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Abstract

We present a matrix factorization model
for learning cross-lingual representations for
sentences. Using sentence-aligned corpora,
the proposed model learns distributed repre-
sentations by factoring the given data into
language-dependent factors and one shared
factor. As a result, input sentences from both
languages can be mapped into fixed-length
vectors and then compared directly using the
cosine similarity measure, which achieves 0.8
Pearson correlation on Spanish-English se-
mantic textual similarity.

1 Introduction

Semantic textual similarity (STS) is a measure of
relatedness in meaning between a pair of variable-
length textual snippets, such as sentences. Using
unsupervised vector space models, words and sen-
tences can be mapped into dense vector represen-
tations that capture implicit syntactic and semantic
information. These representations can then be di-
rectly compared using well-known distance or sim-
ilairty measures, such as the Euclidean distance or
cosine similarity, which reflect their overall seman-
tic relatedness.

Such distributed representations of words, or
word embeddings, can be learned using global word
co-occurrence statistics as in matrix factorization
models (Guo and Diab, 2012; Pennington et al.,
2014), or using local context as in neural proba-
bilistic language models (Bengio et al., 2003; Col-
lobert and Weston, 2008; Socher et al., 2013). A
variable-length sentence can be mapped into a fixed-
length vector either by combining word embeddings

or directly learning sentence representations as in
the paragraph vector model proposed in (Le and
Mikolov, 2014).

In crosslingual STS, the challenge is to compare
sentences from two different languages. We address
this problem by directly learning crosslingual vector
representations for words and sentences, which al-
lows us to calculate the STS scores without the need
for explicit translation or mapping. Several mod-
els can be used for learning cross-lingual composi-
tional representations (Klementieva et al., 2012; Shi
et al., 2015; Pennington et al., 2014; Cavallanti et al.,
2010; Mikolov et al., 2013; Coulmance et al., 2015;
Pham et al., 2015). We propose a relatively sim-
ple and nuanced unsupervised model inspired by the
monolingual weighted matrix factorization (WMF)
model proposed in (Guo and Diab, 2012), which we
extend to the cross-lingual setting.

The WMF model learns word representations by
decomposing a sparse tf-idf matrix into two low-
rank factor matrices representing words and sen-
tences. The weights are adjusted to reflect the con-
fidence levels in reconstructing observed vs. miss-
ing words in the original matrix. Representations
for variable-length sequences can be calculated by
minimizing the reconstruction error as described in
Section 2.1. In this paper, we propose to extend
this model to the cross-lingual setting by modeling
two languages in parallel to obtain shared semantic
representations. The proposed model has a simple
loss function and only uses sentence-aligned data for
learning the shared representations. We describe the
model in two variations in Section 2.2. This model
yields a performance of 0.8 Pearson correlation in
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Semeval’s English-Spanish crosslingual STS task.

2 Related Work

The weighted matrix factorization model we extend
was first proposed in (Guo and Diab, 2012) to learn
distributed vector representations for words in the
monolingual space. The GloVe algorithm proposed
(Pennington et al., 2014) is also a weighted ma-
trix factorization method, but it includes additional
word-specific bias terms and uses a different weight-
ing scheme.

As mentioned above, we extend the WMF model
proposed in (Guo and Diab, 2012) to bilingual and
multilingual settings by forcing the two monolingual
components to use a shared factor. (Shi et al., 2015)
proposes a similar approach for learning bilingual
embeddings. They extend GloVe (Pennington et al.,
2014) to the bilingual case using a matrix of bilin-
gual co-occurrence counts with word alignments in
addition to the monolingual components.This model
is similar in spirit to our model, but it has a differ-
ent objective function that incorporates cross-lingual
co-occurrence statistics or word alignments.

3 Proposed Approach

3.1 Background: Weighted Matrix
Factorization (WMF)

In the WMF model proposed in (Guo and Diab,
2012), a large corpus is represented as an m × n
matrix X , where each Xij cell is the tf-idf weight
of word i in sentence j. This sparse matrix is then
factorized into a k×m matrix P and a k×n matrix
Q, such that X = P TQ. The factorization results
in k-dimensional representations for words and sen-
tences: the columns in P are latent k-dimensional
representations for words, and the columns in Q are
latent k-dimensional representations for the training
sentences.

