
Proceedings of SemEval-2016, pages 850–855,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

UTU at SemEval-2016 Task 10: Binary Classification for Expression
Detection (BCED)

Jari Björne and Tapio Salakoski
Department of Information Technology, University of Turku

Turku Centre for Computer Science (TUCS)
Faculty of Mathematics and Natural Sciences, FI-20014, Turku, Finland

firstname.lastname@utu.fi

Abstract

The SemEval 2016 DiMSUM Shared Task
concerns the detection of minimal semantic
units from text and prediction of their coarse
lexical categories known as supersenses. Our
approach is to define this task as a binary clas-
sification problem approachable by straight-
forward machine learning methods.

We start by detecting semantic units by match-
ing text spans against several large dictionar-
ies, including the English WordNet, expres-
sions derived from the Yelp Academic Dataset
and concepts from the English Wikipedia,
generating a set of potential supersenses for
each matched span. For each potential su-
persense and text span pair a binary machine
learning example is defined. We classify these
examples using an ensemble method, taking
as the final predicted supersense the one with
the highest confidence score.

Our system achieves good performance on the
supersense classification task but has limited
performance for detection of multi-word se-
mantic units. We show that the task of super-
sense prediction can be effectively defined as
a binary classification task.

1 Introduction

The SemEval 2016 DiMSUM Shared Task1 con-
cerns the detection of minimal semantic units
and their semantic classification using supersenses
(Schneider et al., 2016). The minimal semantic
units can consist of either single words or multiword
expressions (MWE) in cases where multiple words

1http://dimsum16.github.io/

form a lexical item. The concept of MWE as used in
the DiMSUM task is described in detail in Schneider
et al. (2014). The supersenses are broad-coverage,
coarse lexical categories, 26 for nouns and 15 for
verbs. These supersenses mostly correspond to the
WordNet lexicographer files. A detailed description
of the supersenses is in Schneider and Smith (2015).
Automated supersense tagging has previously been
explored by e.g. Curran (2005), Ciaramita and Altun
(2006) and Johannsen et al. (2014).

In the DiMSUM task systems must both detect
the minimal semantic units and assign correct super-
senses for them. The final metric of the shared task
is the averaged performance on these tasks, which
are also evaluated independently. The systems can
approach these tasks either independently (e.g. in a
pipeline) or through a joint model.

We approach the DiMSUM task as a machine
learning classification task where examples are gen-
erated for all semantic units found in a pre-defined
dictionary. These semantic units are classified into
one of the 41 supersenses by generating an example
for each possible semantic unit + supersense pair,
turning the task of assigning one of many super-
senses into a binary classification problem. In this
manner, the task becomes a generalized machine
learning task for which almost any classifier can be
used.

The DiMSUM shared task defines three subtasks
or data conditions in which the systems can partic-
ipate, varying in the amount of resources that are
allowed to be used. The supervised closed condition
defines the most limited case where participants can
use the labeled training corpus, the English Word-

850



Net lexicon and two sets of Brown word clusters. In
the semi-supervised closed condition the Yelp Aca-
demic Dataset can also be used, and in the open con-
dition systems may use any and all resources avail-
able.

2 Data and Methods

2.1 Datasets

The DiMSUM corpus and evaluation tools, version
1.5, were provided by the task organizers. The cor-
pus consists of a training and test set. The train-
ing set is a unified combination of the STREUSLE
2.1 corpus of web reviews, and the Ritter and Low-
lands Twitter datasets, and consists of 4,799 sen-
tences with tokenization, POS, MWE and super-
sense annotation. The test set consists of 1,000 sen-
tences from online reviews, tweets and TED talk
transcripts, with only tokenization and POS anno-
tation.

The Yelp’s Academic Dataset2, which con-
sists of JSON objects describing 13,490 busi-
nesses, 330,071 reviews and 130,873 users, was
used with permission from Yelp Inc. WordNet
version 3.0 (Fellbaum, 1998) was used through
NLTK version 3.1 (Bird et al., 2009). For
the English Wikipedia, the dump of titles in
the main namespace enwiki-20160113-all-titles-in-
ns0.gz was used3. Wikipedia page categories were
downloaded using the Wikipedia Python library4 by
Jonathan Goldsmith.

2.2 System Overview

Our system follows a straightforward machine learn-
ing approach where examples are first generated and
then classified using a standard classifier library.
The task specific code is in the example generation
part, which consists of two steps: 1) detection of
minimal semantic units and 2) assignment of candi-
date supersenses for these units.

The detection of minimal semantic units is a rule-
based step consisting mostly of dictionary matching.
One sentence is processed at a time, one token at a
time. For each token, the token itself and the follow-
ing five tokens are first tested for a match, then the

2https://www.yelp.com/academic_dataset
3https://dumps.wikimedia.org/enwiki/
4https://github.com/goldsmith/Wikipedia

token and the next four tokens, and so on until just
the token on its own. A set of taggers are applied for
each span of tokens, and if any of the taggers finds a
match, one or more examples are generated.

