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Abstract 

In many areas, such as social science, politics or 
market research, people need to track sentiment 
and their changes over time. For sentiment analysis 
in this field it is more important to correctly esti-
mate proportions of each sentiment expressed in 
the set of documents (quantification task) than to 
accurately estimate sentiment of a particular doc-
ument (classification). Basically, our study was 
aimed to analyze the effectiveness of two iterative 
quantification techniques and to compare their ef-
fectiveness with baseline methods. All the tech-
niques are evaluated using a set of synthesized data 
and the SemEval-2016 Task4 dataset. We made the 
quantification methods from this paper available as 
a Python open source library. The results of com-
parison and possible limitations of the quantifica-
tion techniques are discussed. 

1 Introduction 

In many areas, such as customer-relationship manage-
ment or opinion mining, people need to track changes 
over time and measure proportions of documents ex-
pressing different sentiments. In these situations, the 
task of accurate categorization of each document is re-
placed by the task of providing accurate proportions of 
documents from each class (quantification). George 
Forman suggested defining the ‘quantification task’ as 
finding the best estimate for the amount of cases in each 
class in a test set, using a training set with substantially 
different class distribution (Forman, 2008). 

Application of the quantification approach in opinion 
mining (Esuli et al., 2010), network-behavior analysis 
(Tang et al., 2010), word-sense disambiguation (Chan 
and Ng, 2006), remote sensing (Guerrero-Curieses et 
al., 2009), quality control (Sánchez et al., 2008), moni-
toring support-call logs (Forman et al., 2006) and credit 

scoring (Hand and others, 2006) showed high perfor-
mance even with a relatively small training set. 

Although quantification techniques are able to pro-
vide accurate sentiment analysis of proportions in situa-
tions of distribution drift, the question of optimal tech-
nique for analysis of tweets still raises a lot of questions. 
It is worth mentioning that sentiment analysis of tweets 
presents additional challenges to natural language pro-
cessing, because of the small amount of text (less than 
140 characters in each document), usage of creative 
spelling (e.g. “happpyyy”, “some1 yg bner2 tulus”), ab-
breviations (such as “wth” or “lol”), informal construc-
tions (“hahahaha yava quiet so !ma I m bored av even 
home nw”) and hashtags (BREAKING: US GDP 
growth is back! #kidding), which are a type of tagging 
for Twitter messages. 

In our paper we used several quantification methods 
mentioned in literature as the best ones and evaluated 
them by comparing their effectiveness with one another 
and with baseline methods. 

The paper is organized as follows. In Section 2, we 
first look at the notation, then we briefly overview six 
methods to solve the quantification problem. Section 3 
describes two datasets we use in our research. Section 4 
describes the results of our experiments, while Section 5 
concludes the work defining open research issues for 
further investigation. 

2 Quantification Methods 

In this section we describe the methods used to handle 
changes in class distribution.  

First, let us give some definition of notation. 
Х: vector representation of observation x; 
C = {c1, …, cn}: classes of observations, where n is the 
number of classes; 

�� (c): a true prior probability (aka “prevalence” of 
class c in the set S; 

�̂� (cj): estimated prevalence of cj using the set S; 

�̂�
�(cj): estimated �̂� (cj) obtained via method M; 
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p(cj /x): a posteriori probabilitiesto classify an observa-
tion x  to the class cj; 

�����, ����: training and test sets of observations, 
respectively; 
�����: a subset of ����set where each observation 
falls within class �; 
����_��= {pTEST(ci)}; i=1, ������: class probability distri-
bution of the test set; 

�����_�� = {pTRAIN(ci)}; i=1, ������: class probability dis-
tribution of the training set; 

The problem we study has some training set, which 
provides us with a set of labeled examples – TRAIN, 
with class distribution TRAIN_CD. At some point the 
distribution of data changes to a new, but unknown class 
distribution – TEST_CD, and this distribution provides 
a set of unlabeled examples – TEST. Given this termi-
nology, we can state our quantification problem more 
precisely. 

2.1 Classify and Count 

The first approach provides information about propor-
tions of document in each class just by classification of 
each document. In this case, the process starts with 
training the best available classifier, applying it to the 
test set and counting the amount of documents in each 
class. Forman named this obvious approach as Classify 
and Count (CC) (Forman, 2008). 

The observed count P of positives from the classifier 
will include both true positives and false positives, P = 
TP + FP, as characterized by the standard 2 × 2 confu-
sion matrix. 

