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Abstract 

Sentiment analysis of tweets has attracted 
considerable attention recently for potential 
use in commercial and public sector applica-
tions. Typical sentiment analysis classifies the 
sentiment of sentences into several discrete 
classes (e.g., positive and negative). The aim 
of Task 4 subtask C of SemEval-2016 is to 
classify the sentiment of tweets into an ordinal 
five-point scale. In this paper, we present a 
system that uses word embeddings and recur-
rent convolutional networks to complete the 
competition task. The word embeddings pro-
vide a continuous vector representation of 
words for the recurrent convolutional network 
to use in building sentence vectors for multi-
point classification. The proposed method 
ranked second among eleven teams in terms 
of micro-averaged MAE (mean absolute error) 
and eighth for macro-averaged MAE. 

1 Introduction 

Sentiment analysis seeks to detect and analyze sen-
timent within texts. Following the rapid increase of 
user generated content in the form of social media, 
sentiment analysis has attracted considerable inter-
est. Typical approaches to sentiment analysis clas-
sify the sentiment of a sentence into several dis-
crete classes such as positive and negative polari-
ties, or six basic emotions: anger, happiness, fear, 
sadness, disgust and surprise (Ekman, 1992). 
Based on this representation, various techniques 
have been investigated including supervised learn-

ing and lexicon-based approaches. Supervised 
learning approaches require training data for sen-
timent classification (Go et al., 2009; Yu et al., 
2009; Saif et al., 2016), while lexicon-based ap-
proaches do not require training data but use a sen-
timent lexicon to determine the overall sentiment 
of a sentence (Liu, 2010; Hu et al., 2013). 

A five-point scale (Nakov et al., 2016) is also a 
popular way to evaluate sentiment. Many compa-
nies, such as Amazon, Google, and Alibaba all use 
a multi-point scale to evaluate product or APP re-
views. Unlike typical classification approaches, 
ordinal classification can assign different ratings 
(e.g., very negative, negative, neutral, positive and 
very positive) according to sentiment strength 
(Taboada et al., 2011; Li et al., 2011; Yu et al., 
2013; Wang and Ester, 2014).  

Task 4 subtask C of SemEval-2016 seeks to 
classify the sentiment of tweets into an ordinal 
five-point scale. This paper presents a system that 
uses word embeddings (Mikolov et al., 2013) and 
recurrent convolutional networks to this end. The 
word embeddings can capture both semantic and 
syntactic information of words to provide a contin-
uous vector representation of those words. These 
word vectors are then used to build sentence vec-
tors through a recurrent convolutional neural net-
work. For multi-point classification, we discretize 
the continuous sentiment intensity to a five parti-
tions of equal intervals. 

 The proposed recurrent convolutional network 
consists of two parts: a convolutional neural net-
work (CNN) (LeCun et al., 1990) on the bottom to 
reduce the dimension of a sentence matrix, fol-
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lowed by a long short-term memory (LSTM) 
(Hochreiter et al., 1997) layer to form the sentence 
representation, and a linear regression layer on the 
top to fit the sentiment intensity of sentences. The 
details of the CNN, LSTM and their combination 
are described in the following section. 

2 Combining LSTM and CNN for Ordi-
nal Classification 

Ordinal classification of sentiment aims at classify-
ing the sentence into ordinal discrete values ac-
cording to their sentiment intensity. Figure 1 shows 
the system architecture of the proposed CNN-
LSTM model for ordinal classification. In the bot-
tom layer, the word vectors of vocabulary words 
are first trained from a large corpus using word 
embeddings. For each given sentence, a sentence 
vector is then built based on the word vectors of 
words in the sentences, which is further trans-
formed into a matrix representation. The sentence 
matrix is sequentially passed through a convolu-
tional layer and max pooling layer for multi-point 
classification. Unlike a conventional LSTM model 
which directly uses word embeddings as input, the 
proposed model takes uses outputs from a single-
layer CNN with max pooling.  

2.1 Convolutional Neural Network 

In our model, the input of the LSTM layer is an 
output from the CNN. CNNs have achieved the 
state-of-the-art results in computer vision applica-
tions, and also have been shown to be effective for 
various NLP applications (Krizhevsky et al., 2012; 
Kim, 2014; Ma et al., 2015). The CNN architecture 
used for our tasks is described as follows. 

