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Abstract

This paper presents our approach towards the
SemEval-2016 Task 10 – Detecting Minimal
Semantic Units and their Meanings. Systems
are expected to provide a representation of lex-
ical semantics by (1) segmenting tokens into
words and multiword units and (2) providing
a supersense tag for segments that function as
nouns or verbs. Our pipeline rule-based sys-
tem uses no external resources and was imple-
mented using the mwetoolkit. First, we ex-
tract and filter known MWEs from the train-
ing corpus. Second, we group input tokens of
the test corpus based on this lexicon, with spe-
cial treatment for non-contiguous expressions.
Third, we use an MWE-aware predominant-
sense heuristic for supersense tagging. We ob-
tain an F-score of 51.48% for MWE identifi-
cation and 49.98% for supersense tagging.

1 Introduction

Accurate segmentation and semantic disambigua-
tion of minimal text units is a major challenge in
the general pipeline of NLP applications. A ma-
chine translation system, for example, needs to de-
cide what is the intended meaning for a given word
or phrase in its context, so that it may translate it into
an equivalent meaning in the target language.

While determining the meaning of single words
is a difficult task on its own, the problem is com-
pounded by the pervasiveness of Multiword Expres-
sions (MWEs). MWEs are semantic units that span
over multiple lexemes in the text (e.g. dry run, look
up, fall flat). Their meaning cannot be inferred by
applying regular composition rules on the meanings

of their component words. The task of semantic tag-
ging is thus deeply intertwined with the identifica-
tion of multiword expressions.

This paper presents our solution to the DiMSUM
shared task (Schneider et al., 2016), where the evalu-
ated systems are expected to perform both semantic
tagging and multiword identification. Our pipeline
system first detects and groups MWEs and then as-
signs supersense tags, as two consecutive steps. For
MWE identification, we use a task-specific instan-
tiation of the mwetoolkit (Ramisch, 2015), han-
dling both contiguous and non-contiguous MWEs
with some degree of customization (Cordeiro et al.,
2015). Additionally, MWE type-level candidates
are extracted without losing track of their token-
level occurrences, to guarantee that all the MWE
occurrences learned from the training data are pro-
jected onto the test corpus. For semantic tagging we
adopted a predominant-sense heuristic.

In the remainder of this paper, we present related
work (§ 2), then we present and discuss the results of
the MWE identification subsystem (§ 3) and of the
supersense tagging subsystem (§ 4). We then con-
clude and share ideas for future improvements (§ 5).

2 Related Work

Practical solutions for rule-based MWE identifica-
tion include tools like jMWE (Kulkarni and Finlayson,
2011), a library for direct lexicon projection based
on preexisting MWE lists. Finite-state transduc-
ers can also be used to take into account the inter-
nal morphology of component words and perform
efficient tokenization based on MWE dictionaries
(Savary, 2009). The problem of MWE identification
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has also been modeled using supervised machine
learning. Probabilistic MWE taggers usually encode
the data using a begin-inside-outside scheme and
learn CRF-like taggers on it (Constant and Sigogne,
2011; Schneider et al., 2014). The mwetoolkit
(Ramisch, 2015) provides command-line programs
that allow one to discover new MWE candidate lists,
filter them and project them back on text according
to some parameters. Our system uses the latter as
basis for MWE identification.

Word sense disambiguation (WSD) methods can
be roughly classified into knowledge-based, super-
vised and unsupervised. Knowledge-based meth-
ods use lexico-semantic taxonomies like WordNet to
calculate the similarity between context and target
words (Lesk, 1986). Supervised approaches gen-
erally use context-sensitive classifiers (Cabezas et
al., 2001). Unsupervised approaches using cluster-
ing and distributional similarity (Brody and Lapata,
2008; Goyal and Hovy, 2014) can also be employed
for WSD. Both supervised and unsupervised WSD
techniques have also been used to distinguish literal
from idiomatic uses of MWEs (Fazly et al., 2009;
Diab and Bhutada, 2009). Nonetheless, systemati-
cally choosing the most frequent sense is a surpris-
ingly good baseline, not always easy to beat (Mc-
Carthy et al., 2007; Navigli, 2009). This was also
verified for MWE disambiguation (Uchiyama et al.,
2005). Thus, in this work, we implemented a sim-
ple supervised predominant-sense heuristic and will
investigate more sophisticated WSD techniques as
future work.

3 MWE Identification

Our MWE identification algorithm uses 6 differ-
ent rule configurations, targeting different MWE
classes. Three of these are based on data from the
training corpus, while the other three are unsuper-
vised. The parameters of each configuration are op-
timized on a held-out development set, consisting of
1⁄9 of the training corpus. The final system is the
union of all configurations.1

For the 3 supervised configurations, annotated
MWEs are extracted from the training data and then
filtered: we only keep combinations that have been
annotated often enough in the training corpus. In

1When there is an overlap, we favor longer MWEs.

other words, we keep MWE candidates whose pro-
portion of annotated instances with respect to all oc-
currences in the training corpus is above a threshold
t, discarding the rest. The thresholds were manually
chosen based on what seemed to yield better results
on the development set. Finally, we project the re-
sulting list of MWE candidates on the test data, that
is, we segment as MWEs the test token sequences
that are contained in the lexicon extracted from the
training data. These configurations are:

CONTIG Contiguous MWEs annotated in the
training corpus are extracted and filtered with a
threshold of t = 40%. That is, we create a lexicon
containing all contiguous lemma+POS sequences
for which at least 40% of the occurrences in the
training corpus were annotated. The resulting lex-
icon is projected on the test corpus whenever that
contiguous sequence of words is seen.