Classifier Predictions: 
Actual\Prediction  P_ N_ 
P TP  FN 
N FP  TN 

2.2 Adjusted Classify and Count 

Adjusted Classify and Count (ACC – aka the “confusion 
matrix model” quantification method (Forman, 2005) 
consists of six steps: 

1. training a binary classifier on the entire 
training set 

2. estimating its characteristics via many-fold 

cross-validation (tpr = TP/P and fpr = FP/N) 

3. applying the classifier to the test set 
4. counting the number of test cases on which 

the classifier outputs positives 
5. estimating the true percentage of positives 

via Equation (1) 

 �̂���(�) =
����(�)����(�)

���(�)����(�)
 (1) 

6. clipping the output to the feasible range. 

 
As mentioned by Forman, the performance of the 

ACC method degrades severely in the situation of a 
highly imbalanced training sample. If one of the classes 
is rare in the training set, the classifier will learn not to 
vote for this class because of tpr = 0%. Small denomina-
tor (tpr − fpr) in Equation (1) makes the quotient highly 
sensitive in the estimation of tpr or fpr, and this leads to 
low quantification accuracy especially at the small train-
ing sets with high class imbalance (Forman et al., 2006).  

2.3 Probabilistic Classify and Count  

The Probabilistic Classify and Count (PCC) method dif-
fers from the CC algorithm by counting the expected 
share of positive predicted documents, i.e. the probabil-
ity of membership in class c of observation ��after clas-
sifying documents in the TEST set. 

 �̂����
��� (�) =

∑ �(�|��)��∈����

|����|
 (2) 

2.4 Probabilistic Adjusted Classify and Count 

The central idea of the Probabilistic Adjusted Classify 
and Count (PACC) algorithm is evidently to combine 
two algorithms above – ACC and PCC. �̂�� (�), ���(�), 
 ���(�) should be replaced by their expected values, i.e. 

�̂��(�)~�̂���(�), 

���(�)~�{���(�)}, 

���(�)~�{���(�)}, 

where  

�{���(�)} =  
∑ �(�|��)��∈�����

|�����|
 

�{���(�)} =  
∑ �(�|��)��∈������

|�����̅|
 

then the form of the PACC is 

 �̂����(�) =
�����(�)��{���(�)}

�{���(�)}��{���(�)}
 (3) 

2.5 Expectation Maximization 

A simple procedure to adjust the outputs of a classifier 
to a new a priori probability is described in the study by 
(Saerens et al., 2002). 

 �(��/��) =

� ��������

� ���������
��(��/��)

∑
� ��������

� ���������
��(��/��)�

���

 (4) 

It is important that authors suggest using not only the 
well-known formula (4) to compute the corrected a pos-
teriori probabilities, but also an iterative procedure to 
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adjust the outputs of the trained classier with respect to 
these new a priori probabilities, without having to refit 
the model, even when these probabilities are not known 
in advance. 

To make the Expectation Maximization (EM)  meth-
od  clear,  we  specify  its algorithm in Figure1  using a 
pseudo-code. The algorithm begins with counting start 
values for class probability distribution, using labels on 
the training set TRAIN (line 1), builds an initial classifi-
er C_i from the TRAIN set (line 2) and classifies each 
item in the unlabeled TEST set (line3), where the 
classify functions return the a posteriori probabili-

ties (TEST_prob) for the specified datasets.  The algo-
rithm then iterates in lines 4-9 until the maximum num-
ber of iterations (maxIterations) is reached. In this 
loop, the algorithm first uses the previous a posteriori 
probabilities TEST_prob to estimate a new a priori 
probability (line 6). Then, in line 7, a posteriori proba-
bilities are computed using Equation (4).  Finally, once 
the loop terminates, the last posteriori probabilities re-
turns (line 9). 

 
EM (TRAIN, TEST) 

1.TEST_CD = prevalence(TRAIN) 
2. C_i = build_clf(TRAIN) 
3. TEST_prob = classify(C_i, TEST) 
4. for (i=1; i<maxIterations; i++) 
5. { 
6.  TEST_CD = prevalence(TEST_prob) 
7.  TEST_prob = bayes(TEST_CD, TEST_prob) 
8. } 
9. return TEST_CD 

Figure 1: Pseudo-code for the EM algorithm. 

 
To build a classifier in the function build_clf, we 

use support vector machines (SVM) with linear kernel. 

