
squared epsilon insensitive, and penalty = l2.

3.2 Results

Table 7 shows the results for Slot 3. We select a suit-
able method from the neural method and the rule-
based method for each domain by comparing scores
in the ABSA15 dataset. In the restaurant domain,
we can observe that the proposed method improves
the accuracy by 10 percentage points compared with
the baseline system.

We merged sentence-wise estimation and created
document-wise estimation. We gathered polarities
of an entity-attribute pair. If a result was both pos-
itive and negative, then we judged it as conflicting.
Table 8 shows the results for Subtask 2. We can see
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Domain Team C/U Accuracy
REST bunji(neural) U 70.54

bunji(neural) C 66.58
baseline C 74.26

Ranked 1st U 81.93
LAPT bunji(rel) U 60.00

bunji(neural) C 62.20
baseline C 73.03

Ranked 1st U 75.05
Table 8: Official results of Subtask 2 Slot 3. (neural) and (rel)

denote the neural approach and the relation-feature approach,

respectively.

a similar tendency to the results in Subtask 1.

4 Conclusions

In this paper, we described the participation of the
bunji team in SemEval-2016. We used both a neu-
ral approach and a rule-based approach to model
an entity-attribute relationship. We confirmed the
effectiveness of the proposed methods in a target
estimation task and a polarity estimation task in
the restaurant domain, while our overall ranks were
modest.

As a future work, we plan to investigate network
structures that are simple enough to be trained with
a relatively small dataset. For the rule-based sys-
tem, we plan to add more rules to improve precision
scores.
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