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Abstract

We describe our entry to SemEval 2016 Task
10: Detecting Minimal Semantic Units and
their Meanings. Our approach uses a discrim-
inative first-order sequence model similar to
Schneider and Smith (2015). The chief nov-
elty in our approach is a factorization of the la-
bels into multiword expression and supersense
labels, and restricting first-order dependencies
within these two parts. Our submitted models
achieved first place in the closed competition
(CRF) and second place in the open competi-
tion (2-CRF).

1 Introduction

Schneider and Smith (2015) argued that the prob-
lems of segmenting a piece of text into minimal se-
mantic units, and of labeling those units with seman-
tic classes (e.g., supersenses), are intimately con-
nected.

We propose to use a double-chained conditional
random field (which we refer to as “2-CRF,” an
example of a factorial CRF; §3.4) for joint multi-
word expression identification and supersense tag-
ging. Like other CRFs, 2-CRF is a feature-rich
probabilistic model that can represent probabilistic
dependencies between features and labels and be-
tween the labels of the consecutive words. The 2-
CRF models local dependencies between MWE and
supersense sequences with two parallel chains of la-
bels, restricting direct interaction between the two
to local, single-word positions. Label constraints on
tag bigrams ensure a globally consistent tagging.

Our experiments show that 2-CRF outperforms a
zero-order baseline, the structured perceptron used

by Schneider and Smith (2015), and a conventional
CRF (§4). For SemEval 2016 Task 10: Detecting
Minimal Semantic Units and their Meanings, we
submitted a CRF for the closed condition and a 2-
CRF (incompletely trained) for the open condition,
achieving first and second place, respectively.

2 Task Description

For completeness, we briefly review the shared task.
The shared task training dataset, called “Detecting
Minimal Semantic Units and their Meanings” (DiM-
SUM) (Schneider et al., 2016),1 consists of sen-
tences with multiword expression (MWE) and su-
persense annotations. The data combine and har-
monize the STREUSLE 2.1 corpus of web reviews
(Schneider and Smith, 2015)2 and Ritter and Low-
lands Twitter datasets (Johannsen et al., 2014).3

Similar to prior work (Schneider and Smith,
2015), the annotation for MWEs extends the con-
ventional BIO scheme (Ramshaw and Marcus,
1995) to include gappy MWEs with one level of
nesting.4 Segmentations are represented using six
tags; the lower-case variants indicate that an expres-
sion is within another MWE’s gap.

• O and o: single word expression

• B and b: the first word of a MWE
1https://github.com/dimsum16/

dimsum-data/blob/1.5/README.md
2http://www.cs.cmu.edu/˜ark/LexSem
3https://github.com/coastalcph/

supersense-data-twitter
4Unlike in Schneider and Smith (2015), there is no notion of

weak and strong MWEs.
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• I and i: a word continuing a MWE

We call a tag sequence valid if it matches the
regular expression (O|B(o|bi+|I)∗I+)+. Validity can
be ensured using label constraints on tag bigrams
(Schneider, 2014).

Each noun or verb expression is also annotated
with a supersense; there are 26 supersenses for
nouns and 15 for verbs. Only the first word of a
MWE receives a supersense tag.

One approach to encoding the MWE and super-
sense tags is to define an extended label set contain-
ing both tags (Schneider and Smith, 2015). This will
result in 170 potential labels: I, i, and each of B, b,
O and o paired with one of the 41 supersenses and
no supersense (2 + 4 × 42 = 170). Only 110 of
these are attested in the training data, and these are
the combinations our approach considers.

There are 4,799 sentences in the training data. For
each token, the dataset provides its offset in the sen-
tence, lemma, POS tag, MWE tag, offset of parent,
and supersense label (if applicable).

The blind test set consists of 1,000 sentences
from three sources: online reviews from the Trust-
Pilot corpus (Hovy et al., 2015), tweets from the
Tweebank corpus (Kong et al., 2014) and TED talk
transcripts from the IWSLT MT evaluation cam-
paigns, obtained from the WIT3 archive (Cettolo et
al., 2012).

