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Abstract

We describe our submission system to the
SemEval-2016 Task 8 on Abstract Meaning
Representation (AMR) Parsing. We attempt
to improve AMR parsing by exploiting prepo-
sition semantic role labeling information re-
trieved from a multi-layer feed-forward neu-
ral network. Prepositional semantics is in-
cluded as features into the transition-based
AMR parsing system CAMR (Wang, Xue, and
S. Pradhan 2015a). The inclusion of the fea-
tures modifies the behavior of CAMR when
creating meaning representations triggered by
prepositional semantics. Despite the useful-
ness of preposition semantic role labeling in-
formation for AMR parsing, it does not have
an impact to the parsing F-score of CAMR,
but reduces the parsing recall by 1%.

1 Introduction

Progress in Natural Language Processing has led to
a multitude of well-motivated tasks that each rep-
resent part of a sentence’s meaning but result in a
meaning description spread over separate, uncon-
nected descriptions. These separate levels of se-
mantic annotation, like co-reference or named en-
tities, and the lack of simple human-readable cor-
pora where whole sentence meanings are encoded
led to the Abstract Meaning Representation (AMR)
formalism (Banarescu et al. 2013). AMR structures
capture sentence meanings with rooted, directed and
labeled graphs where sentences with the same mean-
ing receive the same AMR. These graphs are en-
coded in a bracketed format and can be visually rep-
resented in a human-understandable way (see Figure

1). AMR structures are organized with nodes repre-
senting concepts and the semantic relationships that
hold between these concepts1. Hence, AMRs can
be useful for every NLP component that relies on or
exploits semantic meaning resources. Particular ap-
plication areas are, among others, entity linking (Pan
et al. 2015), event detection (Li et al. 2015) and ma-
chine translation. An example for a AMR graph is
given in Figure 1: there is a concept RECOMMEND-
01 which is the root of the graph and there is a con-
cept OFFER-01 that stands in semantic relationship
to RECOMMEND-01 with the edge ARG1.

We augment the existing AMR parser CAMR
(Wang, Xue, and S. Pradhan 2015a) with a prepo-
sition semantic role labeling (prepSRL) neural net-
work with the intention to improve the AMR graph
creation accuracy. Prepositions in conjunction with
their arguments make a crucial contribution to the
meaning of sentences and are therefore a very intu-
itive supplement to AMR parsing. For example, see
how in Figure 2 the meaning of the preposition in is
involved in the creation of the AMR edge :LOCA-
TION. in semantically expresses the agency’s spatial
location and therefore triggers the identically named
AMR edge :LOCATION. Prepositional semantics is
a knowledge resource that has not yet been exploited
for the domain of AMR parsing. Moreover, CAMR
has problems in correctly creating AMR edges trig-
gered by prepositional relations.

1Concepts can be PropBank framesets, English words or
special words standing for quantities, entity types or logical ex-
pressions.
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We should offer earthquake workers our full understanding.

(R / RECOMMEND-01
:ARG1 (O / OFFER-01

:ARG0 (W / WE)
:ARG1 (U / UNDERSTAND-01

:ARG0 W

:MOD (F / FULL))
:ARG3 (P / PERSON

:ARG0-OF (W2 / WORK-01
:MOD (E / EARTHQUAKE)))))

R

O

W

U

P

F
W2

E

:ARG1

:ARG0
:ARG1

:ARG3

:ARG0

:MOD
:MOD

:ARG0-OF

Figure 1: Example of an AMR visualization

There is a travel agency in Sydney

(AGENCY) :LOCATION (CITY :WIKI ”SYDNEY”)

AMR parsing

Figure 2: AMR edge activated by prepositional semantics

2 Related Work

The first attempt to automatically generate AMR
structures from sentences was the work of Flanigan
et al. (2014). They used a graph-based structured
prediction algorithm with two stages: the first stage
is a semi-Markov model concerned with identifica-
tion of concepts, the second stage connects these
concepts by finding the maximum spanning con-
nected subgraph from a graph where all possible re-
lations between concepts are realized. They achieve
an F-score of 0.58 on the LDC2013E117 corpus.
Werling, Angeli, and Manning (2015) improve the
AMR parsing concept of Flanigan et al. (2014) by
supporting the critical task of concept identification
with a predefined set of actions for concept subgraph
generation that are evoked after a statistical classifi-
cation procedure. Besides graph-based approaches,
there exist also other strategies on AMR parsing:
Peng, Song, and Gildea (2015) learn synchronous
hyperedge replacement grammar rules from string-

