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Abstract 

This paper is a description of our system de-

veloped for SemEval-2016 Task 9: Chinese 

Semantic Dependency Parsing. We have built 

a transition-based dependency parser with on-

line reordering, which is not limited to a tree 

structure and can produce 99.7% of the neces-

sary dependencies while maintaining linear 

algorithm complexity. To improve parsing 

quality we used additional techniques such as 

pre- and post-processing of the dependency 

graph, bootstrapping and a rich feature set 

with additional semantic features. 

 

1 Introduction 

Dependency parsing is one of the core tasks in nat-

ural language processing, as it provides useful in-

formation for other NLP tasks. Traditional syntac-

tic parsing usually represents a sentence as a tree-

shape structure and this restriction is essential for 

most of efficient algorithms developed in the past 

years. Semantic dependency parsing, on the other 

hand, deals with acyclic graphs, where words may 

have multiple incoming dependencies. It signifi-

cantly complicates the task and requires develop-

ment of the new algorithms or special adoption of 

the old ones. 

There are two main approaches to dependency 

parsing (Nivre and McDonald, 2008). The first one 

is a graph-based approach, for example, spanning 

tree algorithms (McDonald et al., 2005), where the 

goal is to find the highest scoring tree from a com-

plete graph of dependencies between words in the 

sentence. The second approach is transition-based, 

which, instead of searching for global optimum, 

greedily finds local optimum with a chain of ac-

tions that lead to a parsing tree. The main ad-

vantage of the transition-based parsers is that they 

are in general faster than graph-based ones because 

of the linear complexity of the algorithm (Nivre, 

2003). 

As we move from syntactic parsing to semantic 

parsing, and instead of projective trees have to deal 

with acyclic graphs, exact inference becomes NP-

hard, so some strong independence assumptions or 

heuristics are needed. A lot of modifications have 

been proposed for transition-based parsers to sup-

port non-projective structures. Nivre and Nilsson 

(2005) proposed a pseudo-projective parsing tech-

nique which consists in modifying the input into a 

projective dependency tree with extended labels, 

performing the projective parsing and then apply-

ing an approximate back transformation. Attardi 

(2006) introduced additional actions that add de-

pendencies between the roots of non-adjacent sub-

trees. Both techniques maintain linear algorithm 

complexity at the expense of incomplete coverage 

of all possible dependency trees. Complete cover-

age of all non-projective trees is achieved by Nivre 

(2009) with a technique called on-line reordering 

but it increases the worst-case complexity from 

linear to quadratic. 

2 System Description  

The core of our system is a transition-based de-

pendency parser with on-line reordering in style of 

Titov et al, (2009). It continues the tradition of At-
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tardi (2006) by extending the action-set of the 

model, but adds only one new action. While this 

model is not enough to parse any arbitrary struc-

ture, it still can successfully reproduce 99.72% of 

the dependencies in the “sdpv2” corpus and 

99.78% of the dependencies in the “text” corpus. 

2.1 Parsing Algorithm 

The state of the parser is defined by the current 

stack S, the queue I of remaining input sentence 

words, and partial dependency graph constructed 

by previous actions. The parser starts with artificial 

TOP node in S and all input words in I. The pro-

cessing terminates when a state with an empty 

queue is reached. Parser can change its state with 

one of the five possible actions: 

 Action Left-Arc adds a dependency arc 

from the first word in queue to the word on 

top of the stack 

 Action Right-Arc adds a dependency arc 

from the word on top of the stack to the 

first word in queue 

 Action Reduce removes the word from the 

top of the stack 

 Action Shift moves the first word from the 

queue to the stack. 

 Action Swap swaps two words at the top of 

the stack. 

With additional limitation on the number of 

times Swap operation can be performed for each 

node, parser with this action set has a linear time 

complexity. 

To convert gold dependencies into gold actions, 

the following algorithm is used for each state of 

the parser: 

 If stack is empty, perform Shift action. 

 If the word on the top of the stack has no in-

coming or outcoming dependencies or the 

rightmost dependency is located to the left of 

the first word in the queue, perform Reduce 

action. 

 If the rightmost dependency of the word on 

top of the stack is equal to the first word in 

queue, but this dependency is already present 

in the partial dependency graph, perform Re-

duce action. 

 If there is a dependency arc between the top 

of the stack and the first word in queue and it 

is not present in the partial dependency graph, 

perform Left-Arc or Right-Arc action accord-

ing to the direction of dependency. 

 If the size of the stack is less than two, or two 

top words in the stack in the same order were 

already swapped, perform Shift action. 

 If there is a dependency arc between the sec-

ond word in stack and the first word in the 

queue, and it is not present in the partial de-

pendency graph, perform Swap action 

 Otherwise, perform Shift action. 

