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Abstract 

In this paper, we present a transfer learning sys-

tem for twitter sentiment classification and 

compare its performance using different fea-

ture sets that include different word represen-

tation vectors. We utilized data from a different 

source domain to increase the performance of 

our system in the target domain. Our approach 

was based on training various word2vec mod-

els on data from the source and target domains 

combined, then using these models to calculate 

the average word vector of all the word vectors 

in a tweet observation, then input the average 

word vector as a feature to our classifiers for 

training. We further developed one doc2vec 

model that was trained on the positive, nega-

tive and neutral tweets in the target domain 

only. We then used these models in calculating 

the average word vector for every tweet in the 

training set as a preprocessing step. The final 

evaluation results show that our approach gave 

a prediction accuracy on the Twitter2016 test 

dataset that outperformed two teams that were 

among the top 10 in terms of AvgF1 scores. 

1 Introduction 

Twitter sentiment analysis deals with classifying the 

polarity of a tweet as positive or negative or neutral.  

We have participated in Semeval 2016 Twitter Sen-

timent Analysis subtask-A. Where we had to predict 

the polarity of a whole tweet rather than part of a 

tweet. We have started off with feature engineering 

and data preprocessing. Then we have divided our 

task into five classification tasks. Then we worked 

on creating our feature sets that we later used to se-

lect the best classifier/feature set combination for   

 

 

each classification task as will be explained further 

in the paper.  

In section 2 we explain our transfer learning ap-

proach, system components, data preprocessing, ag-

gregation approach, word2vec training and doc2vec 

training. In section 3, we present our experiments. 

Then in section 4, we review and discuss our results. 

Finally in section 5, we make conclusions and out-

line some future work. 

2 Transfer Learning Approach 

Our transfer learning approach was based on using 

data from an additional source domain to supple-

ment the provided target domain twitter data to train 

our word2vec models. The resultant models were 

later used in calculating the average word2vec vec-

tor of each tweet in our twitter training set as will be 

explained in section 2.4. We have also developed 

four binary classifiers and one arbiter three class la-

bel classifier. The four binary classifiers as well as 

the fifth arbiter classifier were a combination of lo-

gistic regression and SVM classifiers as we will 

show in the following sections.  

2.1 System Components and Data Sets 

In this section, we will specify the system compo-

nents that were used in predicting the final results 

that we have submitted to SEMEVAL Task number 

4. We have trained six word2vec models that will 

be discussed in more detail in section 2.4.  

After training our word2vec models, we have se-

lected five classifiers based on experimentation re-

sults using the preprocessed combined Rosenthal et 

al. (2015) and Nakov et al. (2016) semeval training  

twitter data set.  
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Two SVM classifiers, one for classifying positive 

and negative tweets was trained on positive and neg-

ative tweets. The second was for classifying be-

tween negative and non-negative tweets and it was 

trained on negative and non-negative tweets. In ad-

dition, we have trained three Logistic Regression 

classifiers, one for classifying between positive, 

neutral sentiments and it was trained on positive and 

neutral tweets.  

While the second classifier was trained on negative, 

neutral tweets for classifying between negative and 

neutral polarities. The third logistic regression clas-

sifier was for classifying between positive, nega-

tive, neutral tweets and it was trained on positive, 

negative and neutral tweets.  Different sets of fea-

tures were used with each classifier as we will dis-

cuss in section 2.3. 

As mentioned earlier, we have combined the 2015 

Semeval twitter sentiment analysis subtask B’s 

training set and the 2016 Semeval twitter sentiment 

analysis subtask A’s training set into one training set 

of 11,798 tweets named full_training_set.  We then 

combined the Guestrin et al. (2015) amazon baby 

toys product reviews data set (source domain) 

which were around 150,000 reviews with the 

full_training_set to build our word2vec models. On 

the other hand, we used the full_training_set to train 

our doc2vec model as will be explained in section 

2.5. After training our word2vec and doc2vec mod-

els, the full_training_set was preprocessed for train-

ing our five classifiers mentioned above.  

The validation set used for every classifier in the en-

semble had the same characteristics of the training 

set. For example, since the positive/negative classi-

fier was trained on positive and negative tweets, its 

validation set contained positive and negative 

tweets only.  

Finally, the output of our five classifiers is aggre-

gated to produce the final system output as dis-

cussed in section 2.3.    

2.2 Preprocessing and Feature Engineering 

Before we have trained any of our classifiers, we 

have started with preprocessing our training data. 

Keeping in mind that any preprocessing we per-

formed on the training set was applied on the test 

set. We started with the following preprocessing 

steps: 

 Removed character repetitions by removing 

the character repetitions that could distract our 

classifiers. For example a word like 

LOOOOOOOL is replaced with LOL. 

 Replaced patterns by replacing words like 

‘won’t’ with ‘will not’, ‘can’t’ with ‘cannot’. 