Let V denote the vocabulary of words, while d 
denotes the dimensionality of word vectors, and 

d nS R ×∈   denotes the sentence matrix built by con-
catenating the word vectors occurring in the sen-
tences. Suppose that the sentence T is made up of a 
sequence of words [d1, d2, …, dn], where n is the 
length of sentence T. Then the representation of T 
is given by the matrix T d nS R ×∈  , where the j-th 
column corresponds to the embeddings for word dj. 
Note that for batch processing we the zero-pad sen-
tence matrix ST so that the number of columns is a 
constant (equal to the max length of sentences) for 
all sentences in the corpus. 

We apply a narrow convolution between ST and 
a filter d wF R ×∈  of a width w. We then add a bias 
term and apply a nonlinearity function to obtain a 
feature map 1T n wf R − +∈  .  The i-th element of Tf  
is given by: 

[ ] ( [:, : 1], )T Tf i relu S i i w F b= < + − > +      (1) 

where [:, : 1]TS i i w+ − is the i-to-(i+w-1)-th col-
umn of ST and <A, B>=Trace(A·BT) is the Fro-
benius inner product. 

The feature maps are input into a max pooling 
layer to capture the most salient feature (i.e., the 
one with the highest value) for a given filter. Filter 
operation is useful for determining the n-grams, 
where the size of the n-gram corresponds to the fil-
ter length. 

The above description uses just one filter matrix 
to generate one feature. In practice, the proposed 
convolutional layer uses multiple filters in parallel 
to obtain the feature vectors. 

2.2 Recurrent Neural Network 

A recurrent neural network (RNN) architecture 
particularly suited for modelling sequence phe-
nomena (Sak et al., 2014; Zhou et al. 2015). At 
each time step t, the RNN takes the input vector xt 

when pride comes then comes disgrace
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Figure 1: System architecture of the proposed CNN-

LSTM model. 
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and the hidden state vector ht-1 to produce the next 
hidden state ht by applying the following recursive 
operation: 

1( )t t th f Wx Uh b−= + +                  (2) 

Here W, U, b are the parameters of an affine 
transformation and f is an element-wise nonlineari-
ty function. In theory, the RNN can summarize all 
historical information up to time t with the hidden 
state ht. In practice, however, a vanilla RNN has 
difficulty learning long-term dependencies due to 
the vanishing gradient problem, as the gradient de-
creases exponentially with the number of network 
layers and the front layer trains very slowly. 

Approaches have been developed to deal with 
vanishing gradient problem, and certain types of 
RNNs (like LSTM, GRU) are specially designed to 
get around them. LSTM (Hochreiter et al., 1997) 
addresses the problem of learning long-term de-
pendencies by augmenting the RNN with a gating 
mechanism. To illustrate this, the following formu-
las show how a LSTM calculates a hidden state ht. 
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Here ( )σ ⋅  and tanh( )⋅  are the element-wise sig-
moid and hyperbolic tangent functions,   is the el-
ement-wise multiplication operator, and ti , tf , to  
are called the input, forget and output gates respec-
tively. All the gates have the same dimension ds, 
which is equal to the size of hidden state, and c0, h0 
are initialized to zero vectors at t=1. ct is the inter-
nal memory of the unit, which could be regarded as 

how we want to combine previous memory and the 
new input. 

The gating mechanism allows LSTM to model 
long-term dependencies. By learning the parame-
ters jW , jU , jb  for { , , , }j i f o g∈ , the network 
learns how its memory cells should behave. 

3 Experiments and Evaluation 

Dataset. We evaluated the proposed CNN-LSTM 
model by submitting the results to the SemEval-
2016 Task 4 subtask. The statistics of the dataset 
used in this competition are summarized in Table 1. 
As the original tweets may be removed by Twitter 
users themselves, we can just download a part of 
the data in gold training, gold development, and 
gold development-test dataset. The distribution of 
sentiment labels shown in Table 2 shows data im-
balance. Most of the data were annotated in [-1, 0, 
1] labels, and only a few were annotated Very 
Negative (-2) or Very Positive (2). 
Implementation details. As mentioned earlier, the 
proposed method consists of word embeddings and 
a recurrent convolutional network. Both parts may 
have their own parameters for optimization. For 
word embeddings, we used popular pre-trained 
word vectors from GloVe (Pennington et al., 2014). 
GloVe is an unsupervised learning algorithm for 
learning word representation. Training is per-
formed on aggregated global word co-occurrence 
statistics from a large corpus, and the resulting rep-
resentation showcases interesting linear substruc-
tures in the word vector space. They provide pre-
trained word vectors trained on 840B tokens from 
common crawls and have a length of 300. 