The shared task has three data conditions: su-
pervised closed, semi-supervised closed, and open.
In the supervised closed condition, only the la-
beled data, the English WordNet lexicon, a provided
Brown clustering (Brown et al., 1992) on the 21-
million-word Yelp Academic Dataset5 (Schneider et
al., 2014), and any of the ARK Tweet NLP clusters6

are allowed. The semi-supervised closed condition
adds the Yelp Academic Dataset to the resources.
The open condition allows the use of any available
resources. We have participated in the supervised
closed and open conditions. The evaluation is based
on F1 score for MWE identification, supersense la-
beling, and their combination.7

5https://www.yelp.com/academic_dataset
6http://www.cs.cmu.edu/˜ark/TweetNLP/

#resources
7For details, see http://dimsum16.github.io

3 Models

3.1 Input Features

For the open condition, we use all features intro-
duced in Schneider and Smith (2015): a.) Basic
MWE features used by Schneider et al. (2014), in-
cluding lemma, POS tags, word shapes and features
indicating whether the token matches entries in any
of several multiword lexicons (WordNet, SemCor,
SAID, WikiMwe, English Wiktionary and Multi-
word Entries on the Phrases.net website), b.) the
provided Brown clusters and c.) capitalization fea-
tures, an auxiliary verb vs. main verb feature and
unlexicalized WordNet supersense features. Based
on the model, these features are conjoined with the
MWE, supersense, or extended label set to form
zero-order features. For the closed condition, we ex-
clude the features based on multiword lexicons.

3.2 Baseline: Multinomial Logistic Regression

As a baseline, we predict the label of each word
based on the features of the word within a sentence.
The multinomial logistic regression models the con-
ditional probability of the label of the ith word, de-
noted by Yi, in a sentence x as:

p(Yi = y | x, i;λ) =
expλ>h(x, y, i)∑
y′ expλ>h(x, y′, i)

, (1)

where h denotes a feature vector that contains fea-
tures that describe the token i, and its relationships
with some of its adjacent words in x conjoined with
the label y. λ denotes a vector of feature weights
and is learned from data.

Constraints on labels are not taken into account
during training. We incorporated these constraints
during testing in a greedy manner: For the ith word,
we considered only the labels that make it valid with
respect to the bigram label constraints based on the
predicted label for the (i− 1)th word.

3.3 Conditional Random Field

In the linear chain CRF (Lafferty et al., 2001), the
conditional probability of a valid label sequence y
of words in a sentence x is modeled as:
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p(y | x;λ) =
expλ>

∑|x|
i=1 h(x, yi, yi−1, i)∑

y′ expλ>
∑|x|

i=1 h(x, y′i, y
′
i−1, i)

,

(2)
where λ is a vector of feature weights shared across
all positions (i.e., words) and sentences. The feature
vector h contains the zero-order features described
above and the first-order features. The first-order
features model the dependencies between the label
of ith word and that of (i+ 1)th word. We assume a
dummy label y0 for notational convenience.

In both training and testing, we ensure that the
constraints on the consecutive labels are satisfied.
The label of the ith word only depends on the token
sequence, its offset in the sentence and the labels of
(i−1)th and (i+1)th words. Dynamic programming
is used for exact inference; runtime is quadratic in
the size of the label set and linear in the sequence
length. We maximize `2-regularized log-likelihood
using L-BFGS to learn the feature weights λ:

∑
(x,y∈D)

log p(y | x;λ)− α1‖λ1‖22 − α2‖λ2‖22,

(3)
where D contains all training instances, λ1 (λ2)
corresponds to the parameters for zero-order (first-
order) features, and α1 (α2) is the regularization
strength for zero-order (first-order) feature weights.
In our preliminary experiments, we found that using
different regularization strengths for zero-order and
first-order features can benefit accuracy.

3.4 Double-Chained CRF

We propose a double-chained CRF (2-CRF) that fac-
tors the labels into separate MWE and supersense
annotations. Such a model has been used for joint
POS tagging and noun-phrase chunking by Sutton
et al. (2007). The model is illustrated in Fig. 1; the
heart of the difference lies in restricting first-order
dependencies within MWE or supersense labels, not
the combination of the two.

