
Proceedings of SemEval-2016, pages 967–971,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

AI-KU at SemEval-2016 Task 11: Word Embeddings and Substring
Features for Complex Word Identification

Onur Kuru
Artificial Intelligence Laboratory

Koc University
Istanbul, Turkey

okuru13@ku.edu.tr

Abstract

We investigate the usage of word embeddings,
namely Glove and SCODE, along with sub-
string features on Complex Word Identifica-
tion task. We introduce two systems: the
first system utilizes the word embeddings of
the target word and its substrings as features
while the other considers the context infor-
mation by using the embeddings of the sur-
rounding words as well. Although the pro-
posed representations perform below the aver-
age with nonlinear models, we show that word
embeddings with substring features is an ef-
fective representation choice when employed
with linear classifiers.

1 Introduction

Complex Word Identification (CWI) is the task of
determining which words in a given sentence should
be simplified. CWI is often considered as the first
step in Lexical Simplification (LS) where the goal
is to identify and replace complex words with sim-
pler substitutes. Although CWI is considered as a
vital component of Lexical Simplification pipeline,
there is not a lot of work done for identifying word
complexity in the context of Lexical Simplification.
Horn et al. (2014) describes an LS model in which
they employ a Complex Word identifier implicitly.
However, their results show that the method is not
able to capture complex words very accurately.

Paetzold and Specia (2016) organizes the Com-
plex Word Identification task of SemEval 2016 with
the goal of attracting systems that are able to de-
tect complex words in given a sentence. This work

investigates the usage of word embeddings along
with substrings as features to build a Complex Word
Identifier. Word embeddings are unsupervised word
representations which map each word to a dense,
real valued, low dimensional vector. These vectors
are able to capture semantic and syntactic similar-
ities between words and proven useful as features
in a variety of applications, such as, document clas-
sification (Sebastiani, 2002), named entity recogni-
tion (Turian et al., 2010), and parsing (Socher et al.,
2013).

GloVe (Pennington et al., 2014) is an unsuper-
vised learning algorithm for obtaining vector rep-
resentations for words which is essentially a log-
bilinear model with a weighted least-squares ob-
jective. Pennington et al. (2014) shows that the
word embeddings produced by the model achieves
state-of-the-art performance in Word Analogy task.
Moreover, they also illustrate that Glove embed-
dings outperform embeddings induced by other
methods on several word similarity tasks.

Another work (Yatbaz et al., 2012) represents
the context of a word by its probable substitutes.
Words with their probable substitutes are fed to a co-
occurrence modeling framework (SCODE) (Maron
et al., 2010). Words co-occurring in similar context
are closely embedded on a sphere. These word em-
beddings are effective at modeling syntactic features
and they achieve state-of-the-art results in inducing
part-of-speech.

We conducted several experiments to examine the
usage of word embeddings. First, we investigated
whether pretrained word embeddings improve ran-
dom embedding baseline. Second, we tried concate-

967

nations of word embeddings with different types and
dimensions. Next, we examined context-aware rep-
resentations of target words by incorporating em-
beddings of neighbouring words. After the release
of test set annotations, we scrutinize how a linear
model benefits from increasing the size of the train-
ing set.

This paper is organized as follows: Section 2
details the proposed dataset and evaluation metric,
Section 3 analyzes the utilization of word embed-
dings for CWI, Section 4 presents results and dis-
cusses the performance of our work and Section 5
concludes the paper.

2 Dataset and Evaluation

Complex Word Identification task of SemEval 2016
(Paetzold and Specia, 2016) prepares a dataset with
200 sentences for training and 9000 for testing. The
training set is composed of 5,362 tokens with 2,237
instances annotated, and the test set is composed
of 217,902 tokens with 88,221 instances annotated.
Dataset properties are summarized in Table 1.

9,200 sentences were annotated through a survey,
in which 400 volunteers were presented with sev-
eral sentences and asked to judge whether or not
they could understand the meaning of each word in
a given sentence. A set of 200 sentences is sepa-
rated for training and split into 20 subsets of 10 sen-
tences, and each subset was annotated by a total of
20 volunteers. In the training set, a word is consid-
ered as complex if at least one of the 20 annotators
judged them so. To compose the test set, remain-
ing 9,000 sentences were split into 300 subsets of 30
sentences, each of which was annotated by a single
volunteer.

Training Test
Annotated 2237 88221
Tokens 5362 217902
Sentences 200 9000

Table 1: Dataset Properties

Notably, training set is extremely small compared
to test set. As a result of this, 92% of test set vocab-
ulary is unknown to training set.

In the context of Lexical Simplification, a CW
identifier is expected to accomplish two things.
First, it should predict the complexity of words

as proficiently as possible (Accuracy). Second, it
should capture as many of the complex words as
possible (Recall) to maximize the simplicity of a
sentence. Therefore, instead of F-Score (harmonic
mean of Precision and Recall), CWI task defines and
uses G-Score which measures the harmonic mean
between Accuracy and Recall.