‘re’ with ‘are’, etc. 

 Converted tweets to lower case by converting 

upper case characters to lower case.  

 Replaced website links with URL so links to 

websites that start with www.* or http?://* 

were replaced with URL symbol.   

 Converted @username to AT_USER by re-

placing @username instances found in tweets 

with AT_USER for our classifiers to easily 

identify that a user is being referenced.  

 Removed additional white spaces in order to 

remove any noise that might affect our classi-

fiers’ performance. 

 Replaced hash tags and removed stop words. 

As we replaced hash tags with the same word 

without the hash. For example, #fun is re-

placed with fun. As hash tags can give useful 

information. Also stop words are removed. 

 Replaced Non-Alphabets and question words 

with space. Then we replaced numbers with 

$NUM symbol. 

 Performed stemming and lemmatization using 

porter stemmer and WordNet lemmatizer class 

in the NLTK library. 

 We used Bing Liu et al. (2004) positive-word 

and negative-word lexicons that contained a 

list of thousands of words associated with pos-

itive sentiment and negative sentiment. We re-

placed positive words with $po and negative 

words with $ne. We also used the NRC Uni-

gram lexicon that helped us in replacing words 

that are more likely to give a positive sentiment 

with ‘HAPO’ and words that will more likely 

result in a negative sentiment with ‘HANE’. 
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 The source domain data was preprocessed in 

the same way the target domain data (tweets) 

were preprocessed. However, the source do-

main data were only used in training the 

word2vec and doc2vec models. 

 After finishing with the initial preprocessing 

steps discussed previously, the training set and 

the validation set were parsed into Graphlab 

Sframes for further manipulation. 

 Then the Unigrams, bigrams and trigrams of 

every tweet in the training set were calculated 

and stored in additional columns in the same 

Sframe. 

 Furthermore, the TFIDF of every tweet was 

calculated and stored in a new column. 

 The six trained word2vec models that will be 

discussed in section 2.4 were each used in cal-

culating the word vectors of each word in a 

tweet observation in the training set. 

 Afterwards, the word vectors generated by 

each word2vec model were later averaged to 

get six averaged word vectors for every tweet 

in the training set. These average vectors were 

later saved in columns named w2v_vec-

tors_pos_neg, w2v_vectors_pos_neutral, 

w2v_vectors_neutral_neg, w2v_vec-

tors_pos_ornot, w2v_vectors_neg_ornot, 

w2v_vectors_neutral_ornot which were later 

used as features to our classifiers.   

2.3 Features used and Aggregation 

We have categorized our feature sets into four cate-

gories. There are different feature sets in each cate-

gory. The first category is called feature category 1 

that includes only base features tfidf, unigram, bi-

gram, and trigrams. Then a second category con-

taining the base as well as word2vec vectors and it’s 

called feature category 2. Then a third feature cate-

gory that contains base features in addition to 

doc2vec vectors only named feature category 3. Fi-

nally, a fourth category that contains base features, 

word2vec vectors, and doc2vec vectors is called 

feature category 4.  

The features included in every feature set is pre-

sented in Appendix A while the feature sets in each 

category is shown in Appendix B.  

When it came to aggregating the predictions from 

the four binary classifiers, we gave the highest pri-

ority to the neg_ornot classifier. As it had a reason-

ably high accuracy in discriminating between nega-

tive and non-negative tweets on the validation set.  

Therefore if the neg_ornot classifier classifies a 

tweet as negative, the final output of the system will 

be negative. However, if it classifies a tweet as non-

negative, a majority vote is taken between the other 

three remaining binary classifiers. If two classifiers 

classify a tweet as positive, then the final system 

output will be positive, similarly if two classifiers 

classify a tweet as neutral, then the final system pre-

diction is neutral, and likewise if two classifiers 

agree that a tweet is negative then the final senti-

ment output is negative. In the case when we get a 

tie from the other three classifiers and the neg_ornot 

classifier classifies a tweet as non-negative, then the 

fifth arbiter three class label classifier is deployed to 

give the final classification output of the system. 

2.4 Word2Vec 

When Training our word2vec models for our final 

system, we used the continuous bag-of-words archi-

tecture. We combined positive amazon reviews and 

positive tweets into one file and named it pos_text, 

then combined the negative tweets and negative am-

azon reviews into a second file named neg_text, and 

similarly we combined the neutral amazon reviews 

with the neutral tweets in a third file named neu-

tral_txt. Our first word2vec_pos_neg model was 

trained on the pos_text and neg_text files.  

