
Proceedings of SemEval-2016, pages 169–175,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

UofL at SemEval-2016 Task 4: Multi Domain word2vec

for Twitter Sentiment Classification

Omar Abdelwahab, Adel Elmaghraby

Computer Science and Engineering

University of Louisville, Louisville, KY
{omar.abdelwahab,adel}@louisville.edu

Abstract

In this paper, we present a transfer learning sys-

tem for twitter sentiment classification and

compare its performance using different fea-

ture sets that include different word represen-

tation vectors. We utilized data from a different

source domain to increase the performance of

our system in the target domain. Our approach

was based on training various word2vec mod-

els on data from the source and target domains

combined, then using these models to calculate

the average word vector of all the word vectors

in a tweet observation, then input the average

word vector as a feature to our classifiers for

training. We further developed one doc2vec

model that was trained on the positive, nega-

tive and neutral tweets in the target domain

only. We then used these models in calculating

the average word vector for every tweet in the

training set as a preprocessing step. The final

evaluation results show that our approach gave

a prediction accuracy on the Twitter2016 test

dataset that outperformed two teams that were

among the top 10 in terms of AvgF1 scores.

1 Introduction

Twitter sentiment analysis deals with classifying the

polarity of a tweet as positive or negative or neutral.

We have participated in Semeval 2016 Twitter Sen-

timent Analysis subtask-A. Where we had to predict

the polarity of a whole tweet rather than part of a

tweet. We have started off with feature engineering

and data preprocessing. Then we have divided our

task into five classification tasks. Then we worked

on creating our feature sets that we later used to se-

lect the best classifier/feature set combination for

each classification task as will be explained further

in the paper.

In section 2 we explain our transfer learning ap-

proach, system components, data preprocessing, ag-

gregation approach, word2vec training and doc2vec

training. In section 3, we present our experiments.

Then in section 4, we review and discuss our results.

Finally in section 5, we make conclusions and out-

line some future work.

2 Transfer Learning Approach

Our transfer learning approach was based on using

data from an additional source domain to supple-

ment the provided target domain twitter data to train

our word2vec models. The resultant models were

later used in calculating the average word2vec vec-

tor of each tweet in our twitter training set as will be

explained in section 2.4. We have also developed

four binary classifiers and one arbiter three class la-

bel classifier. The four binary classifiers as well as

the fifth arbiter classifier were a combination of lo-

gistic regression and SVM classifiers as we will

show in the following sections.

2.1 System Components and Data Sets

In this section, we will specify the system compo-

nents that were used in predicting the final results

that we have submitted to SEMEVAL Task number

4. We have trained six word2vec models that will

be discussed in more detail in section 2.4.

After training our word2vec models, we have se-

lected five classifiers based on experimentation re-

sults using the preprocessed combined Rosenthal et

al. (2015) and Nakov et al. (2016) semeval training

twitter data set.

169

Two SVM classifiers, one for classifying positive

and negative tweets was trained on positive and neg-

ative tweets. The second was for classifying be-

tween negative and non-negative tweets and it was

trained on negative and non-negative tweets. In ad-

dition, we have trained three Logistic Regression

classifiers, one for classifying between positive,

neutral sentiments and it was trained on positive and

neutral tweets.

While the second classifier was trained on negative,

neutral tweets for classifying between negative and

neutral polarities. The third logistic regression clas-

sifier was for classifying between positive, nega-

tive, neutral tweets and it was trained on positive,

negative and neutral tweets. Different sets of fea-

tures were used with each classifier as we will dis-

cuss in section 2.3.

As mentioned earlier, we have combined the 2015

Semeval twitter sentiment analysis subtask B’s

training set and the 2016 Semeval twitter sentiment

analysis subtask A’s training set into one training set

of 11,798 tweets named full_training_set. We then

combined the Guestrin et al. (2015) amazon baby

toys product reviews data set (source domain)

which were around 150,000 reviews with the

full_training_set to build our word2vec models. On

the other hand, we used the full_training_set to train

our doc2vec model as will be explained in section

2.5. After training our word2vec and doc2vec mod-

els, the full_training_set was preprocessed for train-

ing our five classifiers mentioned above.