After that, the obtained gold actions are used to 

train a log-linear classifier with the following set of 

features: 

 Words in stack and queue: W(S0), W(S1), 

W(S2), W(I0), W(I1), W(I2) 

 POS tags: T(S0), T(S1), T(S2), T(I0), T(I1), 

T(I2) 

 Words of the last left child(LC), last right 

child(RC) and last parent(P) in the partial de-

pendency graph for words in stack and queue: 

W(LC_S0), W(RC_S0), W(P_S0), 

W(LC_S1), W(RC_S1), W(P_S1), 

W(LC_I0), W(P_I0) 

 POS tags of LC, RC and P: T(LC_S0), 

T(RC_S0), T(P_S0), T(LC_S1), T(RC_S1), 

T(P_S1), T(LC_I0), T(P_I0) 

 The number of left children, right children 

and parents: N(LC_S0), N(RC_S0), N(P_S0), 

N(LC_I0), N(P_I0) 

 Previous action: PA 

 Information about existing arcs in partial de-

pendency graph: A(S0,I0), A(S1,I0) 

 Distance between words: D(S0,I0), D(S1,S0) 
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 Various combinations of the above features, 

for example: W(I0)+T(I0), W(S0)+W(I0), 

T(S3)+T(S2)+T(S1)+T(I0)+T(I1) and other. 

One more log-linear classifier is used to set a 

semantic label to the dependency. The feature set 

is similar to the one described above, but instead of 

words in the stack and the queue this model uses a 

parent and a child of the dependency arc in ques-

tion. 

2.2 Bootstrapping 

Transition-based parsers use history to predict the 

next action. In our system the words in the stack, 

queue and partial dependency graph are used as 

features of the log-linear classifier. While it is the 

source of useful information (when past actions are 

correct), it is also the source of errors (when past 

actions are incorrect). If statistical model is trained 

only on gold parses, it has little possibility to re-

cover from mistakes, because it will have to pre-

dict next decisions from a state that was never en-

countered during training. To reduce the gap be-

tween gold and real-life parser configurations, 

Choi and Palmer (2011) proposed to use boot-

strapping on automatic parses. In this approach a 

model trained on gold configurations is used to 

parse training corpus and generate new training in-

stances, where the current configuration is 

achieved by automatic parsing.  

In our system we split training corpus into 10 

parts and parse each part with a model trained with 

other 9 parts to be as close to real-life as possible. 

After that a new model is trained with both gold 

training instances and bootstrapped training in-

stances. 

2.3 Semantic Features 

To analyze the influence of different semantic de-

pendencies on each other, we used some additional 

features produced from the output of IHS Goldfire 

Question-Answering system (Todhunter et al., 

2013). This system has its own Semantic Proces-

sor, which performs complete linguistic analysis of 

text documents, such as lexical, part-of-speech, 

syntactic, and semantic analysis and other. The Q-

A system is built on top of the semantic labeling of 

words with basic knowledge types (e.g., ob-

jects/classes of objects, cause-effect relations, 

whole-part relations etc.). A matching procedure 

makes use of the aforementioned types of semantic 

labels to determine the exact answers to the ques-

tions and present them to the user in the form of 

the fragments of sentences or a newly synthesized 

phrase in the natural language. 

For example, one of such semantic labels, origi-

nally extracted by Goldfire system from one of the 

sentences in the training data, looked this way: 

我六点钟出门，以便赶上火车 

I left home at six, (in order) to catch the train. 

出门 (left)  –Effect→  赶上火车 (catch the train) 

In order to convert semantic labels into semantic 

dependencies, we extracted the main word of the 

answer and corrected differences in word segmen-

tation. After transformations the example above is 

represented as the following semantic dependency:  

6 赶上 VV 3(出门) Effect 

Although the semantic labels, extracted by 

Goldfire, are different from the ones that should be 

extracted in SemEval-2016 Task 9 (in the example 

above the label is supposed to be ePurp), we ex-

pected them to provide additional information in 

cases when the context of words in stack and 

queue is not sufficient. 

2.4 Dependencies Pre-processing and Post-

processing  

Error analysis of the base model showed that incor-

rect extraction of the eCoo dependency is one of 

the most frequent mistakes. It turned out that eCoo 

connections may have different direction: from left 

to right and from right to left. Further analysis re-

vealed that in most cases the direction correlates 

with the position of the parent node of eCoo chain: 

if the parent is to the left, the direction is more 

likely to be from left to right, and if the parent is to 

the right, the direction is more likely to be from 

right to left. 

The intuition is that the parser is confused with 

the different direction of the eCoo connections. 

That is why we converted all eCoo dependencies 

into right-to-left direction in the training corpus, 

and added a post-processing procedure which con-

verts eCoo connections in the output dependency 

graph into left-to-right direction if the parent of the 

top node of eCoo chain is to the left.   
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3 Experiments 

In order to evaluate the influence of the methods 

described above on parsing quality, we have built 

five different systems and tested them on the de-

velopment set. The labeled and unlabeled results 

for 2 types of corpus (“sdpv2” and “text”) are pre-

sented in tables from 1 to 4. LP, LR and LF are la-

beled precision, recall and F1-score for predicted 

dependencies (parent-child-dependency label tri-

ples). NLF is F1-score for non-local dependencies. 