There is nothing sad about old shells.
(a) Gold parse

(S3 / SAD

:DOMAIN (N2 / NOTHING)
:TOPIC (S2 / SHELL

:MOD (O / OLD)))

(b) CAMR parse

(X3 / NOTHING

:MOD (X4 / SAD

:COMPARED-TO (X7 / SHELL

:MOD (X6 / OLD))))

Figure 3: Examples of where CAMR’s edge construction for

prepositional phrases fails.

graph pairs. An Earley algorithm with cube-pruning
then performs string-to-AMR parsing with these
rules. Pust et al. (2015) treat English and AMR as
a language pair and use a machine translation ap-
proach to parse AMRs from sentences. They convert
AMRs into into a grammar of string-to-tree rules
that can be handled by syntax-based machine trans-
lation formalisms and use these rules with a bottom-
up chart decoder to parse AMRs with given local
features and a language model. Wang, Xue, and
S. Pradhan (2015a) use a transition-based system
that transforms dependency graphs into AMR struc-
tures by evoking specific actions at each reached
state while traversing the dependency tree. As can
be seen, there are many different point of views on
AMR parsing.

2.1 Motivation
The motivation for our system design comes from
the error analysis of the transition-based AMR
parser CAMR of Wang, Xue, and S. Pradhan
(2015a). It turns out that the parser has difficul-
ties on correctly identifying AMR relations which
involve prepositional semantics. Therefore, we have
chosen to aid CAMR with preposition semantic role
labeling (prepSRL) in order to improve AMR pars-
ing results.

2.2 Error Analysis of CAMR
Figure 3 shows a CAMR parse error: (b) should in-
dicate a :TOPIC edge label for the edge between the
concepts SAD and SHELL. This relation is seman-
tically expressed by the preposition about. As can
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be seen in Table 1, parsing precision and parsing re-
call is low for certain relations that can be evoked
by prepositional semantics. Where the :LOCATION

edge shows an arguably good CAMR performance,
other relations like :TOPIC and :DESTINATION fail
to be correctly parsed at all. We aim to improve
CAMR’s action selection for prepositions by intro-
ducing features representing prepositional seman-
tics.

Relation Gold Parser Corr. Prec. Rec.
:LOCATION 394 371 131 35.31% 33.25%
:PURPOSE 130 118 14 11.86% 10.77%
:TOPIC 70 44 6 13.64% 8.57%
:SOURCE 55 27 2 7.41% 3.64%
:DESTINATION 11 7 0 0.0% 0.0%
:INSTRUMENT 10 9 0 0.0% 0.0%

Table 1: Error analysis of CAMR based on parses of sen-

tences taken from the DEFT corpus for 6 common AMR edges.

Gold, Parser: # of relations in CAMR parse and Gold stan-

dard. Corr.: # of correctly parsed CAMR relations. Prec./Rec.:
Precision/Recall.

3 System Description

3.1 Baseline System
We used the AMR parser CAMR of Wang, Xue,
and S. Pradhan (2015a) as a starting point for our
idea of supporting AMR parsing with prepSRL. It
converts dependency trees into AMR graphs with
a transition-based technique by evoking certain tree
transforming actions at reached transition states. In
the training procedure, the tokens of the input sen-
tence are first aligned with the nodes of its gold
AMR graph using the JAMR aligner (Flanigan et al.
2014). Such aligned AMR graphs are represented as
span graphs storing token spans for AMR concept
nodes. With these span graphs, a greedy transition-
based mechanism learns to rewrite the dependency
trees into AMR graphs. In order to learn these trans-
formations, a transition system processes the nodes
of the input dependency graphs in a bottom-up left-
to-right fashion. It decides at each reached config-
urations which action to perform next in transform-
ing the dependency graph into an AMR span graph.
Configurations are defined as a tuple of buffers hold-
ing unprocessed nodes and unprocessed edges and
the partial span graph parses for the current input
sentence. While traversing the dependency tree, an

• NEXT-EDGE-lr: assigns relation label to current edge and
steps on to the next edge