2.6 Iterative Class Distribution Estimation 

Another interesting method is iterative cost-sensitive 
class distribution estimation (CDEIterate) described in 
the study by (Xue and Weiss, 2009). 

The main idea of this method is to retrain a classifier 
at each iteration, where the iterations progressively im-
prove the quantification accuracy of performing the 
«classify and count» method via the generated cost-
sensitive classifiers. 

For the CDE-based method, the final prevalence is 
induced from the TRAIN labeled set with the cost of 
classes COST. The COST value is computed with Equa-
tion (5), utilizing the class distribution calculated during 
the previous step TEST_CD. For each iteration, we re-
calculate: 

 ���� =
����_��

�����_��
 (5) 

The CDEIterate algorithm is specified in Figure 2, 
using the pseudo-code. The algorithm begins with 
counting the class distribution TRAIN_CD for training 
labels TRAIN (line 1). Then it builds an initial classifier 
C_i from the TRAIN set (line 2). In a loop, this algo-

rithm uses the previous classifier C_i to classify the 
unlabeled TEST set by estimating a posterior probabil-
ity TEST_prob for each item in a test set (line 5). 
Then. in line 6, the a priory probability distribution is 
computed and the cost ratio information is updated (line 
7). In line 8, a new cost-sensitive classifier C_i is gen-
erated using the TRAIN set with the updated cost 
ratioCOST. The algorithm then iterates in lines 4-9 until 
the maximum number of iterations (maxIterations) 
is reached. Finally, once the loop terminates, the last a 
priory probability distribution of classes is returned 
TEST_CD (line 10). 
 
CDEIterate (TRAIN, TEST, COST_start) 

1.TRAIN_CD = prevalence(TRAIN) 
2. C_i = build_clf(TRAIN, COST_start) 
3. for (i=1; i<maxIterations; i++) 
4. { 
5.  TEST_prob= classify(C_i, TEST) 
6.  TEST_CD = prevalence(TEST_prob) 
7.  COST = TEST_CD/TRAIN_CD 
8.C_i = build_clf(TRAIN, COST) 
9. } 
10. return TEST_CD 

Figure 2: Pseudo-code for the CDE-Iterate algorithm. 

 
To build a cost-sensitive classifier in the function 

build_clf, we tried a few ones and chose a fast lo-
gistic regression classifier. 

We did not find any open library where baseline 
quantification methods were implemented. We, there-
fore, shared all the algorithms, which we had pro-
grammed using the Python language, on the Github re-
pository1. We believe that this library can help pool in-
formation on quantification. 

3 Experiment Methodology 

This section describes our experimental setup. It de-
scribes the datasets we use, the specific experiments we 
run and the classifier induction algorithm we employ. 

3.1 Simulations on Artificial Data 

We present a simple experiment that illustrates the effi-
ciency of iterative adjustment of the a priori probabili-
ties.  

                                                  
                                                   
1https://github.com/Arctickirillas/Rubrication 
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We use random sample generators from SkiKit
Library to build artificial datasets of controlled size and 
complexity2. For each dataset we generate 10
ords with 10 features. Figure 3 exemplifies
a dataset with two classes. 

The initial prevalence for classes
(ptrain(c1) = ptrain(c2) = 0.5). The total set randomly splits 
into two subsets: 25% training set, 75% test set.
training set, the class distribution remains unchanged. 

For the test set, we vary prevalence value
0.05 to 0.95. 

Figure 3: An example of TRAIN and TEST
with TRAIN_CD = {0.5, 0.5} and TEST_CD

spectively (generated with 2 fea

 
For each prevalence value we generate a

ferent test sets. Therefore, nineteen hundred
of the following experimental design are applied.

We used a Kullback-Leibler Divergence (KLD)
tween the true class prevalence and the

                                                  
                                                  
2http://scikit-
learn.org/stable/modules/generated/sklearn.da
sification.html 

 
 

erators from SkiKit-Learn 
Library to build artificial datasets of controlled size and 

dataset we generate 10,000 rec-
exemplifies 2 features of 

es c1 and c2 was equal 
otal set randomly splits 

into two subsets: 25% training set, 75% test set. For the 
training set, the class distribution remains unchanged. 

prevalence value �����(c1) from 

 
and TEST dataset items 

{0.5, 0.5} and TEST_CD = {0.1, 0.9} re-
spectively (generated with 2 features). 

For each prevalence value we generate a hundred dif-
nineteen hundred replications 

of the following experimental design are applied. 
Leibler Divergence (KLD) be-

tween the true class prevalence and the predicted class 

 

learn.org/stable/modules/generated/sklearn.datasets.make_clas

prevalence as a quality evaluation metrics for quantif
ers. 