UP, UR, UF and NUF are unlabeled counterparts. 

The base system is built with the algorithm de-

scribed in 2.1. BS is bootstrapping (2.2), Sem – 

Semantic Features (2.3) and PP is pre- and post-

processing (2.4). Pre- and post-processing proce-

dures proved to be the most useful, especially on 

the “sdpv2” corpus. Bootstrapping improves recall, 

but harms precision and non-local dependencies. 

Semantic Features, on the other hand, help to ex-

tract non-local dependencies. The PP_BS_SEM 

system, with all features included, performed better 

than all other on the “text” corpus and has compa-

rable results on the “sdpv2” corpus. That is why 

the output of this system was submitted to 

SemEval-2016 Task 9. The results of our system, 

compared to other submissions, are represented in 

tables 5-8. Our submitted system has shown the 

highest precision, recall and F1-score values for all 

dependencies, but did not perform well on non-

local labeled dependencies, which may be an effect 

of bootstrapping or shortcomings of the selected 

model in general. 

 

model  LP LR LF NLF 

Base 61.61 60.91 61.26 49.16 

PP 62.79 62.07 62.43 49.89 

PP_BS 62.25 62.32 62.29 47.12 

PP_SEM 62.68 62.13 62.40 52.71 

PP_BS_SEM 62.37 62.47 62.42 46.88 
 

Table 1:  evaluation on sdpv2 (labeled) 

model  UP UR UF NUF 

Base 78.20 77.30 77.75 62.77 

PP 79.87 78.96 79.41 63.64 

PP_BS 78.99 79.07 79.03 61.99 

PP_SEM 79.55 78.85 79.20 64.27 

PP_BS_SEM 79.33 79.45 79.39 60.42 
 

Table 2:  evaluation on sdpv2 (unlabeled) 

model  LP LR LF NLF 

Base 66.79 65.74 66.26 51.48 

PP 67.23 66.18 66.70 51.79 

PP_BS 67.32 66.87 67.09 49.04 

PP_SEM 68.42 67.55 67.98 53.45 

PP_BS_SEM 68.46 68.28 68.37 50.94 
 

Table 3:  evaluation on text (labeled) 

model  UP UR UF NUF 

Base 81.08 79.82 80.44 64.56 

PP 81.67 80.40 81.03 64.66 

PP_BS 81.44 80.90 81.17 63.18 

PP_SEM 82.60 81.56 82.08 65.77 

PP_BS_SEM 82.46 82.25 82.35 65.60 
 

Table 4:  evaluation on text (unlabeled) 

model  LP LR LF NLF 

Our system 58.78 59.33 59.06 40.84 

a1 55.52 55.85 55.69 49.23 

a2 55.65 56.04 55.84 47.80 

lbpg 55.64 58.89 57.22 45.57 

lbpgs 58.38 57.25 57.81 41.56 

lbpg75 57.88 57.67 57.78 48.89 
 

Table 5:  SemEval results on sdpv2 (labeled) 

model  UP UR UF NUF 

Our system 77.28 78.01 77.64 60.20 

a1 73.51 73.94 73.72 60.71 

a2 73.79 74.30 74.04 59.69 

lbpg 72.87 77.11 74.93 58.03 

lbpgs 76.28 74.81 75.54 54.34 

lbpg75 75.55 75.26 75.40 58.28 
 

Table 6:  SemEval results on sdpv2 (unlabeled) 

model  LP LR LF NLF 

Our system 68.71 68.46 68.59 50.57 

a1 65.36 64.98 65.17 54.70 

a2 65.37 64.92 65.15 54.62 

lbpg 63.34 67.89 65.54 51.75 

lbpgs 67.35 65.11 66.21 47.79 

lbpg75 66.43 66.33 66.38 57.51 
 

Table 7:   SemEval results on text (labeled) 

model  UP UR UF NUF 

Our system 82.56 82.26 82.41 64.58 

a1 79.06 78.60 78.83 65.71 

a2 78.89 78.35 78.62 64.93 

lbpg 76.73 82.24 79.39 63.21 

lbpgs 81.22 78.52 79.85 55.51 

lbpg75 79.97 79.85 79.91 63.87 
 

Table 8:   SemEval results on text (unlabeled) 
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4 Conclusion 

We have built a transition-based semantic depend-

ency parser with online reordering, bootstrapping, 

additional semantic features and graph pre- and 

post-processing that achieved the best results in 

SemEval-2016 Task 9. All features proved to im-

prove the overall performance, but some details 

may need further improvement. Bootstrapping re-

quires a better balance to avoid its bad influence on 

precision and non-local dependencies. Also some 

additional restrictions to the base algorithm may be 

needed, because now it is allowed for some words 

to have no parent at all, and while it may be normal 

for semantic dependency parsing in general, it is 

not the thing for the task at hand. We leave these 

details for a future work. 
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