The validation set used for every classifier in the en-

semble had the same characteristics of the training

set. For example, since the positive/negative classi-

fier was trained on positive and negative tweets, its

validation set contained positive and negative

tweets only.

Finally, the output of our five classifiers is aggre-

gated to produce the final system output as dis-

cussed in section 2.3.

2.2 Preprocessing and Feature Engineering

Before we have trained any of our classifiers, we

have started with preprocessing our training data.

Keeping in mind that any preprocessing we per-

formed on the training set was applied on the test

set. We started with the following preprocessing

steps:

 Removed character repetitions by removing

the character repetitions that could distract our

classifiers. For example a word like

LOOOOOOOL is replaced with LOL.

 Replaced patterns by replacing words like

‘won’t’ with ‘will not’, ‘can’t’ with ‘cannot’.

‘re’ with ‘are’, etc.

 Converted tweets to lower case by converting

upper case characters to lower case.

 Replaced website links with URL so links to

websites that start with www.* or http?://*

were replaced with URL symbol.

 Converted @username to AT_USER by re-

placing @username instances found in tweets

with AT_USER for our classifiers to easily

identify that a user is being referenced.

 Removed additional white spaces in order to

remove any noise that might affect our classi-

fiers’ performance.

 Replaced hash tags and removed stop words.

As we replaced hash tags with the same word

without the hash. For example, #fun is re-

placed with fun. As hash tags can give useful

information. Also stop words are removed.

 Replaced Non-Alphabets and question words

with space. Then we replaced numbers with

$NUM symbol.

 Performed stemming and lemmatization using

porter stemmer and WordNet lemmatizer class

in the NLTK library.

 We used Bing Liu et al. (2004) positive-word

and negative-word lexicons that contained a

list of thousands of words associated with pos-

itive sentiment and negative sentiment. We re-

placed positive words with $po and negative

words with $ne. We also used the NRC Uni-

gram lexicon that helped us in replacing words

that are more likely to give a positive sentiment

with ‘HAPO’ and words that will more likely

result in a negative sentiment with ‘HANE’.

170

 The source domain data was preprocessed in

the same way the target domain data (tweets)

were preprocessed. However, the source do-

main data were only used in training the

word2vec and doc2vec models.

 After finishing with the initial preprocessing

steps discussed previously, the training set and

the validation set were parsed into Graphlab

Sframes for further manipulation.

 Then the Unigrams, bigrams and trigrams of

every tweet in the training set were calculated

and stored in additional columns in the same

Sframe.

 Furthermore, the TFIDF of every tweet was

calculated and stored in a new column.

 The six trained word2vec models that will be

discussed in section 2.4 were each used in cal-

culating the word vectors of each word in a

tweet observation in the training set.

 Afterwards, the word vectors generated by

each word2vec model were later averaged to

get six averaged word vectors for every tweet

in the training set. These average vectors were

later saved in columns named w2v_vec-

tors_pos_neg, w2v_vectors_pos_neutral,

w2v_vectors_neutral_neg, w2v_vec-

tors_pos_ornot, w2v_vectors_neg_ornot,

w2v_vectors_neutral_ornot which were later

used as features to our classifiers.

2.3 Features used and Aggregation

We have categorized our feature sets into four cate-

gories. There are different feature sets in each cate-

gory. The first category is called feature category 1

that includes only base features tfidf, unigram, bi-

gram, and trigrams. Then a second category con-

taining the base as well as word2vec vectors and it’s

called feature category 2. Then a third feature cate-

gory that contains base features in addition to

doc2vec vectors only named feature category 3. Fi-

nally, a fourth category that contains base features,

word2vec vectors, and doc2vec vectors is called

feature category 4.

The features included in every feature set is pre-

sented in Appendix A while the feature sets in each

category is shown in Appendix B.

When it came to aggregating the predictions from

the four binary classifiers, we gave the highest pri-

ority to the neg_ornot classifier. As it had a reason-

ably high accuracy in discriminating between nega-

tive and non-negative tweets on the validation set.

