
Proceedings of SemEval-2016, pages 1098–1102,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

IHS-RD-Belarus at SemEval-2016 Task 9: Transition-based Chinese

Semantic Dependency Parsing with Online Reordering and

Bootstrapping.

Artsiom Artsymenia Palina Dounar Maria Yermakovich

IHS Inc. / IHS Global Belarus

Minsk, Belarus

IHS Inc. / IHS Global Belarus

Minsk, Belarus

IHS Inc. / IHS Global Belarus

Minsk, Belarus

{Artsiom.Artsymenia,Polina.Dovnar,Maria.Yermakovich}@ihs.com

Abstract

This paper is a description of our system de-

veloped for SemEval-2016 Task 9: Chinese

Semantic Dependency Parsing. We have built

a transition-based dependency parser with on-

line reordering, which is not limited to a tree

structure and can produce 99.7% of the neces-

sary dependencies while maintaining linear

algorithm complexity. To improve parsing

quality we used additional techniques such as

pre- and post-processing of the dependency

graph, bootstrapping and a rich feature set

with additional semantic features.

1 Introduction

Dependency parsing is one of the core tasks in nat-

ural language processing, as it provides useful in-

formation for other NLP tasks. Traditional syntac-

tic parsing usually represents a sentence as a tree-

shape structure and this restriction is essential for

most of efficient algorithms developed in the past

years. Semantic dependency parsing, on the other

hand, deals with acyclic graphs, where words may

have multiple incoming dependencies. It signifi-

cantly complicates the task and requires develop-

ment of the new algorithms or special adoption of

the old ones.

There are two main approaches to dependency

parsing (Nivre and McDonald, 2008). The first one

is a graph-based approach, for example, spanning

tree algorithms (McDonald et al., 2005), where the

goal is to find the highest scoring tree from a com-

plete graph of dependencies between words in the

sentence. The second approach is transition-based,

which, instead of searching for global optimum,

greedily finds local optimum with a chain of ac-

tions that lead to a parsing tree. The main ad-

vantage of the transition-based parsers is that they

are in general faster than graph-based ones because

of the linear complexity of the algorithm (Nivre,

2003).

As we move from syntactic parsing to semantic

parsing, and instead of projective trees have to deal

with acyclic graphs, exact inference becomes NP-

hard, so some strong independence assumptions or

heuristics are needed. A lot of modifications have

been proposed for transition-based parsers to sup-

port non-projective structures. Nivre and Nilsson

(2005) proposed a pseudo-projective parsing tech-

nique which consists in modifying the input into a

projective dependency tree with extended labels,

performing the projective parsing and then apply-

ing an approximate back transformation. Attardi

(2006) introduced additional actions that add de-

pendencies between the roots of non-adjacent sub-

trees. Both techniques maintain linear algorithm

complexity at the expense of incomplete coverage

of all possible dependency trees. Complete cover-

age of all non-projective trees is achieved by Nivre

(2009) with a technique called on-line reordering

but it increases the worst-case complexity from

linear to quadratic.

2 System Description

The core of our system is a transition-based de-

pendency parser with on-line reordering in style of

Titov et al, (2009). It continues the tradition of At-

1098

tardi (2006) by extending the action-set of the

model, but adds only one new action. While this

model is not enough to parse any arbitrary struc-

ture, it still can successfully reproduce 99.72% of

the dependencies in the “sdpv2” corpus and

99.78% of the dependencies in the “text” corpus.

2.1 Parsing Algorithm

The state of the parser is defined by the current

stack S, the queue I of remaining input sentence

words, and partial dependency graph constructed

by previous actions. The parser starts with artificial

TOP node in S and all input words in I. The pro-

cessing terminates when a state with an empty

queue is reached. Parser can change its state with

one of the five possible actions:

 Action Left-Arc adds a dependency arc

from the first word in queue to the word on

top of the stack

 Action Right-Arc adds a dependency arc

from the word on top of the stack to the

first word in queue

 Action Reduce removes the word from the

top of the stack

 Action Shift moves the first word from the

queue to the stack.

 Action Swap swaps two words at the top of

the stack.

