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Abstract

Extraction and interpretation of temporal
information from clinical text is essential
for clinical practitioners and researchers.
SemEval 2016 Task 12 (Clinical TempEval)
addressed this challenge using the THYME1

corpus, a corpus of clinical narratives
annotated with a schema based on TimeML2

guidelines. We developed and evaluated
approaches for: extraction of temporal
expressions (TIMEX3) and EVENTs; TIMEX3
and EVENT attributes; document-time
relations; and narrative container relations.
Our approach is based on supervised learning
(CRF and logistic regression), utilizing
various sets of syntactic, lexical and semantic
features with addition of manually crafted
rules. Our system demonstrated substantial
improvements over the baselines in all the
tasks.

1 Introduction

SemEval-2016 Task 12 (Clinical TempEval) is a
direct successor to 2015 Clinical TempEval (Bethard
et al., 2015) and the past I2b2 temporal challenge
(Sun et al., 2013). Clinical TempEval is designed
to address the challenge of understanding clinical
timeline in medical narratives and it is based on
the THYME corpus (Styler IV et al., 2014) which
includes temporal annotations.

1Temporal Histories of Your Medical Event.
https://clear.colorado.edu/TemporalWiki/index.php/Main Page

2TimeML is a standard specification language for
events and temporal expressions in natural language.
http://www.timeml.org/

Researchers have explored ways to extract
temporal information from clinical text. Velupillai
et al. (2015) developed a pipeline based on
ClearTK3 and SVM with lexical features to extract
TIMEX3 and EVENT mentions. In I2b2 2012
temporal challenge, all top performing teams
used a combination of supervised classification
and rule based methods for extracting temporal
information and relations (Sun et al., 2013).
Besides THYME corpus, there have been other
efforts in clinical temporal annotation including
works by Roberts et al. (2008), Savova et
al. (2009) and Galescu and Blaylock (2012).
Previous work has also investigated extracting
temporal relations. Examples of these efforts
include: classification by SVM (Chambers et
al., 2007), Integer Linear Programming (ILP) for
temporal ordering (Chambers and Jurafsky, 2008),
Markov Logic Networks (Yoshikawa et al., 2009),
hierarchical topic modeling (Alfonseca et al., 2012),
and SVM with Tree Kernels (Miller et al., 2013).

Clinical TempEval 2016 was focused on
designing approaches for timeline extraction in the
clinical domain. There were 6 different tasks in the
TempEval 2016, which are listed in Table 1. Per
TimeML specifications (Pustejovsky et al., 2003),
we refer to temporal expressions as TIMEX3 and
events as EVENT throughout the paper. Attributes
of TIMEX3 and EVENTs are outlined according to
the THYME annotations (Styler IV et al., 2014). 16
teams participated in TempEval 2016 (Bethard et
al., 2016).

For extracting temporal information from clinical
text, we utilize supervised learning algorithms
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Task Description
TS TIMEX3 spans
ES EVENT spans
TA Attributes of TIMEX3
Class 〈DATE, TIME, DURATION, QUANTIFIER,

PREPOSTEXP, SET〉
EA Attributes of EVENTs
Modality 〈ACTUAL, HYPOTHETICAL, HEDGED,

GENERIC〉
Degree 〈MOST, LITTLE, N/A〉
Polarity 〈POS, NEG〉
Type 〈ASPECTUAL, EVIDENTIAL, N/A〉

DR Relation between EVENT and document time
〈BEFORE, OVERLAP, BEFORE/OVERLAP,
AFTER〉

CR Narrative container relations

Table 1: Tasks of clinical TempEval 2016

(Conditional Random Fields (CRF) and logistic
regression) with diverse sets of features for each
task. We also utilize manually-crafted rules to
improve the performance of the classifiers, when
appropriate. We show the effectiveness of the
designed features and the rules for different tasks.
Our system outperforms the baselines across all
tasks, and is above the median results of all the
teams in all tasks but one (CR in precision)1.