While, the word2vec_pos_neutral model was 

trained on the pos_text and neutral_text. Then the 

word2vec_neg_neutral model was trained on the 

neg_text and neutral_text. Furthermore, the other 

three word2vec models were trained to be used to 

distinguish between negative and nonnegative 

tweets, positive and non-positive tweets, neutral and 

non-neutral tweets using pos_text, neg_text and 

neutral_text files. The word2vec_neg_ornot model 

was trained on the neg_text, and non_neg_text 

(pos_text and neutral_text combined). Also, 

word2vec_pos_ornot model was trained on the 

pos_text and non_pos_text (neg_text and neu-
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tral_text combined). Lastly, word2vec_neutral_or-

not was trained on neutral_text and non_neu-

tral_text (pos_text and neg_text combined).   

2.5 Paragraph Vector 

We have trained a doc2vec model on all the posi-

tive, negative and neutral tweets in the training set 

to test whether paragraph vectors would improve 

fscores and prediction accuracies on the validation 

set. After building our doc2vec distributed memory 

model, we used it in inferring the tweet vector of 

every tweet in the training set and stored the result 

in the ‘vectors_doc2vec_tweetsonly_dm’ column. 

Column vectors_doc2vec_tweetsonly_dm is then 

added as a feature to our feature sets shown in Ap-

pendix A. 

3 Experiments 

We have carried out a number of experiments to 

help in selecting the feature sets to use for each clas-

sifier as well as which classifier type (SVM or Lo-

gistic Regression or boosted trees) to use for every 

binary classification and for the arbiter classifier. 

Appendix C contains a flowchart describing the sys-

tem structure. The flowchart illustrates our system’s 

sentiment prediction process. 

Table 2.0 shows the validation prediction accuracies 

for each binary classifier and on the arbiter classifier 

when varying the feature set. The feature set, classi-

fier combination was selected based on the combi-

nation that yielded the best validation prediction ac-

curacies. However, when evaluating our whole sys-

tem or our final system output, we use fscore as a 

measure of system performance and not the test set 

prediction accuracy.  

We have set class weights to auto in all classifiers 

we trained to help protecting against data imbalance 

which would lead to misleading results.  

 

 

  Classifier Feature Set Accuracy 

n
eg

a
ti

v
e-

n
o

tn
eg

a
ti

v
e 

 

SVM Feature Set 6 0.89382 

LR Feature Set 9 0.87354 

SVM Feature Set 1 0.87309 

LR Feature Set 1 0.87156 

SVM Feature Set 9 0.87022 

LR Feature Set 6 0.86688 

LR Feature Set 7 0.85667 

SVM Feature Set 7 0.85503 

n
eg

-n
eu

tr
a
l 

 

LR Feature Set 7 0.77817 

LR Feature Set 10 0.77432 

SVM Feature Set 7 0.77113 

SVM Feature Set 3 0.75102 

SVM Feature Set 10 0.75097 

LR Feature Set 1 0.74909 

SVM Feature Set 1 0.74182 

LR Feature Set 3 0.73878 

p
o
s-

n
eg

  

SVM Feature set 8 0.85058 

SVM Feature Set 2 0.84890 

LR Feature Set 2 0.82418 

LR Feature set 8 0.82184 

LR Feature Set 7 0.74869 

SVM Feature Set 7 0.74607 

LR Feature Set 1 0.73469 

SVM Feature Set 1 0.72886 

p
o
s-

n
eg

-n
eu

tr
a
l 

LR Feature Set 12 0.60966 

LR Feature Set 5 0.60686 

BoostedTrees Feature Set 1 0.60613 

BoostedTrees Feature Set 7 0.60232 

BoostedTrees Feature Set 5 0.60081 

LR Feature Set 7 0.57907 

BoostedTrees Feature Set 12 0.56137 

LR Feature Set 1 0.55799 

p
o

s-
n

eu
tr

a
l 

LR Feature Set 4 0.71325 

SVM Feature Set 4 0.70602 

SVM Feature Set 1 0.68333 

LR Feature Set 1 0.67619 

SVM Feature Set 7 0.66508 

SVM Feature Set 11 0.66180 

LR Feature Set 7 0.66033 

LR Feature Set 11 0.65693 
 

Table 2: Validation Accuracy for different classifier/Feature 

Set combinations. 

 

 

Classification Clas-

sifier 

Feature 

Set 

Cate-

gory 

Accu-

racy 

Neg-Nonnega-

tive 

SVM 6 2 0.894 

Neg-Neutral LR 7 3 0.778 

Pos-neg SVM 8 4 0.851 

pos-neg-neutral LR 12 4 0.610 

Pos-Neutral LR 2 2 0.713 
 

Table 1: Final classifier/feature set combinations selected. 
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Starting System Fscore on the test set 0.26 

Final system Fscore on the test set 0.51 
 

Table 3: Fscore of the whole system when using the least per-

forming classifier/feature set combinations and when using the 

best performing classifier/feature set combination.  