With additional limitation on the number of

times Swap operation can be performed for each

node, parser with this action set has a linear time

complexity.

To convert gold dependencies into gold actions,

the following algorithm is used for each state of

the parser:

 If stack is empty, perform Shift action.

 If the word on the top of the stack has no in-

coming or outcoming dependencies or the

rightmost dependency is located to the left of

the first word in the queue, perform Reduce

action.

 If the rightmost dependency of the word on

top of the stack is equal to the first word in

queue, but this dependency is already present

in the partial dependency graph, perform Re-

duce action.

 If there is a dependency arc between the top

of the stack and the first word in queue and it

is not present in the partial dependency graph,

perform Left-Arc or Right-Arc action accord-

ing to the direction of dependency.

 If the size of the stack is less than two, or two

top words in the stack in the same order were

already swapped, perform Shift action.

 If there is a dependency arc between the sec-

ond word in stack and the first word in the

queue, and it is not present in the partial de-

pendency graph, perform Swap action

 Otherwise, perform Shift action.

After that, the obtained gold actions are used to

train a log-linear classifier with the following set of

features:

 Words in stack and queue: W(S0), W(S1),

W(S2), W(I0), W(I1), W(I2)

 POS tags: T(S0), T(S1), T(S2), T(I0), T(I1),

T(I2)

 Words of the last left child(LC), last right

child(RC) and last parent(P) in the partial de-

pendency graph for words in stack and queue:

W(LC_S0), W(RC_S0), W(P_S0),

W(LC_S1), W(RC_S1), W(P_S1),

W(LC_I0), W(P_I0)

 POS tags of LC, RC and P: T(LC_S0),

T(RC_S0), T(P_S0), T(LC_S1), T(RC_S1),

T(P_S1), T(LC_I0), T(P_I0)

 The number of left children, right children

and parents: N(LC_S0), N(RC_S0), N(P_S0),

N(LC_I0), N(P_I0)

 Previous action: PA

 Information about existing arcs in partial de-

pendency graph: A(S0,I0), A(S1,I0)

 Distance between words: D(S0,I0), D(S1,S0)

1099

 Various combinations of the above features,

for example: W(I0)+T(I0), W(S0)+W(I0),

T(S3)+T(S2)+T(S1)+T(I0)+T(I1) and other.

One more log-linear classifier is used to set a

semantic label to the dependency. The feature set

is similar to the one described above, but instead of

words in the stack and the queue this model uses a

parent and a child of the dependency arc in ques-

tion.

2.2 Bootstrapping

Transition-based parsers use history to predict the

next action. In our system the words in the stack,

queue and partial dependency graph are used as

features of the log-linear classifier. While it is the

source of useful information (when past actions are

correct), it is also the source of errors (when past

actions are incorrect). If statistical model is trained

only on gold parses, it has little possibility to re-

cover from mistakes, because it will have to pre-

dict next decisions from a state that was never en-

countered during training. To reduce the gap be-

tween gold and real-life parser configurations,

Choi and Palmer (2011) proposed to use boot-

strapping on automatic parses. In this approach a

model trained on gold configurations is used to

parse training corpus and generate new training in-

stances, where the current configuration is

achieved by automatic parsing.

In our system we split training corpus into 10

parts and parse each part with a model trained with

other 9 parts to be as close to real-life as possible.

After that a new model is trained with both gold

training instances and bootstrapped training in-

stances.

2.3 Semantic Features

To analyze the influence of different semantic de-

pendencies on each other, we used some additional

features produced from the output of IHS Goldfire

Question-Answering system (Todhunter et al.,

2013). This system has its own Semantic Proces-

sor, which performs complete linguistic analysis of

text documents, such as lexical, part-of-speech,

syntactic, and semantic analysis and other. The Q-

A system is built on top of the semantic labeling of

words with basic knowledge types (e.g., ob-

jects/classes of objects, cause-effect relations,

whole-part relations etc.). A matching procedure

makes use of the aforementioned types of semantic

labels to determine the exact answers to the ques-

tions and present them to the user in the form of

the fragments of sentences or a newly synthesized

phrase in the natural language.