Concretely, the 2-CRF separates the zero-order
features for MWE and for supersense tags. Second,
while the traditional chain-structured CRF has a fea-
ture for each pair of labels in the extended label set,
the 2-CRF introduces first-order features capturing

each consecutive pair of MWE labels, and (sepa-
rately) each consecutive pair of supersense labels.
This model removes some repetitive parameters. For
example, instead of having parameters to capture
the relation between consecutive B and I tags paired
with all supersenses, 2-CRF will have only one pa-
rameter. Moreover, if the feature weights λ for all
the features between mi and si pairs are zero, the
2-CRF model is equivalent to two separate CRFs for
the two tasks. Therefore, it has a flexibility to learn
the parameters for the two tasks jointly or separately.
Due to this kind of flexibility, we expect that the 2-
CRF model has a better generalization ability.

x

… si-1 si si+1 …

… mi-1 mi mi+1 …

Figure 1: Double-chained CRF expressed as a factor graph: x

is the whole sentence. For a token in position i, its MWE label

is mi and its supersense tag is si.

For a sentence x with a valid label sequence y =
(m, s), where m denotes the MWE tag sequence
and s denotes supersense tag sequence, the condi-
tional probability of (m, s) given x is defined as:

p(m, s | x) =

expλ>
∑|x|

i=1 h(x,mi, si,mi−1, si−1, i)∑
m′,s′ expλ>∑|x|

i=1 h(x,m′i, s
′
i,m

′
i−1, s

′
i−1, i)

,

(4)
where the feature vector function h can be written
as:

h(x,mi, si,mi−1, si−1, i) =〈
hm(x,mi, i);hs(x, si, i);

hmm(mi,mi−1);hss(si, si−1);hms(mi, si)
〉
.

(5)

h contains the following features: two copies of the
zero-order features conjoined with the MWE tag mi

and supersense tag si, first-order features between
mi and mi−1, si and si−1 and mi and si.
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Similar to the CRF, we enforce label constraints
on the MWE label sequence both at training and pre-
diction time.

Inference can be carried out exactly using similar
dynamic programming algorithms to those used for
the CRF. Training is carried out as for the CRF (i.e.,
`2-regularized log-likelihood; see Eq. 3).8

4 Experiments

4.1 Experimental Setup
We compare the performance of the following four
models that use exactly the same input features §3.1:

• Multinomial logistic regression (MLR) as de-
scribed in §3.2 (a zero-order model)

• Structured perceptron as used by Schneider and
Smith (2015) with the same set of features
(first-order, similar to our CRF)

• CRF as described in §3.3

• Double-chained CRF as described in §3.4

We used the AMALGrAM9 code base for feature
extraction (Schneider and Smith, 2015). For hyper-
parameter tuning, we hold out 30% randomly se-
lected training samples of the DiMSUM dataset as
validation data. Using preliminary experiments on
validation data, we set the number of L-BFGS iter-
ations for multinomial logistic regression, CRF, and
2-CRF as 100, 120, and 120, respectively. We set
the number of iterations of averaged perceptron al-
gorithm for structured percetpron as 10. We also im-
pose a percept cutoff of 3 on the minimum number
of occurrences for a zero-order percept to be consid-
ered in the models. We use validation data to tune α1

and α2 (where applicable) hyperparameters. After
tuning the parameters, we use the whole DiMSUM
training dataset to train the models.

4.2 Results and Discussion
Tables 1 and 2 show the results for the closed and
open conditions. The selected hyperparameters α1

and α2 are shown for each model. In each table, we
8An open source efficient cython implementation of our

method will be made publicly available at: https://
github.com/mjhosseini/2-CRF-MWE.

9http://www.cs.cmu.edu/˜ark/LexSem

show the results on our held-out validation data and
on the DiMSUM test datasets.

The official submitted systems are marked with
∗ in the tables.10 For the closed condition, the 2-
CRF had not completed training, so our entry was
the CRF; it achieved first place.

For the open condition, training of 2-CRF had
only completed 80 iterations at the submission dead-
line, so that is what was entered (it achieved second
place). We report those scores, as well as the slightly
improved scores obtained after 120 iterations.