Although the pre-trained word embeddings can 
capture important semantic and syntactic in-

Name # (-2) # (-1) # (0) # (1) # (2) 

Gold 
Train 87 668 1654 3154 437 

Gold 
Dev 43 296 675 933 53 

Gold 
Devtest 31 233 583 1005 148 

Table 2: Distributions of sentiment ratings. # (n) denotes 
the number of tweets annotated with a rating of n in the 
range of [-2, -1, ..., 2], corresponding to Strongly Negative, 
Negative, Negative or Neutral, Positive, Strongly Positive, 
respectively. 

Name # Tweets 
released 

# Tweets 
used 

# Top-
ics 

Avg. 
Length 

Gold 
Train 6,000 5,346  60 19.49 

Gold 
Dev 2,000 1,795  20 19.58 

Gold 
Devtest 2,000 1,781  20 19.69 

Test 20,632 20,632  100 19.62 

Table 1: Summary of data statistics. 
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formation of words, they are not sufficient to cap-
ture sentiment behaviors in texts. To further im-
prove word embeddings to capture sentiment in-
formation, we trained our recurrent convolutional 
network using an additional dataset from the Vader 
corpus (Hutto et al., 2014). It contains 4,000 tweets 
pulled from Twitter’s public timeline, independent-
ly annotated by 20 human raters with sentiment 
ratings in a range of [-4, 4]. We discretized the 
continuous human-assigned ratings of [-4, 4] to 
discrete numbers [-2, -1, …, 2] to make them com-
patible with the task context. 

The hyper-parameters of the network are chosen 
based on the performance on the development-test 
data. We use: rectified linear units (ReLU), filter 
windows (w) of 3 with 64 feature maps, dropout 
rate (p) of 0.25, pool length of 2, and mini-bath 
size of 16. Adagrad update rule is used to automat-
ically tune the learning rate, and micro-averaged 
MAE is used as the loss function. Early stop mech-
anism is used to avoid overfitting. The activation 
function in the top layer is a sigmoid function, 
which scales each sentiment intensity to the range 
0 to 1. These continuous intensity scores are trans-
formed into a five-point scale through the cut-offs: 
[0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0] 
for strongly negative, negative, negative or neutral, 
positive, strongly positive, respectively. 
Evaluation metrics. SemEval-2016 Task 4 sub-
task C published the results for all participants us-
ing both macro-averaged mean absolute error 
( MMAE ) and micro-averaged mean absolute error 
( MAEµ ) (Nakov et al., 2015). The MMAE  is de-
fined as: 

| |

1

1 1( , ) | ( ) |
| | | |

i j

C
M

i i
j X Tej

MAE h Te h X y
C Te= ∈

= −∑ ∑  (4) 

where iy  denotes the true label of iX , ( )ih X  de-
notes the predicted label, and jTe  denotes the set of 
test documents whose true class is jc . The MAEµ  
is defined as: 

1( , ) | ( ) |
| |

i

i i
X Te

MAE h Te h X y
Te

µ

∈

= −∑        (5) 

Compared to the micro-averaged MAEµ , the 
macro-averaged MMAE  is more appropriate to 
measure the classification robustness of systems 
for imbalanced data. 
Results.  A total of eleven teams participated in 
subtask C. Table 3 shows the results of the pro-
posed CNN-LSTM model for both MAEµ  and 

MMAE . The proposed method ranked second for 
MAEµ  and eighth for MMAE . The results of 
MAEµ  and MMAE  are inconsistent because we 
used a standard MAE as the loss function for model 
training and did not consider the imbalanced sen-
timent labels. Therefore, our model yielded better 
performance on MAEµ  than on MMAE . 

Table 4 shows the experimental results after the 
release of test set ratings. We found that the CNN-
LSTM achieved better performance on the devel-
opment test set than the test set. Conversely, the 
CNN alone yielded better performance on the test 
data than the development-test set. 

4 Conclusions 

This study presents a deep learning approach to 
classifying tweets into a five-point scale. The pro-
posed model combines the convolutional neural 
networks and long short-term memory networks. 
To better capture the sentiment aspect of words, 
we further tuned our model using an additional 
sentiment corpus. Experimental results show that 
the proposed method archived good performance 
on the micro-averaged MAE.  

Future work will focus on exploring more effec-
tive features and machine learning methods to im-
prove classification performance for both micro- 
and macro-averaged MAE. 

 
Devtest Set Test Set 

MAEµ  MMAE  MAEµ  MMAE  

CNN 0.656 0.992 0.534 0.939 

CNN-
LSTM 0.590 0.974 0.588 1.111 

Table 4: Results of CNN-LSTM and CNN alone. 

 MAEµ  MMAE  
Scores 0.588 1.111 
Rank 2 8 

Table 3: Results of the proposed CNN-LSTM model 
for SemEval-2016 Task 4 Subtask C.  
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