For example, one of such semantic labels, origi-

nally extracted by Goldfire system from one of the

sentences in the training data, looked this way:

我六点钟出门，以便赶上火车

I left home at six, (in order) to catch the train.

出门 (left) –Effect→ 赶上火车 (catch the train)

In order to convert semantic labels into semantic

dependencies, we extracted the main word of the

answer and corrected differences in word segmen-

tation. After transformations the example above is

represented as the following semantic dependency:

6 赶上 VV 3(出门) Effect

Although the semantic labels, extracted by

Goldfire, are different from the ones that should be

extracted in SemEval-2016 Task 9 (in the example

above the label is supposed to be ePurp), we ex-

pected them to provide additional information in

cases when the context of words in stack and

queue is not sufficient.

2.4 Dependencies Pre-processing and Post-

processing

Error analysis of the base model showed that incor-

rect extraction of the eCoo dependency is one of

the most frequent mistakes. It turned out that eCoo

connections may have different direction: from left

to right and from right to left. Further analysis re-

vealed that in most cases the direction correlates

with the position of the parent node of eCoo chain:

if the parent is to the left, the direction is more

likely to be from left to right, and if the parent is to

the right, the direction is more likely to be from

right to left.

The intuition is that the parser is confused with

the different direction of the eCoo connections.

That is why we converted all eCoo dependencies

into right-to-left direction in the training corpus,

and added a post-processing procedure which con-

verts eCoo connections in the output dependency

graph into left-to-right direction if the parent of the

top node of eCoo chain is to the left.

1100

3 Experiments

In order to evaluate the influence of the methods

described above on parsing quality, we have built

five different systems and tested them on the de-

velopment set. The labeled and unlabeled results

for 2 types of corpus (“sdpv2” and “text”) are pre-

sented in tables from 1 to 4. LP, LR and LF are la-

beled precision, recall and F1-score for predicted

dependencies (parent-child-dependency label tri-

ples). NLF is F1-score for non-local dependencies.

UP, UR, UF and NUF are unlabeled counterparts.

The base system is built with the algorithm de-

scribed in 2.1. BS is bootstrapping (2.2), Sem –

Semantic Features (2.3) and PP is pre- and post-

processing (2.4). Pre- and post-processing proce-

dures proved to be the most useful, especially on

the “sdpv2” corpus. Bootstrapping improves recall,

but harms precision and non-local dependencies.

Semantic Features, on the other hand, help to ex-

tract non-local dependencies. The PP_BS_SEM

system, with all features included, performed better

than all other on the “text” corpus and has compa-

rable results on the “sdpv2” corpus. That is why

the output of this system was submitted to

SemEval-2016 Task 9. The results of our system,

compared to other submissions, are represented in

tables 5-8. Our submitted system has shown the

highest precision, recall and F1-score values for all

dependencies, but did not perform well on non-

local labeled dependencies, which may be an effect

of bootstrapping or shortcomings of the selected

model in general.

model LP LR LF NLF

Base 61.61 60.91 61.26 49.16

PP 62.79 62.07 62.43 49.89

PP_BS 62.25 62.32 62.29 47.12

PP_SEM 62.68 62.13 62.40 52.71

PP_BS_SEM 62.37 62.47 62.42 46.88

Table 1: evaluation on sdpv2 (labeled)

model UP UR UF NUF

Base 78.20 77.30 77.75 62.77

PP 79.87 78.96 79.41 63.64

PP_BS 78.99 79.07 79.03 61.99

PP_SEM 79.55 78.85 79.20 64.27

PP_BS_SEM 79.33 79.45 79.39 60.42

Table 2: evaluation on sdpv2 (unlabeled)

model LP LR LF NLF

Base 66.79 65.74 66.26 51.48

PP 67.23 66.18 66.70 51.79

PP_BS 67.32 66.87 67.09 49.04

PP_SEM 68.42 67.55 67.98 53.45

PP_BS_SEM 68.46 68.28 68.37 50.94

Table 3: evaluation on text (labeled)