• SWAP-lr: swaps dependency relation between nodes (head
transforms to dependent and vice versa)

• REATTACHk-lr: removes an arc, reattaches the former depen-
dent to another node and assigns a label to the new arc

• REPLACE HEAD: replaces a head with its dependent

• REENTRANCEk-lr: links a node to another node in the sub-
graph and therefore has the ability to convert trees into graphs

• MERGE: merges two nodes into one node

• NEXT-NODE-lc: assigns a concept label to current node and
proceeds to next element in buffer

• DELETE-NODE: deletes a node and all its connections

• INFER-lc: inserts a concept node between current node and par-
ent

Figure 4: Possible actions for the transition system

averaged perceptron algorithm decides the actions
to take by computing scores for all possible actions
given specific features2 and a weight vector. Dur-
ing test time, always the highest scoring action is
chosen before moving on to the next state. During
training, the algorithm will update the weight vec-
tor if it has chosen the wrong action and proceeds
parsing with the correct one3. The core of the sys-
tem are the set of actions that can be taken at states
by the algorithm. Figure 4 shows an overview and a
short description of the eight possible action types4.
Actions alter the dependency tree by deleting or in-
serting nodes, merging two nodes into one, assign-
ing relation labels and creating or modifying arcs.
Therefore, the averaged perceptron can learn to do
the right transformations to end up with a AMR span
graph.

3.2 Semantic Role Labeling Features

Wang, Xue, and S. Pradhan (2015b) successfully
improve their base system described in chapter 3.1

2Feature contexts vary from action type to action type and
can include lemmas, words, named entities, POS tags, depen-
dency labels and node span lengths. For a full list of features
see (Wang, Xue, and S. Pradhan 2015a).

3I.e. the action that is necessary to build the gold span graph.
4For more detailed information about the action types see

(Wang, Xue, and S. Pradhan 2015a).
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by adding SRL features to their model5. We also
included these features and added our prepSRL in-
formation in a similar way. The first SRL feature
encodes an action’s compatibility with the predicted
frameset from the SRL system. For each action that
predicts a concept label (NEXT-NODE-lc), the pre-
dicted SRL frameset is compared to the candidate
concept labels. If both match, the value of the fea-
ture is set to true. Therefore, the system will bias to-
wards choosing the predicted SRL frameset as con-
cept label6. The second feature encodes predicted
SRL argumenthood for an action’s current edge. For
each action that predicts edge labels, the parser has
access to the information whether current action’s
dependent is predicted by the semantic role labeler.
Hence, the system will favor edges that are congru-
ent with the semantic role labeler’s edges.

3.3 Preposition Semantic Role Labels

The prepSRL information consists of an attachment
according to a dependency parse and a semantic role
label for the prepositional phrase head predicted by
a neural network. The neural network is trained on
data annotated with semantic role labels. A simple
feed-forward neural network with one hidden layer
is trained in a softmax regression framework on the
role labels of Penn Treebank (PTB), the SemEval
2007 Task 6 corpus and the DEFT corpus78. Addi-
tionally a ’multi-task’ neural network was trained on
all three corpora simultaneously. The network archi-
tecture is sketched in Figure 5. All three prediction
models share the same two hidden layers. As labels
and number of labels vary, softmax regression is per-
formed for each corpus separately.

The neural networks are fed a combination of
word embedding9 and a subset of the hand-crafted

5They used the ASSERT SRL system described in (S. S.
Pradhan et al. 2004).

6Remember that concept labels in AMR can be PropBank
framesets.

7Used version: LDC2015E86: DEFT Phase 2 AMR Anno-
tation R1

8All neural networks are trained with 200 hidden nodes
per layer, a learning rate of 0.01 in a gradient descent batch
learning environment. The weights are randomly initialized in[
±

√
6 / (inputdim + outputdim)

]
. Tanh is used as non-linear

activation function.
9The word embeddings are taken from (Pennington, Socher,

and Manning 2014). For unknown words, a null vector is used

input h1 h2

DEFT

PTB

SemEval

Figure 5: ’Multi-Task’ neural network architecture. Each ar-

row represents a fully connected link to the next layer. Ellip-

soid nodes are subject to non-linear activation, square nodes are

subject to softmax regression. The three targets are trained al-

ternating on mini-batches of 20 samples.