Therefore if the neg_ornot classifier classifies a

tweet as negative, the final output of the system will

be negative. However, if it classifies a tweet as non-

negative, a majority vote is taken between the other

three remaining binary classifiers. If two classifiers

classify a tweet as positive, then the final system

output will be positive, similarly if two classifiers

classify a tweet as neutral, then the final system pre-

diction is neutral, and likewise if two classifiers

agree that a tweet is negative then the final senti-

ment output is negative. In the case when we get a

tie from the other three classifiers and the neg_ornot

classifier classifies a tweet as non-negative, then the

fifth arbiter three class label classifier is deployed to

give the final classification output of the system.

2.4 Word2Vec

When Training our word2vec models for our final

system, we used the continuous bag-of-words archi-

tecture. We combined positive amazon reviews and

positive tweets into one file and named it pos_text,

then combined the negative tweets and negative am-

azon reviews into a second file named neg_text, and

similarly we combined the neutral amazon reviews

with the neutral tweets in a third file named neu-

tral_txt. Our first word2vec_pos_neg model was

trained on the pos_text and neg_text files.

While, the word2vec_pos_neutral model was

trained on the pos_text and neutral_text. Then the

word2vec_neg_neutral model was trained on the

neg_text and neutral_text. Furthermore, the other

three word2vec models were trained to be used to

distinguish between negative and nonnegative

tweets, positive and non-positive tweets, neutral and

non-neutral tweets using pos_text, neg_text and

neutral_text files. The word2vec_neg_ornot model

was trained on the neg_text, and non_neg_text

(pos_text and neutral_text combined). Also,

word2vec_pos_ornot model was trained on the

pos_text and non_pos_text (neg_text and neu-

171

tral_text combined). Lastly, word2vec_neutral_or-

not was trained on neutral_text and non_neu-

tral_text (pos_text and neg_text combined).

2.5 Paragraph Vector

We have trained a doc2vec model on all the posi-

tive, negative and neutral tweets in the training set

to test whether paragraph vectors would improve

fscores and prediction accuracies on the validation

set. After building our doc2vec distributed memory

model, we used it in inferring the tweet vector of

every tweet in the training set and stored the result

in the ‘vectors_doc2vec_tweetsonly_dm’ column.

Column vectors_doc2vec_tweetsonly_dm is then

added as a feature to our feature sets shown in Ap-

pendix A.

3 Experiments

We have carried out a number of experiments to

help in selecting the feature sets to use for each clas-

sifier as well as which classifier type (SVM or Lo-

gistic Regression or boosted trees) to use for every

binary classification and for the arbiter classifier.

Appendix C contains a flowchart describing the sys-

tem structure. The flowchart illustrates our system’s

sentiment prediction process.

Table 2.0 shows the validation prediction accuracies

for each binary classifier and on the arbiter classifier

when varying the feature set. The feature set, classi-

fier combination was selected based on the combi-

nation that yielded the best validation prediction ac-

curacies. However, when evaluating our whole sys-

tem or our final system output, we use fscore as a

measure of system performance and not the test set

prediction accuracy.

We have set class weights to auto in all classifiers

we trained to help protecting against data imbalance

which would lead to misleading results.