3 Experiments

3.1 Word Embeddings
To illustrate the effect of word embeddings on
CWI task, we conducted several experiments. For
Glove word embeddings, we used the publicly avail-
able word vectors1 pretrained on a 2014 Wikipedia
dump2 with 1.6 billion tokens merged with Giga-
word 5 which has 4.3 billion tokens. We use a
sample from Wikipedia dump with approximately
150 million tokens to induce SCODE word em-
beddings3. For each word embedding experiment,
we used Support Vector Machines with linear ker-
nel as our classifier. We utilized scikit-learn (Buit-
inck et al., 2013) as our machine learning arsenal.
We applied 5-fold cross validation on training set
and report the result at the optimum C (penalty pa-
rameter of the error term) from a grid search in
e−20, e−19, ..., e6, e7.

Embedding Dimensions G-Score
Random 50 0.5526
Glove 50 0.6357
Glove 100 0.6171
Glove 200 0.6084
SCODE 50 0.6013
SCODE 100 0.6044
SCODE 200 0.6098

Table 2: Random Embedding Baseline, Comparison of Glove

and SCODE.

Firstly, each annotated word in a sentence repre-
sented with its corresponding dense real valued em-
bedding and fed to the classifier. As a simple base-
line we assigned a random embedding to each an-
notated word. A random embedding consists of 50
dimensions and each component is drawn from uni-
form distribution U(0, 1). Table 2 holds the results

1http://nlp.stanford.edu/projects/glove/
2http://dumps.wikimedia.org/enwiki/
3https://github.com/ai-ku/wvec/

968

for each experiment. We observe that both SCODE
and Glove outperforms the random embedding base-
line and Glove (trained on a much generous corpus)
yields better results in general. Increasing the num-
ber of dimensions improves the performance slightly
for SCODE but it hurts the performance of Glove
embeddings.

Glove
50 100 200

50 0.6559 0.6317 0.6185
SCODE 100 0.6514 0.6310 0.6174

200 0.6531 0.6323 0.6189
Table 3: Embedding Concatenations.

Subsequently, we took the cartesian product of
both embeddings and experimented with concatena-
tions. Instead of representing a word with only one
embedding, we employed the concatenation of em-
beddings as features for each target word. Results
are presented in Table 3. Experiments yield the best
results when we use 50 dimensional embeddings of
both methods. We show that concatenating embed-
dings yields better results.

k=0 k=1 k=2 k=3
S-50 G-50 0.6559 0.6393 0.6260 0.6206

S-100 G-50 0.6514 0.6394 0.6260 0.6204
S-200 G-50 0.6531 0.6399 0.6264 0.6207

Table 4: Context-Aware Representations. S and G denotes

SCODE and Glove respectively. k is the number of left and

right neighbors.

Moreover, we took the surrounding words into ac-
count to make the representation of a target word
context-aware. In this setup, each target word is rep-
resented not only by its own embedding but also
with embeddings of surrounding words. As can-
didates, we selected the best performing concate-
nated embeddings from Table 3. Table 4 lists the
results for context-aware representations where k is
the number of left and right neighbors. Results im-
ply that context-aware representations do not yield
any improvements.

3.2 Final System
We submitted two systems4 for the Complex Word
Identification task. Both systems use SVM classifier

4Code is available at: https://github.com/kuruonur1/cwi

trained with Radial Basis Function. While first
system (native) use the word embedding of the
target word and its substrings as features, the
second system (native1) uses the embeddings of
preceding and following words as well. For target
and surrounding words, we used the concatenation
of SCODE and Glove with 50 dimensions which
performed best for word embedding experiments.
As substring features of the target word, we used
prefixes, suffixes and character n-grams which are of
length 3 and 4. We applied chi-squared test between
each substring feature and class to reveal which
ones are more relevant to classification and we kept
the p percentile of highest scoring substring features.

C γ p G-Score
native 0.2705 0.1370 17 0.6800
native1 0.0595 0.0251 20 0.6500

Table 5: Best performed hyperparameters and 5-fold cross val-

idation results on training set. C is the penalty parameter of the

error term for SVM, γ is the coefficient of RBF kernel. p de-

notes the percentile of substrings utilized with feature selection.

Either system has 3 parameters: the coefficient
of RBF kernel (γ), penalty parameter of the error
term (C), percentile (p) of substring features. In or-
der to tune the hyperparameters, we ran a random
search (Bergstra and Bengio, 2012) using Hyper-
opt (Bergstra et al., 2013). For each hyperparameter
configuration, we drawn C and γ from eU(−15,5), p
from U(5, 30). For each system, we tried 100 hyper-
parameter configurations and applied 5-fold cross
validation. We selected the best performed hyperpa-
rameters (see Table 5) and trained our final models
on the whole training set.