2 Methodology
Our approach to all tasks is based on supervised
learning using lexical, syntactic and semantic
features extracted from the clinical text. We
also designed custom rules for some tasks when
appropriate. Details are outlined below:

2.1 TIMEX3 and EVENT Span Detection (TS,
ES)

To extract TIMEX3 and EVENT spans (TS and
ES), we use a combination of linear-chain CRFs
(Lafferty et al., 2001) with manually-crafted rules1.
Linear-chain CRFs are one of the most robust
structured prediction approaches in natural language
processing. We train the CRF for detecting
TIMEX3s and EVENTs using BIO (Begin Inside
Outside) labeling. That is, for the TIMEX3 classifier,
after tokenizing the text, each token is labeled as

1The official ranking of participating teams is unknown at the
time of writing and would be announced at the SemEval
workshop.

Features

lowercase; token letter case; if token is title;
if token is numeric; if token is stopword; POS
tag; brown cluster; prefix; suffix; noun chunk
shape of the token; lemma

Table 2: Base feature set for supervised algorithms

either “O,” “B-TIMEX3,” or “I-TIMEX3”. Similarly,
the event classifier labels the tokens as either “O” or
“B-EVENT,” as virtually all EVENT annotations are
only one token long. We use the CRF-Suite toolkit
(Okazaki, 2007) for our experiments.

The main features that we use for CRF in TS
and ES tasks are outlined in Table 2. Among
these features is Brown clustering (Brown et al.,
1992) which is a form of hierarchical clustering
based on the contexts in which the words appear.
Brown clusters mitigate lexical sparsity issues by
considering the words in their related cluster. We
constructed fifty clusters across the the train and test
datasets and passed the binary identifier of a token’s
cluster as the feature.

In addition to these features, we use domain
specific features for EVENT span detection. Our
domain feature extraction is based on the Unified
Medical Language System (UMLS) ontology
(Bodenreider, 2004). We use MetaMap2 (Aronson
and Lang, 2010), a tool for mapping text to UMLS

concepts, for extracting the concepts. The semantic
types of the extracted concepts are then used as
features. Since UMLS is very comprehensive,
considering all the semantic types causes drift.
Thus, we limit semantic types to those indicative of
clinical events (e.g. diagnostic procedure, disease
or syndrome, and therapeutic procedure). For each
feature set, we expand the features by considering
a context window of +/- 3 tokens (The context
window of size 3 yielded the best results on the
development set).

For EVENT spans, we supplement the CRF
output spans with manually crafted rules designed to
capture EVENT spans. Particularly, we add rules to
automatically identify EVENTs relating to standard
patient readings. For example in: “Diastolic=55
mm[Hg]”, using simple regular expressions, we
isolate the word “Diastolic” as an EVENT span.

For TIMEX3 spans, we use regular expressions
that were designed to capture standard formatted

2https://metamap.nlm.nih.gov/; we used the 2014 version
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Features
Set 1 UMLS semantic type; tense of the related verb

in dependency tree; dependency root of the
sentence

Set 2 class, text and brown cluster of closest DATE,
PREPOSTEXP and TIMEX3; comparison with
section time; comparison with document time;
sentence tense and modals

Table 3: Additional feature sets used for document-time
relation (DR) extraction.

dates. These rules improved the results of ES and
TS considerably, as shown in Section 3.2.1.

2.2 Time and Event Attribute Detection

The main attribute for TIMEX3 mentions is their
“class,” which can be one of the following six types:
DURATION, DATE, QUANTIFIER, PREPOSTEXP,
SET, or TIME. EVENTs have four attributes
each of which includes different types (Table 1).
Full description of the types of the attributes are
described by Styler IV et al. (2014). To properly
classify each TIMEX3 and EVENT attribute, we
train a separate logistic regression classifier1 for
each TIMEX3 and EVENT attribute value. These
classifiers are trained on the TIMEX3 and EVENT

spans that were previously extracted from the span
CRFs (Section 2.1), and employ a similar feature set
as the others.

In addition to the base feature set, we also
incorporate rules as features in our classifier. We
consider words that are indicative of certain EVENT

attributes. For example, words such as “complete”
or “mostly” indicate DEGREE:MOST, “possibly”
indicates MODALITY:HEDGED and “never” shows
POLARITY:NEG. We add such contextual features
for DEGREE, MODALITY, and POLARITY.

In addition to the rules mentioned above,
we further devise rules that lead to immediate
classification as a specific class or attribute value.
For example, TIMEX3 annotations in the format
“[number] per [number]” are classified as SET

automatically. We use the most probable predicted
class as the final assigned label.

1We used the scikit-learn implementation. With L1
regularization and Liblinear solver.

The patient’s MI occurred while undergoing chemotherapy .

