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Abstract

This paper describes our deep learning-based
approach to sentiment analysis in Twitter as
part of SemEval-2016 Task 4. We use a
convolutional neural network to determine
sentiment and participate in all subtasks,
i.e. two-point, three-point, and five-point
scale sentiment classification and two-point
and five-point scale sentiment quantification.
We achieve competitive results for two-point
scale sentiment classification and quantifica-
tion, ranking fifth and a close fourth (third
and second by alternative metrics) respec-
tively despite using only pre-trained embed-
dings that contain no sentiment information.
We achieve good performance on three-point
scale sentiment classification, ranking eighth
out of 35, while performing poorly on five-
point scale sentiment classification and quan-
tification. An error analysis reveals that this
is due to low expressiveness of the model to
capture negative sentiment as well as an in-
ability to take into account ordinal informa-
tion. We propose improvements in order to
address these and other issues.

1 Introduction

Social media allows hundreds of millions of people
to interact and engage with each other, while ex-
pressing their thoughts about the things that move
them. Sentiment analysis (Pang and Lee, 2008)
allows us to gain insights about opinions towards
persons, objects, and events in the public eye and
is used nowadays to gauge public opinion towards
companies or products, to analyze customer satis-
faction, and to detect trends.

Its immediacy allowed Twitter to become an im-
portant platform for expressing opinions and public
discourse, while the accessibility of large quantities
of data in turn made it the focal point of social media
sentiment analysis research.

Recently, deep learning-based approaches have
demonstrated remarkable results for text classifi-
cation and sentiment analysis (Kim, 2014) and
have performed well for phrase-level and message-
level sentiment classification (Severyn and Mos-
chitti, 2015).

Past SemEval competitions in Twitter sentiment
analysis (Rosenthal et al., 2014; Rosenthal et al.,
2015) have contributed to shape research in this
field. SemEval-2016 Task 4 (Nakov et al., 2016)
is no exception, as it introduces both quantification
and five-point-scale classification tasks, neither of
which have been tackled with deep learning-based
approaches before.

We apply our deep learning-based model for sen-
timent analysis to all subtasks of SemEval-2016
Task 4: three-point scale message polarity classi-
fication (subtask A), two-point and five-point scale
topic sentiment classification (subtasks B and C re-
spectively), and two-point and five-point scale topic
sentiment quantification (subtasks D and E respec-
tively).

Our model achieves excellent results for subtasks
B and D, ranks competitively for subtask A, while
performing poorly for subtasks C and E. We perform
an error analysis of our model to obtain a better un-
derstanding of strengths and weaknesses of a deep
learning-based approach particularly for these new
tasks and subsequently propose improvements.
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2 Related work

Deep-learning based approaches have recently dom-
inated the state-of-the-art in sentiment analysis. Kim
(2014) uses a one-layer convolutional neural net-
work to achieve top performance on various senti-
ment analysis datasets, demonstrating the utility of
pre-trained embeddings.

State-of-the-art models in Twitter sentiment anal-
ysis leverage large amounts of data accessible on
Twitter to further enhance their embeddings by treat-
ing smileys as noisy labels (Go et al., 2009): Tang
et al. (2014) learn sentiment-specific word embed-
dings from such distantly supervised data and use
these as features for supervised classification, while
Severyn and Moschitti (2015) use distantly super-
vised data to fine-tune the embeddings of a convolu-
tional neural network.

In contrast, we observe distantly supervised data
not to be as important for some tasks as long as suf-
ficient training data is available.

3 Model

The model architecture we use is an extension of the
CNN structure used by Collobert et al. (2011).

The model takes as input a text, which is padded
to length n. We represent the text as a concatentation
of its word embeddings x1:n where xi ∈ Rk is the
k-dimensional vector of the i-th word in the text.

The convolutional layer slides filters of different
window sizes over the word embeddings. Each filter
with weights w ∈ Rhk generates a new feature ci
for a window of h words according to the following
operation:

ci = f(w · xi:i+h−1 + b) (1)

Note that b ∈ R is a bias term and f is a non-linear
function, ReLU (Nair and Hinton, 2010) in our case.
The application of the filter over each possible win-
dow of h words or characters in the sentence pro-
duces the following feature map:

c = [c1, c2, ..., cn−h+1] (2)

Max-over-time pooling in turn condenses this fea-
ture vector to its most important feature by taking its
maximum value and naturally deals with variable in-
put lengths.

A final softmax layer takes the concatenation of
the maximum values of the feature maps produced
by all filters and outputs a probability distribution
over all output classes.

4 Methodology

4.1 Datasets

For every subtask, the organizers provide a training,
development, and development test set for training
and tuning. We use the concatentation of the training
and development test set for each subtask for train-
ing and use the development set for validation.