All tokens that are part of the matched set are then
“consumed” and example generation continues from
the next free token. In this manner, each token is
assigned to the longest matched minimal semantic
unit. As a consequence, each token may belong to
a maximum of one candidate semantic unit. We do
not attempt to detect disjoint MWEs.

A tagger will provide for each positive match a list
of potential supersenses. A feature vector is built for
each combination of the matched span of tokens and
potential supersenses, with the example containing
the correct supersense labeled as a positive and the
rest as negatives.

2.3 Taggers
In our system taggers are the modules that detect
minimal semantic units among the tokens in the sen-
tence. For each set of consecutive tokens each tagger
can generate zero or more candidate supersenses.
Each unique candidate supersense will then be used
to produce one example for classification.

The WordNet tagger is used in all three conditions
as the primary tagger. Tested tokens are joined to a
span by first using their lemmas and if no match is
found by using their exact words. For the joined
span all synsets are retrieved from WordNet and
for each synset the corresponding lexicographer file
name is added as a potential supersense. In the case
of the noun.Tops file name the span itself is added
as a supersense if it directly matches a known super-
sense.

The Out-of-Vocabulary (OoV) tagger is used in
all three conditions to match semantic units not de-
tected by the other taggers, providing a fuzzy match-
ing system for common positive spans not included
in any of the dictionaries. It detects such con-
structs as Twitter @-codes (n.person), possessive
suffix tokens starting with an apostrophe (v.stative)
and words whose DiMSUM supersense differs from
their WordNet lexicographer file name, commonly
businesses such as “restaurant”, “store” or “hotel”
(n.group). Cases for the OoV tagger were deter-
mined manually using the DiMSUM training cor-
pus.

851



2.3.1 The Yelp Tagger
The Yelp tagger is used in the semi-supervised

closed and open conditions. First, three types of
information are extracted from the Yelp Academic
Dataset. For business objects the name of the busi-
ness itself is used, but businesses also contain infor-
mation on nearby schools and neighborhoods, and
these are likewise added to the dictionary. When
matching token sets, the businesses provide the
n.group supersense and schools and neighborhoods
the n.location supersense. Exact matches are tested
for all of these cases.

Many business names have a common last noun,
as in “Harvard Square Cafe” or “Minami Sushi”.
Thus, for token sets consisting only of nouns and
proper nouns (POS tags NOUN or PROPN) a match
is generated if the last token in the set matches the
last token of any Yelp business or location. Can-
didate supersenses are generated based on all Yelp
objects in which a token from the set is found in a
corresponding position (first, middle or last). In ad-
dition to the n.group and n.location supersenses the
additional supersense n.food is generated for the to-
ken “Restaurants”.

Yelp user objects contain the first name and the
last initial of the user. All first names are added
to a dictionary. When detecting potential matches,
first names of more than two characters are used as
matches for the n.person supersense, tested against
the first token in sets of no more than two upper-
cased tokens.

2.3.2 The Wikipedia Tagger
The Wikipedia tagger is used only in the open

condition. All token sets for which a match cannot
be provided by the WordNet tagger are compared
against the list of Wikipedia page titles. Before
matching the parenthesized disambiguation parts are
removed from the titles. For matching titles, poten-
tial supersenses are provided according to the cate-
gories of that page. A page category can match zero
or more DiMSUM supersenses.

Common Wikipedia page categories, present in
pages for titles matching the DiMSUM training set,
are manually assigned to supersenses if they are rel-
evant for the DiMSUM task. For example, a cate-
gory ending in “births” (e.g. “1968 births”) corre-
sponds to the n.person supersense, common media

categories such as “album”, “game”, “television” or
“comics” correspond to n.communication and any
category ending in “companies” to n.group.

Based on these rules, the page categories of all
matched Wikipedia titles are automatically mapped
to supersenses. This mapping is done only for the
subset of Wikipedia page titles found in the entire
DiMSUM corpus, as processing the large Wikipedia
dataset is quite time consuming. In this way, the
resulting subset of 1,110 page titles and categories
linked to corresponding DiMSUM supersenses can
also be easily distributed alongside our source code.

2.4 Feature Representation

For each candidate token set + supersense pair a fea-
ture vector is built for machine learning. The same
feature representation is used in all three DiMSUM
task conditions.

For each token in the set a feature is built for the
lemma, POS and word values. For the first and last
tokens in the set, additional copies of these features
are built, marked with the token’s position. If the set
consists of only a single token, an additional copy
of these features is likewise built, marking that they
come from a single-token example.