ROOT

det nmod:poss nsubj
advcl

mark dobj

ARG1
AM-TMP

Figure 1: Example of dependency parse tree and semantic
roles in the sentence. Dependency relations are shown by
arrows above the sentence and semantic roles below it.
The boldface terms in the sentence are event mentions.
Per human annotation, the following relation exists in this
sentence: [MI]CONTAINS[chemotherapy].

2.3 Document-time Relation (DR)

Document-time relations (DR) are specific attributes
of EVENTs indicating their temporal relation
with the document creation time. There are 4
different types of DRs, namely, BEFORE, AFTER,
OVERLAP, and BEFORE/OVERLAP. For identifying
the DR attribute types, we use the same general
classification approach as EVENT and TIMEX3
attributes; we train separate classifiers for each DR
type using an extended set of features to what was
used for EVENT attributes detection.

Table 3 describes the additional features that we
use for DR extraction. In addition to the base
features, we consider features specific to the EVENT

annotation. These features are illustrated as Set 1
in table 3. We furthermore expanded the features
by considering contextual features from the sentence
and nearby time and date mentions (Set 2 in Table
3). Medical narratives often follow a chronological
order. Therefore, nearest TIMEX3 mentions, and
their comparison with the section timestamp or
document timestamp can be good indicators of DRs.
Similarly, verb tense and the modals in the sentence
are also indicative of the sentence tense and can help
in identifying the document-time relation. These
additional features improved the results, as shown
in Section 3.2.3.

2.4 Narrative Container Relations (CR)

Narrative containers (Pustejovsky and Stubbs, 2011)
are TIMEX3s or EVENTs that subsume other
EVENTs in a section of the text. They serve as
temporal buckets into which other EVENTs fall. For
example in the sentence: “The patient recovered
well after her first [surgery] on [December 16th]”,
[December 16th] is the narrative container and the
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Evaluation Phase 1

Task TS ES TA EA DR
CLASS MODALITY DEGREE POLARITY TYPE

Metric P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Baseline .774 .428 .551 .878 .834 .855 .746 .413 .532 .810 .770 .789 .874 .831 .852 .812 .772 .792 .885 .813 .833 .620 .589 .604
Median .779 .539 .637 .887 .846 .874 .755 .499 .618 .830 .780 .810 .882 .838 .869 .868 .813 .839 .854 .813 .844 .655 .624 .639
Our system .802 .678 .735 .891 .872 .881 .775 .655 .710 .836 .818 .827 .887 .868 .877 .875 .856 .866 .868 .849 .858 .719 .704 .711

Table 4: Phase 1 evaluation results on test set for the tasks Time Span (TS), Event Span (ES), Time Attribute (TA),
Event Attribute (EA) and Document-time Relation (DR). Baseline refers to the memorize baseline described in Section
3.1

.

following containment relation exists: “{December
16th} CONTAINS [surgery]”.

To extract narrative container relations, we use
the semantic frames of the sentences. We only
consider the intra-sentence containment relations
(appearing in the same sentence) and do not
handle inter-sentence relations (crossing sentences).
According to the THYME annotation guidelines
(Styler IV et al., 2014), both EVENTs and TIMEX3s
can provide boundaries of narrative containers.
The first step in identifying narrative container
relations is to identify the anchor, the EVENT or
TIMEX3 span which contains all the other related
EVENTs (targets). To learn the anchor, target
and containment relation, in addition to the base
features for anchor and target, we use Semantic
Role Labeling (SRL) and dependency parse tree
features of the sentence.

SRL assigns semantic roles to different syntactic
parts of the sentence. Specifically, according to
PropBank guidelines (Palmer et al., 2005), SRL
identifies the semantic arguments (or predicates)
in a sentence. If the anchor or the target fall in
a semantic argument of the sentence, we assign
the argument label as the feature to the associated
anchor or the target. Using semantic roles, we
extract the semantics of constituent parts of the
sentence in terms of features which help to identify
the container relations. For SRL, we use Collobert
et al. (2011) neural model1. An example of semantic
role labels is outlined in figure 1, in which labels
below the sentence indicate the semantic labels.

Next, we consider the dependency parse tree of
the sentence. Given the anchor and the target we
traverse the dependency parse tree of the sentence
to identify if they are related through a same
root. In the sample sentence shown in figure 1,

1SENNA implementation: http://ml.nec-labs.com/senna/

chemotherapy is the anchor and MI is another event
which is the target. As shown, they are connected
through the root of the sentence (“occurred”).