Additionally, the organizers make training and de-
velopment data from SemEval-2013 and trial data
from 2016 available that can be used for training
and tuning for subtask A and subtasks B, C, D, and
E respectively. We experiment with adding these
datasets to the respective subtask. Interestingly,
adding them slightly increases loss on the validation
set, while providing a significant performance boost
on past development test sets, which we view as a
proxy for performance on the 2016 test set. For this
reason, we include these datasets for training of all
our models.

We notably do not select the model that achieves
the lowest loss on the validation set, but choose the
one that maximizes the FPN

1 score, i.e. the arith-
metic mean of the F1 of positive and negative tweets,
which has historically been used to evaluate the Se-
mEval message polarity classification subtask. We
observe that the lowest loss does not necessarily lead
to the lowest FPN

1 , as it does not include F1 of neu-
tral tweets.

4.2 Pre-processing

For pre-processing, we use a script adapted from the
pre-processing script1 used for training GloVe vec-
tors (Pennington et al., 2014). Besides normalizing
urls and mentions, we notably normalize happy and
sad smileys, extract hashtags, and insert tags for re-
peated, elongated, and all caps characters.

4.3 Word embeddings

Past research (Kim, 2014; Severyn and Moschitti,
2015) found a good initialization of word embed-

1http://nlp.stanford.edu/projects/glove/
preprocess-twitter.rb
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dings to be crucial in training an accurate sentiment
model.

We thus evaluate the following evaluation
schemes: random initialization, initialization using
pre-trained GloVe vectors, fine-tuning pre-trained
embeddings on a distantly supervised corpus (Sev-
eryn and Moschitti, 2015), and fine-tuning pre-
trained embeddings on 40k tweets with crowd-
sourced Twitter annotations. Perhaps counter-
intuitively, we find that fine-tuning embeddings on
a distantly supervised or crowd-sourced corpus does
not improve performance on past development test
sets when including the additionally provided data
for training. We hypothesize that additional training
data facilitates learning of the underlying semantics,
thereby reducing the need for sentiment-specific em-
beddings. Our scores partially echo this theory.

For this reason, we initialize our word embed-
dings simply with 200-dimensional GloVe vectors
trained on 2B tweets. Word embeddings for un-
known words are initialized randomly.

4.4 Hyperparameters and pre-processing
We tune hyperparameters over a wide range of val-
ues via random search on the validation set. We find
that the following hyperparameters, which are sim-
ilar to ones used by Kim (2014), yield the best per-
formance across all subtasks: mini-batch size of 10,
maximum sentence length of 50 tokens, word em-
bedding size of 200 dimensions, dropout rate of 0.3,
l2 regularization of 0.01, filter lengths of 3, 4, and 5
with 100 filter maps each.

We train for 15 epochs using mini-batch stochas-
tic gradient descent, the Adadelta update rule
(Zeiler, 2012), and early stopping.

4.5 Task adaptation and quantification
To adapt our model to the different tasks, we simply
adjust the number of output neurons to conform to
the scale used in the task at hand (two-point scale
in subtasks B and D, three-point scale in subtask A,
five-point scale in subtasks C and E).

We perform a simple quantification for subtasks D
and E by aggregating the classified tweets for each
topic and reporting their distribution across senti-
ments. We would thus expect our results on sub-
tasks B and D and results on subtasks C and E to be
closely correlated.

Metric Our score Best score Rank
FPN

1 0.593 0.633 8/34
RPN 0.616 0.670 12/34

AccPN 0.635 0.646 5/34
Table 1: Our score and rank for subtask A for each metric com-

pared to the best team’s score (results for official metric in bold).

2013 2014 2015
TW SMS TW TW LJ TW

/s
+ 72.49 66.73 76.84 64.52 69.08 65.56
- 47.97 49.65 51.95 13.64 50.00 53.00
= 67.53 77.83 65.51 45.71 67.28 65.23

Table 2: F1 scores of our model for positive, negative, and neu-

tral tweets for each progress dataset of subtask A. TW: Tweet.

/s: sarcasm. LJ: Live Journal. +: positive. -: negative. =:

neutral.

5 Evaluation

We report results of our model in Tables 1 and 2
(subtask A), Table 3 (subtask B), Tables 5 and 6
(subtask C), Table 4 (subtask D), and Table 7 (sub-
task E). For some subtasks, the organizers make
available alternative metrics. We observe that the
choice of the scoring metric influences results con-
siderably, with our system always placing higher if
ranked by one of the alternative metrics.

Subtask A. We obtain competitive performance
on subtask A in Table 1. Analysis of results on the
progress test sets in Table 2 reveals that our sys-
tem achieves competitive F1 scores for positive and
neutral tweets, but only low F1 scores for negative
tweets due to low recall. This is mirrored in Table
1, where we rank higher for accuracy than for recall.
The scoring metric for subtask A, FPOS

1 accentuates
F1 for positive and negative tweets, thereby ignoring
our good performance on neutral tweets and leading
to only mediocre ranks on the progress test sets for
our system.