For the whole set of tokens, the consecutive
lemma, POS and word values of the entire set are
catenated together as features. The supersense of the
token set + supersense pair is added as a feature. The
supersenses of all the other examples generated for
the same token set are also added as features distinct
from the supersense feature of the current pair.

2.5 Machine Learning

For machine learning we use the scikit-learn library
version 0.16.1 (Pedregosa et al., 2011). After exam-
ples are generated for each token set + supersense
pair a binary classifier is used to classify them as ei-
ther positives or negatives. We classify the examples
with the Extra Trees Classifier ensemble method
(Geurts et al., 2006) using its predict proba function
which gives probability estimates. For each token
set, the final prediction is the supersense with the
highest probability estimate among all supersenses
predicted as positive for that token set.

852



3 Results and Discussion

The official results for the six teams participating in
the DiMSUM shared task are shown in Table 1. Us-
ing the primary metric of the shared task, macro-
averaged performance over both the minimal se-
mantic unit detection and supersense assignment
tasks, our system (BCED) was ranked third out of
four participants in the supervised closed condition,
fourth out of four participants in the open condition
and was the only participating system in the semi-
supervised closed condition.

3.1 Minimal Semantic Units

Compared to the other systems, the major limita-
tion in our system was in the detection of the min-
imal semantic units. Our approach of detecting
known MWEs, even using a very large dictionary
such as the Wikipedia, was not sufficient to cover
the scope of the DiMSUM MWEs, which consist of
not only compound words and common idioms, but
also more generalized noun phrases.

The numbers of generated examples are shown in
Table 2. The vast majority of examples are detected
by the WordNet tagger. It’s notable how few addi-
tional positives are detected with the Wikipedia and
Yelp dictionaries, even though the Wikipedia tag-
ger considers only examples missed by the Word-
Net tagger. The number of examples detected by the
OoV tagger doesn’t change much between the con-
ditions, as it mostly matches special cases not in any
of the dictionaries.

The primary issue with the dictionary matching
approach is that approximately a third of real pos-
itive examples are missed in all three conditions.
The addition of first the Yelp and then the Wikipedia
taggers decreases this number by 392 examples but
compared to the total missed this is a relatively
small improvement. Looking at the categories of the
missed examples, MWEs that are too long (longer
than six tokens) and those with gaps fall outside
the scope of the system. Inclusion of the Yelp and
Wikipedia taggers reduces the token sets for which
no match is found by a considerable 718 examples,
but there is a corresponding increase of 64 missing
type examples for which a correct candidate super-
sense was not found.

Finally, the nested category highlights an inter-

Super Semi Open
WordNet + 14435 14363 14294
WordNet − 78007 77045 76229

Wikipedia + - - 348
Wikipedia − - - 2635

Yelp + - 334 329
Yelp − - 675 640
OoV + 856 848 848
OoV − 756 751 751
total + 15203 15408 15595
total − 78714 78400 80158

too long 6 6 6
no match 3206 2876 2488

gaps 426 426 426
type 2783 2768 2847

nested 830 970 1092
total missed 7251 7046 6859

Table 2: Example generation for the training corpus. Each col-

umn corresponds to one of the conditions. The uppermost rows

show the positive and negative examples generated by each of

the four taggers, followed by the combined totals. After these

are shown the five categories of false negative examples fol-

lowed by their totals.

esting issue in example generation. Even while the
Yelp and Wikipedia taggers provide more matches,
at the same time the number of examples that are un-
detectable due to being nested within a false, longer
MWE increases by 262. The issue of missing nested
examples could be solved by generating examples
for matched nested spans, but the corpus annotation
might not be compatible with this approach, as each
token can belong to a maximum of one annotated
semantic unit. In the case of strong MWEs, for ex-
ample in the idiom “close call”, it is not clear what,
if any, supersense the “call” token alone could be
assigned (Schneider et al., 2014). However, in an
MWE such as “cricket bat” (n.artifact) it is clear
what the meaning of “bat” is, and likewise, “cricket”
refers to the sport. Nevertheless, there is no annota-
tion within MWEs, so while “cricket” alone has the
supersense n.act, nested in “cricket bat” it has no
supersense of its own. Thus, examples generated for
nested spans would be inconsistent with non-nested
examples.