 Classifier Feature Set Accuracy

n
eg

a
ti

v
e-

n
o

tn
eg

a
ti

v
e

SVM Feature Set 6 0.89382

LR Feature Set 9 0.87354

SVM Feature Set 1 0.87309

LR Feature Set 1 0.87156

SVM Feature Set 9 0.87022

LR Feature Set 6 0.86688

LR Feature Set 7 0.85667

SVM Feature Set 7 0.85503

n
eg

-n
eu

tr
a
l

LR Feature Set 7 0.77817

LR Feature Set 10 0.77432

SVM Feature Set 7 0.77113

SVM Feature Set 3 0.75102

SVM Feature Set 10 0.75097

LR Feature Set 1 0.74909

SVM Feature Set 1 0.74182

LR Feature Set 3 0.73878

p
o
s-

n
eg

SVM Feature set 8 0.85058

SVM Feature Set 2 0.84890

LR Feature Set 2 0.82418

LR Feature set 8 0.82184

LR Feature Set 7 0.74869

SVM Feature Set 7 0.74607

LR Feature Set 1 0.73469

SVM Feature Set 1 0.72886

p
o
s-

n
eg

-n
eu

tr
a
l

LR Feature Set 12 0.60966

LR Feature Set 5 0.60686

BoostedTrees Feature Set 1 0.60613

BoostedTrees Feature Set 7 0.60232

BoostedTrees Feature Set 5 0.60081

LR Feature Set 7 0.57907

BoostedTrees Feature Set 12 0.56137

LR Feature Set 1 0.55799

p
o

s-
n

eu
tr

a
l

LR Feature Set 4 0.71325

SVM Feature Set 4 0.70602

SVM Feature Set 1 0.68333

LR Feature Set 1 0.67619

SVM Feature Set 7 0.66508

SVM Feature Set 11 0.66180

LR Feature Set 7 0.66033

LR Feature Set 11 0.65693

Table 2: Validation Accuracy for different classifier/Feature

Set combinations.

Classification Clas-

sifier

Feature

Set

Cate-

gory

Accu-

racy

Neg-Nonnega-

tive

SVM 6 2 0.894

Neg-Neutral LR 7 3 0.778

Pos-neg SVM 8 4 0.851

pos-neg-neutral LR 12 4 0.610

Pos-Neutral LR 2 2 0.713

Table 1: Final classifier/feature set combinations selected.

172

Starting System Fscore on the test set 0.26

Final system Fscore on the test set 0.51

Table 3: Fscore of the whole system when using the least per-

forming classifier/feature set combinations and when using the

best performing classifier/feature set combination.

4 Results and Analysis

Table 3 shows the least Fscore of the system we

started with (features set 1 for all classifiers in the

system) and the final system fscore before submis-

sion on our test set. We used fscore as the overall

system performance measure and not the system ac-

curacy. However, we have put the validation accu-

racy as the top classifier/feature set combination se-

lection criteria for the individual classifiers in our

system while setting class weights to auto in all of

our classifiers in our system. It is clear from Table

1.0 that feature categories 2 and 4 were associated

with the best performing classifiers. As mentioned

earlier feature category 2 uses word vectors in addi-

tion to the base features in feature set 1. While fea-

ture category 4 uses word vectors and paragraph

vectors with feature set 1. Which indicates that the

addition of paragraph vectors with word2vec vec-

tors gave best validation accuracies with the posi-

tive/negative and the pos/neg/neutral classifiers.

However, it did not give the best validation accura-

cies with the positive/neutral and negative/nonnega-

tive classifiers. As Feature category 2 that uses word

vectors with feature set 1 gave the best validation

accuracies with the positive/neutral and the nega-

tive/nonnegative classifiers. Finally, using only par-

agraph vectors with feature set 1 yielded the best

validation accuracy with the negative/neutral classi-

fier. Even though our doc2vec model was only

trained on data from the target domain (tweets), it

managed to give slightly better validation accuracy

than when using word2vec vectors trained on the

source (amazon reviews) and target (tweets) do-

mains combined. Nonetheless, for positive/nega-

tive, positive/neutral, negative/nonnegative, posi-

tive/negative/neutral classification using word2vec

vectors that were generated by our word2vec mod-

els trained on the source and target domains com-

bined gave better validation set accuracies than

when using only the doc2vec vectors generated by

our doc2vec model that was trained on the

full_training_set (tweets) with feature set 1 only.

Since Le et al. (2014) concluded that paragraph vec-

tors are competitive with the state of the art word

representation methods. We inferred based on our

results that combining the source and target data to

train our word2vec models would give better results

than when training them only on the target data.

Thus the external source data helped in building

word2vec models that gave us more powerful fea-

tures when compared to those generated by doc2vec

(paragraph vector) models trained only on the target

data (tweets in full_training_set).

5 Conclusion

Our approach resulted in higher prediction accura-

cies on the 2016 twitter test data set outperforming

eight teams that had better AvgF1scores. Two of the

eight teams were in the top 10 in terms of

AvgF1scores. In the future, we will focus more on

cross domain word representation as illustrated in

Bollegala et al. (2015) for improving our transfer

learning approach.

References

Bing Liu and Minqing Hu. 2004. Mining and Summariz-

ing Customer Reviews. In Proceedings of KDD’04,

August 22-25, 2004, Seattle, Washington, USA.