Subtasks B and D. We achieve a competitive fifth
rank for subtask B by the official recall metric in Ta-
ble 3. However, ranked by F1 (as in subtask A),
we place third – and second if ranked by accuracy.
Similarly, for subtask D, we rank fourth (with a dif-
ferential of 0.001 to the second rank) by KLD, but
second and first if ranked by AE and RAE respec-
tively. Jointly, these results demonstrate that classifi-
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Metric Our score Best score Rank
R 0.767 0.797 5/19
F1 0.786 0.799 3/19
Acc 0.864 0.870 2/19

Table 3: Our score and rank for subtask B for each metric com-

pared to the best team’s score (results for official metric in bold).

Metric Our score Best score Rank
KLD 0.054 0.034 4/14
AE 0.085 0.074 2/14

RAE 0.423 0.423 1/14
Table 4: Our score and rank for subtask D for each metric com-

pared to the best team’s score (results for official metric in bold).

cation performance is a good indicator for quantifi-
cation without using any more sophisticated quan-
tification methods. These results are in line with
past research (Kim, 2014) showcasing that even a
conceptually simple neural network-based approach
can achieve excellent results given enough training
data per class. These results also highlight that em-
beddings trained using distant supervision, which
should be particularly helpful for this task as they
are fine-tuned using the same classes, i.e. positive
and negative, are not necessary given enough data.

Subtasks C and E. We achieve mediocre results
for subtask C in Table 5, only ranking sixth – how-
ever, placing third by the alternative metric. Simi-
larly, we only achieve an unsatisfactory eighth rank
for subtask E in Table 7. An error analysis for sub-
task C in Table 6 reveals that the model is able to
differentiate between neutral, positive, and very pos-
itive tweets with good accuracy. However, similarly
to results in subtask A, we find that it lacks expres-
siveness for negative sentiment and completely fails
to capture very negative tweets due to their low num-
ber in the training data. Additionally, it is unable to
take into account sentiment order to reduce error for
very positive and very negative tweets.

Metric Our score Best score Rank
MAEM 1.006 0.719 6/11
MAEµ 0.607 0.580 3/11

Table 5: Our score and rank for subtask C for each metric com-

pared to the best team’s score (results for official metric in bold).

Sentiment -2 -1 0 1 2
MAEM 2.09 1.29 0.78 0.17 0.71

Table 6: Macro-averaged mean absolute error (MAEM ) of our

model for each sentiment class for subtask C. Lower error is

better.

Metric Our score Best score Rank
EMD 0.366 0.243 8/10

Table 7: Our score and rank for subtask E compared to the best

team’s score.

5.1 Improvements

We propose different improvements to enable the
model to better deal with some of the encountered
challenges.

Negative sentiment. The easiest way to enable
our model to better capture negative sentiment is to
include more negative tweets in the training data.
Additionally, using distantly supervised data for
fine-tuning embeddings would likely have helped to
mitigate this deficit. In order to allow the model to
better differentiate between different sentiments on
a five-point scale, it would be interesting to evaluate
ways to create a more fine-grained distantly super-
vised corpus using e.g. a wider range of smileys and
emoticons or certain hashtags indicating a high de-
gree of elation or distress.

Ordinal classification. Instead of treating all
classes as independent, we can enable the model
to take into account ordinal information by simply
modifying the labels as in (Cheng et al., 2008). A
more sophisticated approach would organically in-
tegrate label-dependence into the network.

Quantification. Instead of deriving the topic-
level sentiment distribution by predicting tweet-
level sentiment, we can directly minimize the
Kullback-Leibler divergence for each topic. If the
feedback from optimizing this objective proves to
be too indirect to provide sufficient signals, we can
jointly optimize tweet-level as well as topic-level
sentiment as in (Kotzias, 2015).

6 Conclusion

In this paper, we have presented our deep learning-
based approach to Twitter sentiment analysis for
two-point, three-point, and five-point scale sen-
timent classification and two-point and five-point
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scale sentiment quantification. We reviewed the dif-
ferent aspects we took into consideration in creat-
ing our model. We rank fifth and a close fourth
(third and second by alternative metrics) on two-
point scale classification and quantification despite
using only pre-trained embeddings that contain no
sentiment information. We analysed our weaker per-
formance on three-point scale sentiment classifica-
tion and five-point scale sentiment classification and
quantification and found that the model lacks ex-
pressiveness to capture negative sentiment and is un-
able to take into account class order. Finally, we pro-
posed improvements to resolve these deficits.
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