3.2 Supersense classification

While MWE detection performance was very low
due to the issues in example generation, supersense

853



SYS Team Condition µ-M µ-S µ-C Macro-C extra resources
214 ICL-HD open 56.66 57.55 57.41 57.77 Yago3, GloVe embeddings
227 VectorWeavers open 38.49 51.62 49.77 49.94 Google News EB, TurboParser
249 UW-CSE open 57.24 57.64 57.57 57.71 Schneider MWE lexicons
255 BCED open 13.48 51.93 46.64 47.13 English Wikipedia
211 BCED semi-closed 13.46 51.11 45.86 46.17
106 UFRGS super-closed 51.48 49.98 50.22 50.27
108 WHUNlp super-closed 30.98 25.14 25.76 25.71
248 UW-CSE super-closed 53.93 57.47 56.88 57.10
254 BCED super-closed 8.20 51.29 45.47 45.79
263 UW-CSE open (late) 56.71 57.72 57.54 57.66 Schneider MWE lexicons

Table 1: The results of the DiMSUM 2016 shared task (provided by task organizers). Micro- and macro-averaged F-scores are

shown for (M) MWE detection, (S) supersense assignment and (C) their combination. EB refers to embeddings.

assignment worked quite well (See Table 1). For su-
persenses, our approach reached F-scores of around
51% while the best performing systems were at
57%. Thus, our system placed 2nd and 3rd in terms
of supersenses in the supervised closed and open
conditions. As only 19% of all annotated minimal
semantic units have more than one token the im-
pact of MWE detection on supersense classification
is limited.

The supersense classification is the only machine
learning step in our system. Like most classifiers,
the parameters of the Extra Trees Classifier must be
optimized on known data for best performance. For
parameter optimization, we used three-fold cross-
validation on the training corpus, using one of the
STREUSLE, Ritter and Lowlands datasets for per-
formance estimation at a time and the other two for
training.

Parameter optimization highlighted a conflict in
using one binary classification step for both detect-
ing MWEs and assigning the supersenses. Gener-
ally, the performance of the Extra Trees Classifier
can be increased by increasing the ensemble size,
and we noticed such increases while testing sizes
from the default of 10 estimators up to 100. How-
ever, while the overall classification performance in-
creased, the classifier became increasingly likely to
not take any chances with MWE examples, assign-
ing them all as negative. Only by decreasing en-
semble size to 2 it became possible to detect at least
some MWEs, albeit at the cost of slightly reduced
performance on supersense assignment.

4 Conclusions

We developed a binary classification system for the
DiMSUM 2016 task of detecting minimal semantic
units and their supersenses. Our system consists of a
customizable dictionary matching step for example
generation, followed by a classification step.

The main advantage of this system is its simplic-
ity. Standard machine learning systems can be ap-
plied for the classification of the generalized binary
examples. As only one machine learning step is
used, parameter optimization can likewise be per-
formed in a standard cross-validation loop. The dic-
tionary matching step can be quickly extended by
adding new taggers for different vocabularies.

The primary shortcoming of the system is its low
performance on MWE detection. This is largely
a result of the dictionary matching approach being
only partially applicable for the task of detecting the
DiMSUM corpus MWEs. We speculate that using
machine learning to follow the annotated scope of
the MWEs would be a better approach for this part
of the task.

Nevertheless, our system achieved good perfor-
mance on supersense classification, indicating that
binarizing this multi-class task is a valid approach.
Moreover, even with a simple feature representation
consisting only of token attributes and their combi-
nations, comparatively high performance could be
achieved.

We publish all of our experimental code, our
Wikipedia derived datasets and our detailed results
as an open source project 5.

5https://github.com/jbjorne/DiMSUM2016

854



References
Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-

ural language processing with Python. O’Reilly Me-
dia, Inc.

Massimiliano Ciaramita and Yasemin Altun. 2006.
Broad-coverage sense disambiguation and information
extraction with a supersense sequence tagger. In Pro-
ceedings of the 2006 Conference on Empirical Meth-
ods in Natural Language Processing, pages 594–602.
Association for Computational Linguistics.

James R. Curran. 2005. Supersense tagging of unknown
nouns using semantic similarity. In Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, ACL ’05, pages 26–33, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Christiane Fellbaum. 1998. WordNet. Wiley Online Li-
brary.

Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine learn-
ing, 63(1):3–42.

Anders Johannsen, Dirk Hovy, Héctor Martınez Alonso,
Barbara Plank, and Anders Søgaard. 2014. More or
less supervised supersense tagging of twitter. Proc.
of* SEM, pages 1–11.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Nathan Schneider and Noah A Smith. 2015. A corpus
and model integrating multiword expressions and su-
persenses. In NAACL HLT 2015, The 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Denver, Colorado, USA, May 31 - June
5, 2015.

Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily
Danchik, Michael T Mordowanec, Henrietta Conrad,
and Noah A Smith. 2014. Comprehensive annota-
tion of multiword expressions in a social web corpus.
In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-2014),
Reykjavik, Iceland, May 26-31, 2014.

Nathan Schneider, Dirk Hovy, Anders Johannsen, and
Marine Carpuat. 2016. SemEval 2016 Task 10: De-
tecting Minimal Semantic Units and their Meanings
(DiMSUM). In Proc. of SemEval, San Diego, Califor-
nia, USA, June.

855