4 Results and Analysis 

Table 3 shows the least Fscore of the system we 

started with (features set 1 for all classifiers in the 

system) and the final system fscore before submis-

sion on our test set. We used fscore as the overall 

system performance measure and not the system ac-

curacy. However, we have put the validation accu-

racy as the top classifier/feature set combination se-

lection criteria for the individual classifiers in our 

system while setting class weights to auto in all of 

our classifiers in our system. It is clear from Table 

1.0 that feature categories 2 and 4 were associated 

with the best performing classifiers. As mentioned 

earlier feature category 2 uses word vectors in addi-

tion to the base features in feature set 1. While fea-

ture category 4 uses word vectors and paragraph 

vectors with feature set 1. Which indicates that the 

addition of paragraph vectors with word2vec vec-

tors gave best validation accuracies with the posi-

tive/negative and the pos/neg/neutral classifiers. 

However, it did not give the best validation accura-

cies with the positive/neutral and negative/nonnega-

tive classifiers. As Feature category 2 that uses word 

vectors with feature set 1 gave the best validation 

accuracies with the positive/neutral and the nega-

tive/nonnegative classifiers. Finally, using only par-

agraph vectors with feature set 1 yielded the best 

validation accuracy with the negative/neutral classi-

fier. Even though our doc2vec model was only 

trained on data from the target domain (tweets), it 

managed to give slightly better validation accuracy 

than when using word2vec vectors trained on the 

source (amazon reviews) and target (tweets) do-

mains combined. Nonetheless, for positive/nega-

tive, positive/neutral, negative/nonnegative, posi-

tive/negative/neutral classification using word2vec 

vectors that were generated by our word2vec mod-

els trained on the source and target domains com-

bined gave better validation set accuracies than 

when using only the doc2vec vectors generated by 

our doc2vec model that was trained on the 

full_training_set (tweets) with feature set 1 only. 

Since Le et al. (2014) concluded that paragraph vec-

tors are competitive with the state of the art word 

representation methods. We inferred based on our 

results that combining the source and target data to 

train our word2vec models would give better results 

than when training them only on the target data. 

Thus the external source data helped in building 

word2vec models that gave us more powerful fea-

tures when compared to those generated by doc2vec  

(paragraph vector) models trained only on the target 

data (tweets in full_training_set). 

5 Conclusion 

Our approach resulted in higher prediction accura-

cies on the 2016 twitter test data set outperforming 

eight teams that had better AvgF1scores. Two of the 

eight teams were in the top 10 in terms of 

AvgF1scores. In the future, we will focus more on 

cross domain word representation as illustrated in 

Bollegala et al. (2015) for improving our transfer 

learning approach. 
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Appendix A. Feature Sets. 
 

The following table shows the contents of each feature 

Set referenced above. 

 

Set Features included 

1 ['tfidf','1gram features','2gram fea-

tures','3gram features'] 

2 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_pos_neg','w2v_vectors_pos_neu-

tral','w2v_vectors_pos_ornot','w2v_vec-

tors_neg_ornot'] 

3 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vectors_neu-

tral_neg','w2v_vectors_neg_or-

not','w2v_vectors_neutral_ornot'] 

4 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_pos_neutral','w2v_vectors_pos_or-

not','w2v_vectors_neutral_ornot'] 

5 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_neg_ornot','w2v_vec-

tors_pos_neg','w2v_vectors_pos_neu-

tral','w2v_vectors_neutral_neg','w2v_vec-

tors_pos_ornot','w2v_vectors_neutral_or-

not'] 

6 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_neg_ornot'] 

7 ['tfidf','1gram features','2gram fea-

tures','3gram features','vec-

tors_doc2vec_tweetsonly_dm'] 

8 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_pos_neg','w2v_vectors_pos_neu-

tral','w2v_vectors_pos_ornot','w2v_vec-

tors_neg_ornot','vectors_doc2vec_tweet-

sonly_dm'] 

9 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_neg_ornot','vectors_doc2vec_tweet-

sonly_dm'] 

10 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vectors_neu-

tral_neg','w2v_vectors_neg_or-

not','w2v_vectors_neutral_ornot','vec-

tors_doc2vec_tweetsonly_dm'] 

11 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_pos_neutral','w2v_vectors_pos_or-

not','w2v_vectors_neutral_ornot','vec-

tors_doc2vec_tweetsonly_dm'] 

12 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_neg_ornot','w2v_vec-

tors_pos_neg','w2v_vectors_pos_neu-

tral','w2v_vectors_neutral_neg','w2v_vec-

tors_pos_ornot','w2v_vectors_neutral_or-

not','vectors_doc2vec_tweetsonly_dm'] 

 

 

 
 

Appendix B. Feature Categories. 
 

The following table shows mapping of feature sets to cat-

egories. 

 

Feature Sets Feature Category 

1 1 

2, 3,4,5,6 2 

7 3 

8, 9,10,11,12 4 
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Appendix C. System Flowchart. 
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