features proposed by (D. Hovy, Tratz, and E. H.
Hovy 2010). These features include a binary in-
dicator for token capitalization and a binary vector
representation of both, the token’s POS-tag and the
supersense label according to WordNet10. For each
sample, these features are extracted for the following
tokens: the preposition token, the previous token, the
preceding verb, the preceding verb/adjective/noun,
the dependency head, the dependency child and a
heuristic child, for which we choose the ensuing
token. All corpora are parsed with the ClearNLP
parser11 to obtain POS-Tags and tokenization. For
reasons of compatibility with the AMR-Parsing task,
the dependency trees were extracted from parses by
the BLLIP parser12. Corpus sizes and accuracy mea-
sures for the simple neural network can be seen in
Table 2.

The neural network predicts a semantic role label
for every prepositional phrase head. Comparing the
different models by accuracy on these labels is dif-
ficult, as the target spaces and number of samples
available differ. A list of valid target labels for each
corpus can be seen in Table 3. The SemEval corpus
comes with a total of 155 labels, where each prepo-
sition has a number of senses. These sense labels are
reduced in number to create more meaningful target
labels for the prepSRL task. The mapping scheme
of Srikumar and Roth (2013) was implemented for
this reduction. The DEFT corpus comes with a total

instead.
10For unavailable information, a null vector is used instead

for POS-tags, whereas for supersenses a ’unknown’ supersense
was introduced.

11For detailed information, see https://github.com/
clir/clearnlp.

12For detailed information see (McClosky, Charniak, and
Johnson 2006) and (Charniak 2000).
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PTB SemEval DEFT
Corpus Size 35, 298 16, 534 8, 023

simple accuracy 91.69% 82.47% 72.69%

simple* accuracy 90.67% 80.12% 72.95%

multi-task accuracy 92.19% 72.28% 72.18%

Table 2: Preposition Semantic Role Labeling results. Corpus

size is given in samples. Accuracy is measured on a test set

from a random train/dev/test-split containing 90%/10%/10% of

the samples respectively, where simple accuracy uses the sim-

ple neural network, simple* accuracy uses the simple neural

network with an additional hidden layer and multi-task accu-

racy uses the ’multi-task’ neural network, with the respective

corpus’ label set as output space and the corpus’ test set.

They are creating traffic congestion in new places.

(C / CREATE-01
:ARG0 (T / THEY)
:ARG1 (C2 / CONGEST-01

:ARG2 (T2 / TRAFFIC)
:ARG3 (P / PLACE

:MOD (N / NEW)))))

Figure 6: Example of how an edge could be wrongly created.

PTB LOC TMP DIR MNR PRP EXT BNF
DEFT location manner mod name op1 op2 part-of poss pur-

pose quant source time topic
SemEval Activity Agent Attribute Beneficiary Cause Co-

Participants Destination Direction EndState
Experiencer Instrument Location Manner Medi-
umOfCommunication Numeric ObjectOfVerb
Opponent/Contrast Other Participant/Accompanier
PartWhole PhysicalSupport Possessor Profession-
alAspect Recipient Separation Purpose Species
Source StartState Temporal Topic Via

Table 3: Valid prepSRL target labels for each corpus. In to-

tal there are 7/13/32 labels for the PTB/DEFT/SemEval corpus

respectively.

of 82 labels. We remove all labels with less than 200
samples from the corpus to ensure training quality.

Given this prepSRL system, the AMR parsing re-
sults are expected to be improved in the following
way. In the AMR of Figure 6 currently the concept
PLACE is the ARG3 of CREATE-01 but it should be
the :LOCATION of CONGEST-01. Because the prep-
SRL feature has the ability to influence the edge cre-
ation and labeling actions of the transition system,
the AMR parser can decide for the correct actions to
take.

DEFT Corpus

ClearNLP

CoreNLP
Dependency

Parsing

preprocessed DEFT

SRL Model

SRL Info

Penn Treebank

prepSRL Model

prepSRL Info

CAMR

Figure 7: Preprocessing pipeline for our system. Round nodes

depict models, rectangular nodes depict data.