3.2 Test Dataset 

To evaluate the algorithms on the real data
pated in the SemEval-2016 Task 4 called “Sentiment 
Analysis in Twitter”. Its dataset consists of 
sages (aka observations) divided
Task 4 consists of five subtasks, but w
ed in subtasks D and E: tweet quantification according 
to a two-point scale and five
These subtasks are evaluated 
topics, and the final result is counted as an average of 
evaluation measure out of all the topics 
2016). 

The organizers provide a default split of the data into 
training, development and development
tasets. The algorithms evaluation is performed
these subsets. The training subset is used as a TRAIN 
set, development and development
are used as a TEST set. 

Since observation x in this dataset is a message wri
ten in a natural language, we first need to transform it to 
the vector representation X. Based on a study by 
and Sebastiani, 2015), we choose the following comp
nents of the feature vector:   
 TFIDF for word n-grams with n 

4 

 TFIDF character n-grams where n 
5. 

Feature vector is extracted with a
We also perform data preprocessing
terns (e.g. links, emoticons, numbers) w
with their substitutes. For word n
matization using WordNetLemmatizer. 

It is interesting to characterize messages using 
SentiWordNet library. For each token 
we obtain its polarity value from the SentiWordNet. 
First, we recognize the part of speech using
tagger from the NLTK library
cond, we get the SentiWordNet first polarity value for 
this token using the part of speech information.

We used polarity values to extend vector represent
tion of documents in two ways
the polarity score as a sum of positive minus 
negative polarity values and add this feature to 
tor representation of a document. Second
the sum of positive polarities and 

                                                  
                                                  
3http://scikit-
learn.org/stable/modules/generated/sklearn.feature_extraction.
text.TfidfVectorizer.html 

a quality evaluation metrics for quantifi-

To evaluate the algorithms on the real data, we partici-
2016 Task 4 called “Sentiment 

Its dataset consists of Twitter mes-
divided into several topics. 

Task 4 consists of five subtasks, but we only participat-
D and E: tweet quantification according 

point scale and five-point scale, respectively. 
 independently for different 

final result is counted as an average of 
evaluation measure out of all the topics (Nakov et al., 

default split of the data into 
training, development and development-time testing da-
tasets. The algorithms evaluation is performed using 

raining subset is used as a TRAIN 
set, development and development-time testing subsets 

in this dataset is a message writ-
ten in a natural language, we first need to transform it to 

. Based on a study by (Gao 
, we choose the following compo-

grams with n varying from 1 to 

grams where n varies from 3 to 

extracted with a Scikit_Learn tool3. 
We also perform data preprocessing .Several text pat-

links, emoticons, numbers) were replaced 
For word n-grams we apply lem-

matization using WordNetLemmatizer.  
It is interesting to characterize messages using the 

SentiWordNet library. For each token xi in document X 
obtain its polarity value from the SentiWordNet. 

part of speech using a speech 
NLTK library (Bird et al., 2009). Se-

get the SentiWordNet first polarity value for 
part of speech information. 

We used polarity values to extend vector representa-
tion of documents in two ways: first we simply calculate 

sum of positive minus a sum of 
negative polarity values and add this feature to the vec-

presentation of a document. Second, we calculate 
sum of positive polarities and the sum of negative 

          
           

learn.org/stable/modules/generated/sklearn.feature_extraction.
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polarities and add these two features to the vector repre-
sentation of a document. 

The metrics that we use to evaluate the classifier  
performance are described in (Nakov et al., 2016) and 
are not described here. 

4 Experiment Results 

We apply six quantification methods mentioned above 
in Section 2: CC, PCC, ACC, PACC, EM, CDEIterate 
and compare them. 

4.1 Synthesized Data 

First, we applied CC, PCC, ACC, PACC, EM and 
CDEIterate algorithms to generated data described in 
Section 3.1. Synthesized data allows us to perform a 
comparative analysis of these quantification methods 
with different amount of distribution drift. 

In Figure3, which demonstrates the means and stand-
ard deviation values of the evaluation measure – 
Kullback-Leibler Divergence (KLD), each point is ob-
tained by averaging over one hundred generated da-
tasets with different prevalence. 

 

 
Figure 4: Mean and standard deviation values of Kullback-

Leibler Divergence for different distribution drifts in the 
TEST set on the linear scale. 