The values of P and Q can be calculated by min-
imizing the following weighted loss function:1

C =
∑
i,j

Wij(PT
i Qj −Xij)2 + λ(‖P‖2 + ‖Q‖2) (1)

where λ is a regularization parameter to avoid
overfitting, and W is an m × n weight matrix. The

1Single subscripts refer to column vectors in all equations.

weights reflect the confidence levels associated with
the reconstruction errors of the corresponding items
in X . A small weight is assigned to all missing
words, {Xij ∈ X|Xij = 0}, to reflect some ap-
propriate level of uncertainty:

Wi,j =

{
1, if Xi,j 6= 0
wm, if Xi,j = 0

where wm << 1; In other words, we assign
minimal confidence that each word in the vocabu-
lary could legitimately appear in any given sentence,
while the confidence level is highest for observed
words.

By fixing P , the cost function becomes quadratic
in Q and the global minimum is achieved using the
matrix Qmin that satisfies C ′(Qmin) = 0. The jth

column in Qmin is calculated as follows:

Qj = (PW jP T + λI)−1PW jXj (2)

where W j is a diagonal matrix with coefficients
Wij in row/column j (the jth column of W ).

Similarly, the vectors in Pmin are calculated by
fixing Q and minimizing the cost function P (Q):

Pi = (QW iQT + λI)−1QW iXT
i (3)

where W i is a diagonal matrix with coefficients
Wij in row/column i (the ith row of W ).

Thus, alternating least squares (ALS) is used to
minimize C(P,Q) by iteratively fixing P to calcu-
late Q, then fixing Q to calculate P using equations
(2) and (3).2

To generate vector representations for additional
sentences after training, P is fixed and Q is calcu-
lated for the new sentences using equation (2). In
other words, we calculate the representations that
minimize the loss function (1), which is quadratic
when P is fixed.

3.2 Cross-lingual WMF
Here we describe our proposed extension of the
WMF model for learning bilingual semantic repre-
sentations. Given a parallel corpus of n sentence
pairs, we generate an m× n tf-idf matrix X for lan-
guage 1 sentences, and an l × n tf-idf matrix Y for

2Details on similar calculations and speedup recommenda-
tions are found in (Hu et al., 2008).
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language 2 sentences, wherem and l are the number
of words in the vocabulary of each language. The
learning objective of the bilingual WMF model is to
factorize both X and Y into two language-specific
factors and one shared factor. More precisely, the
desired factorization would result in a k × m ma-
trix P , a k × l matrix A, and a k × n matrix Q,
such that X = P TQ and Y = ATQ. To achieve
these bilingual objectives, we define two methods
for calculating the loss function for both languages
as detailed below: A global bilingual loss function
(b-WMF), and a monolingual loss function with an
explicit shared factor (x-WMF).

3.2.1 b-WMF: Bilingual Loss Function
We define a global loss function for both lan-

guages as follows:

C=
∑
i,j

Wij(PT
i Qj−Xij)2+

∑
d,j

Udj(AT
dQj−Ydj)2

+λ(‖P‖2+‖Q‖2+‖A‖2) (4)

where U is the weight matrix for Y , defined sim-
ilar to W .

This objective function is convex if we fix two of
the factor matrices and minimize with respect to the
remaining factor. Alternating least squares can be
used to estimate the factors iteratively using the fol-
lowing three equations:

Qj=(PW jPT +AU jAT +λI)−1(PW jXj+AU jYj)

Pi=(QW iQT +λI)−1QW iXT
i

Ad=(QUdQT +λI)−1QUdY T
d

(5)

To generate vector representations for additional
sentences in either language, the language-specific
factors P and A are fixed, and the semantic vectors
Qj are calculated using equation (2) for language 1
and equation (6) for language 2.

Qj = (AU jAT + λI)−1AU jYj (6)

In other words, the two models are independent
once the training is complete, but the resultant rep-
resentations are expected to reflect shared semantic
components.

3.2.2 x-WMF: Monolingual Loss Functions

Alternatively, we can define two loss functions
with a shared factor:

C1 =
∑
i,j

Wij(P T
i Qj −Xij)2 + λ(‖P‖2 + ‖Q‖2)

C2 =
∑
d,j

Udj(AT
dQj − Ydj)2 + λ(‖A‖2 + ‖Q‖2)

(7)

Minimizing C1 and C2 separately is equivalent
to training two separate monolingual models. To
achieve the bilingual objective, we only train C1

as a monolingual model, and then we use the
learned factors P to find A. If we assume that the
compositional representations generated by P are
optimal, then we can use it to fix Q in C2, and the
loss function becomes quadratic in A; all we have to
do is find the values of A that minimize C2. Given
a parallel corpus and word representations P , we
calculate Q using equation (2), then calculate A
using equation (5).