Per annotation guidelines, TIMEX3 spans should
receive higher priority over EVENTs for being
labeled as the anchor. Therefore, we also consider
the type of the expression (TIMEX3 or EVENT) as
feature. Additional features such as UMLS semantic
types, POS tags, dependency relations and verb
tense of the sentence’s root are also considered.
To extract POS, syntactic and dependency-based
features, we use the Spacy toolkit (Honnibal and
Johnson, 2015).

3 Experiments
The 2016 Clinical TempEval task consisted of two
evaluation phases. In phase 1, only the plain text was
given and the TIMEX3 and EVENT mentions were
unknown. In phase 2, which was only for DR and
CR tasks, the TIMEX3 and EVENT mentions were
revealed. In phase 1, we participated in all tasks,
except for CR. In phase 2, we participated in both
the DR and CR tasks.

3.1 Baselines

The baselines are two rule-based systems (Bethard
et al., 2015) that are provided along with the corpus.
The memorize baseline, which is the baseline for all
tasks except for narrative containers, memorizes the
EVENT and TIMEX3 mentions and attributes based
on the training data. Then, it uses the memorized
model to extract temporal information from new
data. For narrative containers, the closest match
baseline, predicts a time expression to be narrative
container, if it is the closest EVENT expression.

3.2 Results

Our system’s results on test set for all tasks are
presented in Table 4 (phase 1) and Table 5 (phase 2).
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Evaluation phase Phase 2
Task DR CR

Metric P R F1 P R F1
Baseline - .675 - .459 .154 .231
Median - .724 - .589 .345 .449

Our results .816 .813 .815 .546 .471 .506

Table 5: Phase 2 evaluation results for Document-time
Relation (DR) and narrative Containment Relations (CR)
(The values indicated by (-) were not reported in SemEval
official results). Baseline for DR is the memorize baseline
and for CR is the closest match baseline (Section 3.1).

Model P R F1
CRF .758 .616 .679
CRF + rules .777 .654 .710

Table 6: Effect of manually-crafted rules for TIMEX3
span (TS) on development set.

Our results in all tasks outperform the baselines,
and in all but one case (CR-Precision) are above the
median of all the participating teams.

3.2.1 TIMEX3 and EVENT spans (TS, ES)

For TS and ES, our system achieved F1 scores of
0.735 and 0.881 (on the test set) which gives +33.4%
and +3.0% improvement over the baseline. While
the improvement for TS is much larger, we observed
less improvement on the ES task. For ES, Table 6
shows the effect of incorporating manually crafted
rules to the output of CRF. These rules improved the
F1 performance by 4.6%. In addition, as illustrated
in Table 7, adding domain specific features (UMLS

semantic types) improved the performance of base
features (+2% F1). Adding manual rules to the
output of CRF resulted in further improvement
(additional +1% F1).

3.2.2 TIMEX3 and EVENT attributes (TA, EA)

For TA and EA, our system achieved an F1 of
0.710 and an average F1 of 0.856, respectively
(Table 4). Our results improve over the baseline
by 33.5% in TA and 4.8% in EA, respectively (for
baseline, the average F1 of EA over all attribute
types is 0.817). For EA, while performance of
all types of attributes is comparable, the best
performance relates to DEGREE attribute class with
F1 of .887. The results of the TA and EA tasks
for development set are also reported in Table 8.
Generally, our results on the test set are marginally
higher than on the development set which shows

Model P R F1
base features .863 .836 .849
+ UMLS .879 .854 .866
+ rules .886 .864 .875

Table 7: EVENT span (ES) results on development set
based on different features.

Category P R F1
TA:CLASS .752 .632 .687
EA:MODALITY .832 .816 .824
EA:DEGREE .879 .863 .871
EA:POLARITY .864 .848 .856
EA:TYPE .854 .838 .846

Table 8: Results of the TIMEX3 and EVENT attributes
(TA and EA) on the development set.

that we have successfully avoided over-fitting on the
training and development sets.

3.2.3 Document-time relation (DR)

The DR task was included in both evaluation
phases. Its F1 score in phase 1 was 0.711
and in phase 2 was 0.815. Naturally, since in
phase 1, the spans of EVENTs were unknown,
lower performance is expected in comparison with
phase 2. The DR results in both phases show
substantial improvements over the baseline (+17.7%
F1 in phase 1 and +20.4% recall in phase 2).