It is obvious from Figure 4 that the CDEIterate ap-
proach shows the lowest KLD mean values when a dis-
tribution drift is relatively large. A standard deviation 
value for the CDEIterate method remains the smallest 
one among all possible distribution drifts. 

On the contrary, the EM approach shows very unsta-
ble results. Sometimes the EM algorithm converges far 
from the real value. Its standard deviation displays the 
same unstable behavior. 

For more careful consideration, let us show its func-
tions in the logarithmic scale in Figure 5.  
 

 
 

Figure 5: Mean and standard deviation values of Kullback-
Leibler Divergence for different distribution drifts in the 

TEST set on the logarithmic scale. 

 
When distribution changes from the starting value 

ptrain(c) = 0.5 by less than 0.1, the simple methods like 
CC and PCC show better performance (lower KLD). 

4.2 Test Data 

We noticed that CDEIterate methods sometimes con-
verge to different values, if an algorithm starts iteration 
from a different starting point. To support this, we add 
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the COST_start variable to the algorithm shown in 
Figure 2. The first starting point is a priori probability 
distribution of a training set. Therefore, for the starting 
iteration we assume TEST_CD to equal TRAIN_CD. 
The second starting point is when TEST_CD is uni-
formly distributed. This case is labeled as 
CDEIterate_U. In the previous Section 4.1, these two 
starting points were actually the same. 

 
Method Quantification accuracy measure 
CC  0.102469788749 
ACC  0.192896311253 
PCC  0.24076249451 
PACC  0.23644037492 
EM  0.24076249451 
CDEIterate 0.101057466171 
CDEIterate_U 0.0886349793929 

Table1: Comparison of methods on test sample with a two-
point scale (SemEval-2016 Task4 Subtask D). 

 
Method Quantification accuracy measure 
CC  0.940764808798 
ACC  0.878280429893 
PCC  1.02616631747 
PACC  1.04546915144 
EM  1.12790745311 
CDEIterate 0.538279399063 
CDEIterate_U 0.536691406139 

Table 2: Comparison of methods ontest sample with a five-
point scale (SemEval-2016 Task4 Subtask E). 

 
CDEIterate_U approach showed the best accuracy on 

the testing set among others with both five-point and 
two-point scales. 

SentiWordNet is usually regarded as an important 
source of information about word sentiment 
(Baccianella et al., 2010; Esuli and Sebastiani, 2006). In 
our comparison, we add the sum of positive scores and 
the sum of negative scores of each word as two addi-
tional features to the feature vector. Only the first mean-
ing, according to the recognized part of speech, was 
used. The quantification methods remain the same. The 
results provided in Table 3, show that the new features 
increase quantification accuracy for CC, ACC, but sur-
prisingly decrease it for PCC, PACC, EM, CDEIterate 
and CDEIterate-U. 

Method Quantification accuracy measure 
CC  0.868282929268 
ACC  0.861784553862 
PCC  1.05532269963 
PACC  1.0731851762 
EM  1.11319538187 
CDEIterate 0.58872710467 
CDEIterate_U 0.587811269105 

Table 3: Comparison of methods on test sample with a five-
point scale with additional SentiWordNet features (SemEval-

2016 Task4 Subtask E). 

 

We explain this behavior as follows: simple algo-
rithms cannot adjust to the whole singularity and such 
additional features increase dimension and, thereby, ac-
curacy. In a more complex case, the classifier extracts 
information from features more efficiently. Additional 
information about polarity scores leads to algorithm 
overtraining. We can guess that, as tweets contain crea-
tive spelling and abbreviation common in Twitter (like 
“lol”, not presented in SentiWordNet), the existence of 
character n-grams contains more specific information 
than polarity scores of selected, properly written words. 
Therefore, we exclude SentiWordNet features from the 
final feature vector. 

5 Conclusion and future work 

The aim of this research was to perform comparative 
analysis of different approaches of state-of-the-art quan-
tification techniques. 

For tweet quantification on a five-point scale (Sub-
task E) and a two-point scale (Subtask D), the best per-
formance was demonstrated by the adopted iterative 
method proposed by (Xue and Weiss, 2009), based on 
the iterative procedure with the cost-sensitive supervise 
learner. All the algorithms mentioned in the article, are 
available on the Github repository4. 

In our future work, we are planning to move in two 
directions. First, we plan to extend the vector of features 
used for representation of documents. Second, we want 
to add more quantification methods to our open source 
library. 
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