model UP UR UF NUF

Base 81.08 79.82 80.44 64.56

PP 81.67 80.40 81.03 64.66

PP_BS 81.44 80.90 81.17 63.18

PP_SEM 82.60 81.56 82.08 65.77

PP_BS_SEM 82.46 82.25 82.35 65.60

Table 4: evaluation on text (unlabeled)

model LP LR LF NLF

Our system 58.78 59.33 59.06 40.84

a1 55.52 55.85 55.69 49.23

a2 55.65 56.04 55.84 47.80

lbpg 55.64 58.89 57.22 45.57

lbpgs 58.38 57.25 57.81 41.56

lbpg75 57.88 57.67 57.78 48.89

Table 5: SemEval results on sdpv2 (labeled)

model UP UR UF NUF

Our system 77.28 78.01 77.64 60.20

a1 73.51 73.94 73.72 60.71

a2 73.79 74.30 74.04 59.69

lbpg 72.87 77.11 74.93 58.03

lbpgs 76.28 74.81 75.54 54.34

lbpg75 75.55 75.26 75.40 58.28

Table 6: SemEval results on sdpv2 (unlabeled)

model LP LR LF NLF

Our system 68.71 68.46 68.59 50.57

a1 65.36 64.98 65.17 54.70

a2 65.37 64.92 65.15 54.62

lbpg 63.34 67.89 65.54 51.75

lbpgs 67.35 65.11 66.21 47.79

lbpg75 66.43 66.33 66.38 57.51

Table 7: SemEval results on text (labeled)

model UP UR UF NUF

Our system 82.56 82.26 82.41 64.58

a1 79.06 78.60 78.83 65.71

a2 78.89 78.35 78.62 64.93

lbpg 76.73 82.24 79.39 63.21

lbpgs 81.22 78.52 79.85 55.51

lbpg75 79.97 79.85 79.91 63.87

Table 8: SemEval results on text (unlabeled)

1101

4 Conclusion

We have built a transition-based semantic depend-

ency parser with online reordering, bootstrapping,

additional semantic features and graph pre- and

post-processing that achieved the best results in

SemEval-2016 Task 9. All features proved to im-

prove the overall performance, but some details

may need further improvement. Bootstrapping re-

quires a better balance to avoid its bad influence on

precision and non-local dependencies. Also some

additional restrictions to the base algorithm may be

needed, because now it is allowed for some words

to have no parent at all, and while it may be normal

for semantic dependency parsing in general, it is

not the thing for the task at hand. We leave these

details for a future work.

References

Giuseppe Attardi. 2006. Experiments with a multilan-

guage non-projective dependency parser. In Proceed-

ings of the 10th Conference on Computational Natu-

ral Language Learning (CoNLL), pages 166–170.

Jinho D. Choi and Martha Palmer. 2011. Getting the

most out of transition-based dependency parsing. In

Proceedings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human Lan-

guage Technologies, pages 687–692.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and

Jan Hajic. 2005. Non-projective dependency parsing

using spanning tree algorithms. In Proceedings of the

Conference on Human Language Technology and

Empirical Methods in Natural Language Processing

(HLT-EMNLP’05), pages 523–530.

Joakim Nivre. 2003. An Efficient Algorithm for Projec-

tive Dependency Parsing. In Proceedings of the 8th

International Workshop on Parsing Technologies,

IWPT’03, pages 149–160.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective

dependency parsing. In Proc. of ACL, 99–106.

Joakim Nivre and Ryan McDonald. 2008. Integrating

graph-based and transition-based dependency par

ers. In Proceedings of ACL, pages 950–958.

Joakim Nivre. 2009. Non-projective dependency pars-

ing in expected linear time. In Proceedings of ACL-

IJCNLP.

Ivan Titov and James Henderson. 2007. A latent varia-

ble model for generative dependency parsing. In

Proceedings of the 10th International Conference on

Parsing Technologies (IWPT), pages 144–155.

Todhunter, J., Sovpel, I., and Pastanohau, D. 2013. Sys-

tem and method for automatic semantic labeling of

natural language texts. U.S. Patent 8 583 422.

1102