The training procedure is carried out as follows:

1. Independently train a monolingual WMF
model for a pivot language.

2. Using a parallel corpus and the trained word
representationsP for the pivot language, gener-
ate sentence representations Q using equation
(2)

3. Using the same parallel corpus, and fixing Q as
calculated in step 2, calculate word representa-
tions A for the second language using equation
(5).

Note that we only use the alternating least squares
(ALS) algorithm for training the pivot model; the
parameters of the second model, A, are calculated
deterministically in one step. This method can be
readily extended to more than two languages. Us-
ing one trained monolingual model, we can quickly
learn representations for any number of languages
using sentence-aligned data.
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4 Empirical Evaluation

4.1 Data

Monolingual Data: For the monolingual English
model, the training set consists of 700K sentences
derived from various resources. We extract and
combine the following sets: a random set of 150K
sentences from LDC’s English Gigaword fifth
edition (Parker et al., 2011), a random set of 150K
sentences from the English Wikipedia3, the Brown
Corpus (Francis, 1964), Wordnet (Miller, 1995) and
Wiktionary4 definitions appended with examples.

Bilingual Data: We extract training data for the
bilingual models from WMT13 (Macháček and
Bojar, 2013) sentence-aligned parallel corpora,
specifically version 7 of the EuroParl parallel corpus
(Koehn, 2005), the multiUN parallel corpus (Eisele
and Chen, 2010), and news commentary data. We
train the bilingual model using a sample of 1M
sentence pairs from these datasets.

All sentences in our data are tokenized and
stemmed, and number sequences are replaced with
a special token as a normalization step. We use the
Stanford CoreNLP toolkit (Manning et al., 2014)
for English preprocessing, and Treetagger tools
(Schmid, 1995) for Spanish. Words that appear less
than 5 times in the training set are discarded from
the vocabulary.

4.2 Parameter Settings

We train our bilingual b-WMF models strictly us-
ing the bilingual parallel data. On the other hand,
we train the English pivot model used in x-WMF
strictly using the English monolingual data, while
the parallel corpora are only used for training the
Spanish component of the x-WMF models. For the
b-WMF models and the English monolingual model,
we run the ALS algorithm for 20 iterations. We
use the following parameters for all models: k=100,
wm = 0.01 and λ = 20.5

3http://en.wikipedia.org
4http://www.wiktionary.org
5These parameters are tuned empirically and we found these

values to be robust across models.

Model News Multi Source Mean
b-WMF 0.83 0.72 0.78
x-WMF 0.87 0.73 0.80
UWB 0.91 0.82 0.86

Table 1: Cross-lingual STS EN-SP Test results using Pearson

Correlation Coefficient.

4.3 Cross-lingual Semantic Textual Similarity
Semantic Textual Similarity (STS) is a measure of
the degree of similarity between two sentences. STS
scores range from 0 to 5, where higher values in-
dicate closer semantic content. In the crosslingual
STS test sets, the sentences can either be English or
Spanish. We use the TextCat (Cavnar and Trenkle,
1994) tool to identify the languages before process-
ing.

Using the b-WMF and x-WMF cross-lingual
models, we generate sentence vectors for the given
pairs, then we calculate the cosine similarity be-
tween each pair. Since most of the output is positive,
and negative values are generally very close to zero,
we round up negative similarity values to 0.

Table 1 shows the results on the test data of Se-
meval 2016 EN-ES cross-lingual STS shared task.
The evaluation metric is the Pearson Correlation Co-
efficient. The x-WMF models performs slightly bet-
ter than b-WMF in this task, and we achieve rank 4
in the official STS semeval evaluation. We also show
the results of the official first rank system UWB.

5 Discussion and Conclusions

We proposed a new unsupervised approach for gen-
erating cross-lingual semantic representations for
variable-length sequences using a weighted ma-
trix factorization model. The models successfully
learned cross-lingual compositional representations
as evident in the high correlation scores in the
crosslingual STS task.

Learning a monolingual WMF model involves op-
timizing a non-convex loss function, but the loss
function becomes quadratic once we fix one of the
factors. As a result, learning any additional lan-
guages becomes trivial once we fix the sentence rep-
resentations using a pivot model. The model nat-
urally extends to several languages since the addi-
tional factors are calculated deterministically. More-
over, the model is simple and robust as we learned
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good representations using relatively small parallel
datasets and without parameter optimization.
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