The effect of context window size on DR
performance on development set is reported in Table
9. As the window size increases, more contextual
features are added and therefore performance
increases. However, after a certain point, when the
window becomes excessively large, the performance
decreases. We attribute this to overfitting the
training data because of too many features. The
optimal context window size is 6 which we used
for our final submission. As far as features, we
evaluated three primary feature sets (using a window
of 6), the results of which are outlined in Table
10. The features are defined in tables 2 and 3. As
illustrated, the addition of Set 1 and Set 2 features
resulted in improvements in all DR types.

Error analysis for DR showed that many
of the misclassified examples were for the
BEFORE/OVERLAP relations, as also reflected in
the low relative performance of BEFORE/OVERLAP

relations (Table 10). In many cases, these
relations are wrongly classified as either BEFORE

or OVERLAP categories. For some cases, it is
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w (+/-) P R F1
1 .781 .780 .781
2 .790 .789 .790
3 .794 .793 .794
4 .799 .798 .798
5 .801 .800 .801
6 .804 .802 .803
7 .802 .801 .802
8 .795 .793 .794

Table 9: DR results on development set by window size.

not clear even for human whether the EVENTs
had happened before the creation time of the
document or they continued at document creation
time. For example in the following: “Resected
rectal [adenocarcinoma], with biopsy-proven local
[recurrence]”, the EVENT [adenocarcinoma] is
of document relation type BEFORE/OVERLAP

whereas our classifier wrongly classified them as
BEFORE.

3.2.4 Narrative Container relations (CR)

The CR results are presented in Table 5. Our
approach substantially improves over the baseline,
especially in terms of recall (+2.06 times recall
improvement). This demonstrates that using
semantic frames of the sentences as well as their
dependency structure can be effective in identifying
container relations. However, F1 score of 0.506
shows that there is still plenty of room for
improvement on this task. Error analysis showed
that many of the false negatives relate to the
inter-sentence relations. Our approach is designed
for capturing only intra-sentence container relations.
Similarly, some other false negatives were due to
the dates that were not syntactically part of the
sentence. An example is: “{June 14, 2010}: His
first [colonoscopy] was positive for [polyp]”. In
this example, {June 14, 2010} is the anchor and
[colonoscopy] and [polyp] are the targets. However,
the designated date is not any syntactic part of the
sentence and consequently, our approach is unable
to capture that as the correct anchor of the narrative
container.

4 Discussion and conclusions
SemEval 2016 task 12 (Clinical TempEval) was
focused on temporal information extraction from
clinical narratives. We developed and evaluated a
system for identifying TIMEX3 and EVENT spans,

Features DR Type
All After Bef. B/O Over.

Base .785 .725 .791 .536 .820
+ Set 1 .792 .751 .796 .545 .823
+ Set 2 .803 .756 .812 .538 .833

Table 10: DR Results breakdown by type based on
different features on the development set. Base features
are defined in Table 2, Set 1 and 2 features are defined in
Table 3.

TIMEX3 and EVENT attributes, document-time
relations, and narrative container relations. Our
system employed machine learning classification
scheme for all the tasks based on various sets of
syntactic, lexical, and semantic features. In all tasks,
we showed improvement over the baseline and, in
all but one case (CR-Precision) we placed above the
median of all participants (The official ranking of the
systems were not announced at the time of writing).

While we showed the effectiveness of diverse set
of features along with supervised classifiers, we
also illustrated that incorporating manually crafted
extraction rules improves results. However, manual
rules should be constrained as some rules interfere
with the learning algorithm and negatively affect the
results. The strongest rules were those based on
consistent patterns, such as dates in the standard
format (e.g. MM-DD-YYYY). On the other hand,
while some other rules improved the recall, they led
to much lower precision and F1 score. For example,
a rule that matches the word “time” as TIMEX3
span, improved our TS recall considerably but at the
expense of overall precision and therefore was not
included in the final submission.

For narrative containment relations, we showed
that semantic frames and dependency structure of
the sentence are helpful in identifying the relations.
However, our approach is limited to intra-sentence
relations and we are not detecting relations that are
cross-sentences. In future work, we aim to expand
our approach to detect inter-sentence container
relationships.
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