Across the board, there is roughly a 9% decrease
in the F1 score when we move from validation to
DiMSUM test datasets. This is not surprising be-
cause the validation and DiMSUM datasets repre-
sent different text genres and styles.

We measured the statistical significance of the dif-
ference between the structured perceptron (SP) and
the other methods. We used a randomization test
(Yeh, 2000) at the sentence level to estimate the con-
fidence level of the difference (p-value < 0.05). We
indicate in Tables 1 and 2 in italics the cases where
the improvement over the structured perceptron is
significant.

In the closed condition, the 2-CRF model leads
to the highest F1 scores for all evaluation metrics.
Interestingly, the structured perceptron improves on
MWE but suffers on supersenses, relative to the
zero-order MLR model.11 CRF and 2-CRF show
improvements against MLR on both tasks, with the
latter winning overall on validation and (slightly) on
test data.

In the open condition, we see similar patterns ex-
cept a few cases: structured perceptron has the high-
est F1 score in MWE identification on validation
data and MLR slightly outperforms 2-CRF in super-
sense tagging on test data. However, the differences
are not statistically significant over 2-CRF, and it has
the highest combined score.

Finally, we observe that adding the features based

10The official results of the shared task are based on the
macroaverages of the per-domain scores, while we have done
the detailed analysis based on microaverage scores of the whole
dataset. Our system got combined macroaverage F1 score of
57.10% for the closed condition and 57.71% for the open con-
dition.

11The MLR model could potentially be improved with dy-
namic programming instead of greedy prediction.
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Validation Data DiMSUM Data
# iter. α1 α2 MWE SST Combined MWE SST Combined

MLR 100 1.6 - 58.68 66.24 64.96 49.84 57.14 56.04
SP 10 - - 63.39 65.15 64.83 52.37 55.85 55.29
CRF∗ 120 1.6 0.32 60.76 66.66 65.57 53.93 57.47 56.88
2-CRF 120 1.6 0.12 64.13 67.02 66.46 54.02 57.89 57.23

Table 1: Closed condition: Results on validation (left) and DiMSUM data (right) for multinomial logistic regression
(MLR), structured perceptron (SP), CRF, and 2-CRF models. The hyperparameters and F1 scores for identifying
MWEs, supersenses, and their combination are reported. The best result in each column is bolded. The results that
are significant over SP (p-value < 0.05) are italicized. The system denoted by ∗ is our official submission for the
supervised closed condition.

Validation Data DiMSUM Data
# iter α1 α2 MWE SST Combined MWE SST Combined

MLR 100 2.4 - 62.75 66.40 65.76 51.71 58.04 57.08
SP 10 - - 69.21 65.72 66.37 56.79 55.93 56.08
CRF 120 1.2 0.12 66.78 66.74 66.75 56.61 57.62 57.44
2-CRF 120 1.6 0.2 67.30 67.29 67.29 56.42 57.87 57.61
2-CRF∗ 80 1.6 0.2 67.37 66.78 66.89 57.24 57.64 57.57

Table 2: Open condition: Results on validation (left) and DiMSUM data (right) for multinomial logistic regression
(MLR), structured perceptron, CRF, and 2-CRF models. The hyperparameters and F1 scores for identifying MWEs,
supersenses, and their combination are reported. In the open condition, we have added features using the following
lists of English MWEs based on: WordNet, SemCor, SAID, WikiMwe, English Wiktionary, Multiword Entries on the
Phrases.net website (Schneider et al., 2014). The best result in each column is bolded. The results that are significant
over SP are italicized. The system denoted by ∗ is our official submission for the open condition.

on multiword lexicons (moving from supervised
closed to open condition) improves MWE identifi-
cation, without harming supersense tagging perfor-
mance. The increase in the performance of MWE
identification is statistically significant across all
methods and test datasets.

5 Conclusions

We presented the results of four models for the joint
prediction of MWE annotations and supersense an-
notations: multinomial logistic regression, struc-
tured perceptron, CRF and double-chained CRF. We
found that double-chained CRF performs well on
both tasks. We showed that, consistent with past
work, adding features based on multiword lexicons
improves the performance of all models.
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