4 Results and Discussion

Complex Word Identification task has 9 baselines,
3 of which announced before system results and 6
baselines announced with system results. We have
selected highest scoring 5 baselines to compare our
systems’ results. Baselines are either threshold-
based (TB) or lexicon-based (LB). Two of the base-
lines, (TB) Wikipedia and (TB) Simple Wiki ex-
ploits language model probabilities. (TB) Senses
and (TB) Length exploits words’ number of senses
and word lengths respectively. (LB) Ogdens base-

969

line is released before system results and classifies a
word as complex only if it is not in the Ogdens vo-
cabulary5. We present our final systems’ results on
test set with baselines scores in Table 6.

Best Result6 0.7740
nativeLin7 0.7328
(TB) Wikipedia 0.6720
(TB) Simple Wiki 0.6540
(TB) Senses 0.5790
native1 0.5450
native 0.5450
(TB) Length 0.4780
(LB) Ogdens 0.3930

Table 6: Final system results on test set along with baselines

First and foremost, we see that both of our submit-
ted systems perform equally well on test set. There-
fore, taking the surrounding words into account does
not yield any improvements as we observed while
validating our model on training set. Although the
threshold-based baselines simply look at the fre-
quency of a word in a corpus, they outperform our
rather sophisticated systems significantly.

One may hypothesize that the small amount of
training set available is the main cause of this un-
satisfactory performance. After the release of anno-
tated test set, we examined the effect of amount of
training set available to our system.

of sentences G-Score
training set 0.7451

+200 0.7475
+400 0.7512
+800 0.7559
+1600 0.7588
+3200 0.7638
+6400 0.7670

Table 7: G-Scores on held out test set while number of sen-

tences in training set increasing.

We held out 1000 sentences from test set as our
new test set. We started with the original training
set and added sentences from annotated test set. We
used the same configuration as native system except

5http://ogden.basic-english.org/words.html
6Best scoring system on SemEval-2016 CWI task
7This model is evaluated on test set after official results are

announced

we used a linear kernel instead of nonlinear RBF
kernel to speed up experiments. For each training
set we cross validated the penalty parameter of the
error term (C) and evaluated it on held out test set.
For each experiment, we report the mean G-Score of
5 random runs where the extra training set and held
out test set splits selected from different shuffles. Ta-
ble 7 illustrates that as the amount of training set in-
creases our model performs better on held-out test
set. Another key observation is that albeit our sys-
tem is trained on the original training set with linear
kernel, it has a high G-Score. Moreover, all other
participants of CWI task which utilize word embed-
dings use nonlinear models. This scrutiny refutes the
hypothesis that small amount of training set is the
primary cause of word embeddings’ unsatisfactory
performance. Finally we trained native system with
linear kernel using only the original training set and
evaluated on whole test set. Native system with lin-
ear kernel (nativeLin) achieves a G-Score of 0.7328
on whole test set.

5 Conclusion

We investigated the utilization of word embeddings
along with substrings as features on Complex Word
Identification task. We showed that instead of rep-
resenting a word with only one embedding type,
word embedding concatenations yield better results.
Moreover we considered context information by in-
corporating the embeddings of surrounding words
which did not improve overall performance. Al-
though the proposed representations perform below
the average with nonlinear models, we conclude that
word embeddings with substring features is an ef-
fective representation choice when employed with
linear classifiers.

References
James Bergstra and Yoshua Bengio. 2012. Random

search for hyper-parameter optimization. The Journal
of Machine Learning Research, 13(1):281–305.

James Bergstra, Daniel Yamins, and David Daniel Cox.
2013. Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vi-
sion architectures.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Nic-
ulae, Peter Prettenhofer, Alexandre Gramfort, Jaques

970

Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly,
Brian Holt, and Gaël Varoquaux. 2013. API design
for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Lan-
guages for Data Mining and Machine Learning, pages
108–122.

Colby Horn, Cathryn Manduca, and David Kauchak.
2014. Learning a lexical simplifier using wikipedia.
In ACL (2), pages 458–463.

Yariv Maron, Elie Bienenstock, and Michael James.
2010. Sphere embedding: An application to part-of-
speech induction. In Advances in Neural Information
Processing Systems, pages 1567–1575.

Gustavo H. Paetzold and Lucia Specia. 2016. Semeval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval 2016).

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, volume 14, pages 1532–1543.

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM computing surveys
(CSUR), 34(1):1–47.

Richard Socher, John Bauer, Christopher D Manning, and
Andrew Y Ng. 2013. Parsing with compositional vec-
tor grammars. In ACL (1), pages 455–465.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
annual meeting of the association for computational
linguistics, pages 384–394. Association for Computa-
tional Linguistics.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic rep-
resentations of word context. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 940–951. Association for
Computational Linguistics.

971