4 Experiments

4.1 Experimental Setup

We first preprocessed the 16, 831 sentences of the
DEFT corpus training section (Knight et al. 2014)
that we used for training CAMR with the prepSRL
features. Preprocessing information for the AMR
parser includes lemmas, POS tags, named entities
and dependency parses13. In addition, we prepro-
cessed the training sentences with the ClearNLP
toolkit for the training of the neural network. We
used the tokenization and POS tag components of
ClearNLP and replaced the generated dependen-
cies for compatibility reasons with the dependencies
generated by the BLLIP parser.

After preprocessing, the alignments between the
AMR graphs and their sentences were created with
the JAMR aligner. ASSERT-generated SRL files
were provided to us by Sameer Pradhan for the train-
ing and test inputs, enabling us to run CAMR with
the SRL features. Separately, the neural network for
prepSRL is trained with PTB-style preposition la-
bels. We parsed our training corpora with the re-
sulting model and generated the feature files for the
prepSRL information. We trained CAMR in four
different feature settings that are shown in Figure 8.
The generated models were tested on the DEFT cor-
pus test set that contains 1371 sentences.

13Lemmas, POS tags and named entities are generated by the
CoreNLP toolkit (Manning et al. 2014). The dependency parses
were generated with the BLLIP parser ((McClosky, Charniak,
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(a) CAMR
(b) (a) + SRL features
(c) (a) + prepSRL features
(d) (b) + prepSRL features

Figure 8: Overview of the used training settings

Model Prec. Rec. F-Score

(a): CAMR 67% 58% 62

(b): (a) +SRL 68% 58% 62

(c): (a) +prepSRL 67% 57% 62

(d): (b) +prepSRL 68% 57% 62

Table 4: Evaluation results

4.2 Results
We evaluated our approach of augmenting AMR
parsing with a prepSRL system by using the stan-
dard evaluation measure for AMR parsing which is
the Smatch evaluation metric to date14. Smatch uses
semantic overlap between AMR parses to measure
parsing accuracy. Results of the evaluation are given
in Table 4. They reveal that the prepSRL features
have a slightly negative influence on the parsing ac-
curacy of CAMR. The Smatch F-score remains the
same over all trained models, but the recall is re-
duced by 1% when adding the prepSRL features.
The model with prepSRL achieves a Smatch score
of 0.60 on the SemEval-2016 Task 8 test data. One
possible explanation for the prepSRL results could
be the ambiguity concerned with prepositions:

(1) Establishing Models in Industrial Innovation.

(2) There is a travel agency in Sydney.

In (1), in does not indicate an AMR :LOCATION re-
lation, in contrast to its occurrence in (2). At the
moment, our system cannot disambiguate between
the two appearances of in according to the features
used.

4.3 Error Analysis
A quantitative error analysis of our parser’s output
is shown in Table 5. If compared with the previous
results in Table 1, the :LOCATION relation shows a
minor improvement of precision and recall, where
all other relations either show no difference or are
parsed worse than before.

and Johnson 2006) and (Charniak 2000))
14see (Cai and Knight 2012)

Relation Gold Parser Corr. Prec. Rec.
:LOCATION 394 374 135 36.10% 34.26%
:PURPOSE 130 109 9 8.26% 6.92%
:TOPIC 70 46 4 8.70% 5.71%
:SOURCE 55 39 2 5.12% 3.63%
:DESTINATION 11 4 0 0.0% 0.0%
:INSTRUMENT 10 9 0 0.0% 0.0%

Table 5: Error analysis of our parser (CAMR + SRL + prepSRL

features) based on parses of sentences taken from the DEFT

corpus test set. Gold, Parser: # of relations in CAMR parse and

Gold standard. Corr.: # of correctly parsed CAMR relations.

Prec./Rec.: Precision/Recall.

5 Conclusion

We extended the AMR parser CAMR (Wang, Xue,
and S. Pradhan 2015a) with a neural network for
prepSRL but did not reach improved AMR results
using this method. In fact, the combination with
prepSRL slightly reduced the recall of the system.
This could be due to the fact that our prepSRL neural
network generates parses for all preposition occur-
rences without disambiguating ambiguous preposi-
tions. Future work has to find a better way to inte-
grate prepSRL information into the architecture of
CAMR. One possibility of this could be the refine-
ment of the neural network where only prepositions
receive a SRL parse that are likely to produce an
AMR relation. Despite our results, we nevertheless
think that the inclusion of prepositional semantics
could improve AMR parsing results if used in an ap-
propriate way.
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