Quoc Le and Tomas Mikolov. 2014. Distributed Repre-

sentations of Sentences and Documents. Proceedings

of the 31st International Conference on Machine

Learning, Beijing, China.

Danushka Bollegala, Takanori Maehara, and Ken-ichi

Kawarabayashi. 2015. Unsupervised Cross-Domain

Word Representation Learning. In Proceedings of the

53rd Annual Meeting of the Association for Computa-

tional Linguistics and the 7th International Joint Con-

ference on Natural Language Processing, Beijing,

China.

Carlos Guestrin, and Emily Fox. 2015. Machine Learn-

ing Foundations: A Case Study Approach. By the Uni-

versity of Washington on Coursera, Seattle, WA.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,

Saif M Mohammad, Alan Ritter, and Veselin

Stoyanov. 2015. SemEval-2015 Task 10: Sentiment

Analysis in Twitter. In Proceedings of the 9th Interna-

tional Workshop on Semantic Evaluation (SemEval

2015). Association for Computational Linguistics,

Denver, Colorado.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin

Stoyanov and Fabrizio Sebastiani. 2016. SemEval-

173

2016 Task 4: Sentiment Analysis in Twitter. In Pro-

ceedings of the 10th International Workshop on Se-

mantic Evaluation (SemEval 2016). Association for

Computational Linguistics, San Diego, California.

Appendix A. Feature Sets.

The following table shows the contents of each feature

Set referenced above.

Set Features included

1 ['tfidf','1gram features','2gram fea-

tures','3gram features']

2 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_pos_neg','w2v_vectors_pos_neu-

tral','w2v_vectors_pos_ornot','w2v_vec-

tors_neg_ornot']

3 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vectors_neu-

tral_neg','w2v_vectors_neg_or-

not','w2v_vectors_neutral_ornot']

4 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_pos_neutral','w2v_vectors_pos_or-

not','w2v_vectors_neutral_ornot']

5 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_neg_ornot','w2v_vec-

tors_pos_neg','w2v_vectors_pos_neu-

tral','w2v_vectors_neutral_neg','w2v_vec-

tors_pos_ornot','w2v_vectors_neutral_or-

not']

6 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_neg_ornot']

7 ['tfidf','1gram features','2gram fea-

tures','3gram features','vec-

tors_doc2vec_tweetsonly_dm']

8 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_pos_neg','w2v_vectors_pos_neu-

tral','w2v_vectors_pos_ornot','w2v_vec-

tors_neg_ornot','vectors_doc2vec_tweet-

sonly_dm']

9 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_neg_ornot','vectors_doc2vec_tweet-

sonly_dm']

10 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vectors_neu-

tral_neg','w2v_vectors_neg_or-

not','w2v_vectors_neutral_ornot','vec-

tors_doc2vec_tweetsonly_dm']

11 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_pos_neutral','w2v_vectors_pos_or-

not','w2v_vectors_neutral_ornot','vec-

tors_doc2vec_tweetsonly_dm']

12 ['tfidf','1gram features','2gram fea-

tures','3gram features','w2v_vec-

tors_neg_ornot','w2v_vec-

tors_pos_neg','w2v_vectors_pos_neu-

tral','w2v_vectors_neutral_neg','w2v_vec-

tors_pos_ornot','w2v_vectors_neutral_or-

not','vectors_doc2vec_tweetsonly_dm']

Appendix B. Feature Categories.

The following table shows mapping of feature sets to cat-

egories.

Feature Sets Feature Category

1 1

2, 3,4,5,6 2

7 3

8, 9,10,11,12 4

174

Appendix C. System Flowchart.

Input tweet

NegativeorNot

classifier

System Output

Send the input tweet to three

binary classifiers (pos-neg, neutral-

neg, and pos-neutral).

Negative

Not Negative

Classification output

Classification output

Classification output

Majority

class label

found?

Yes, output the majority class label

Arbiter 3-class

label classifier
No, send tweet

to arbiter classifier.

Output label

Input tweet

Input tweet
Input tweet

Majority vote

on the output

of the 3

classifiers.

Pos-Neg

Classifier

Pos-Neutral

Classifier Neutral-Neg

classifier

175