GAPPY Non-contiguous MWEs are extracted
from the training corpus and filtered with a threshold
of t = 70%. The resulting MWEs are projected on
the test corpus using the following rule: an MWE
is deemed to occur if its component words appear
sequentially with at most a total of 3 gap words in
between them.

NOUN2-KN Collect all noun-noun sequences in
the test corpus that also appear at least once in the
training corpus (known compounds), and filter them
with a threshold of t = 70%. The resulting list is
projected onto the test corpus.

We further developed 3 additional configurations
based on empirical findings. We identify MWEs in
the test corpus based on POS-tag patterns, without
any filtering (and thus without looking at the training
corpus)2:

NOUN2-UKN Collect all noun-noun sequences in
the test corpus that never appear in the training cor-
pus (unknown compounds), and project all of them
back on the test corpus.

PROPN2..∞ Collect sequences of two or more
contiguous words with POS-tag PROPN and project
all of them back onto the test corpus.

2For NOUN2-UKN, we exclude known compounds, as oth-
erwise that would undo the filtering work done by NOUN2-KN.
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VP Collect verb-particle candidates and project
them back onto the test corpus. A verb-particle can-
didate is a pair of words under these constraints: the
first word must have POS-tag VERB and cannot have
lemma go or be. The two words may be separated by
a N3 or PROPN. The second word must be in a list of
frequent non-literal particles4. Finally, the particle
must be followed by a word with one of these POS-
tags: ADV, ADP, PART, CONJ, PUNCT. Even though we
might miss some cases, this final delimiter avoids
capturing regular verb-PP sequences.

Table 1 presents the results for each isolated con-
figuration (evaluated on the test corpus, with all
MWEs). These results are calculated based on the
fuzzy metrics of the shared task (Schneider et al.,
2014), where partial MWE matches are taken into
account. Our final MWE identification system is
the union of all rule configurations described above.
The final recall of the system is not the sum of cov-
erage values because MWE candidate lexicons may
overlap (multiple configurations may have identified
the same MWE).

Configuration Precision Coverage
CONTIG 57.9% 11.6%
GAPPY 36.0% 0.9%
NOUN2-KN 100.0% 1.6%

NOUN2-UKN 80.2% 18.9%
PROPN2..∞ 96.0% 8.5%
VP 71.2% 4.2%

Table 1: Precision and coverage per MWE annotation. Cover-

age is the recall of each configuration applied independently.

3.1 Error Analysis

Table 2 presents the system results for the most com-
mon POS-tag sequences in the test corpus, using an
exact match (a MWE is either correct or incorrect).
Overall results are presented in both exact and fuzzy
metrics.

N_N errors Since our system looks for all occur-
rences of adjacent noun-noun pairs, we obtain a high

3In the remainder of the paper, we abbreviate the POS tag
NOUN as N.

4The 13 most frequent non-literal particles: about, around,
away, back, down, in, into, off, on, out, over, through, up (Sin-
clair, 2012).

POS-tags Precision Recall F1

N_N 170/278 = 61% 170/181 = 94% 74.0%
VERB_ADP 43/60 = 72% 43/73 = 59% 64.9%
ADJ_N 5/6 = 83% 5/69 = 7% 12.9%
PROPN_PROPN 65/82 = 79% 65/66 = 98% 87.5%
VERB_PART 31/37 = 84% 31/49 = 63% 72.0%
PROPN_N 1/1 = 100% 1/34 = 3% 5.8%
N_N_N 0/0 = 100% 0/22 = 0% 0.0%
ADP_N 10/14 = 71% 10/22 = 45% 55.1%
VERB_N 1/5 = 20% 1/16 = 6% 9.2%
DET_N 4/23 = 17% 4/16 = 25% 20.2%
ADJ_N_N 0/0 = 100% 0/11 = 0% 0.0%

Overall (exact) 364/613 = 59% 364/837 = 43% 50.2%
Overall (fuzzy) 460/635 = 72% 461/1115 = 41% 52.6%

Table 2: MWE identification results on test set per POS-tag.

recall for N_N compounds. The most common false
positive errors are presented below.

• Not in the same phrase In 19 cases, our sys-
tem has identified two Ns that are not in the same
phrase; e.g. *when I have a problem customer
services don’t want to know. In order to realize
that these nouns are not related, we would need
parsing information. Nonetheless, it is not clear
whether an off-the-shelf parser could solve these
ambiguities in the absence of punctuation.

• Partial N_N_N 17 cases have been missed due to
only the first two nouns in the MWE being identi-
fied; e.g. *Try the memory foam pillows! – instead
of memory foam pillows.

• Partial ADJ_N_N 10 cases have been missed;
e.g. *My sweet pea plants arrived 00th May com-
pletely dried up and dead! – instead of sweet pea
plants. These cases are a consequence of the fact
that we do not look for adjective-noun pairs (see
ADJ_N errors below).

• Compositional N_N In 24 cases, our sys-
tem identified a compositional compound; e.g.
*Quality gear guys, excellent! Semantic features
would be required to filter such cases out.

• Questionable N tags 10 false noun compounds
were found due to words such as today being
tagged as nouns (e.g. *I’m saving gas today). An-
other 5 cases had adjectives classified as nouns:
*Maybe this is a kind of an artificial way to read
an e-book.
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VERB_ADP errors Most of the VERB_ADP expres-
sions were caught by the VP configuration, but we
still had some false negatives. In 7 cases, the under-
lying particle was not in our list (e.g. I regret ever
going near their store), while in 9 other cases, the
particle was followed by a noun phrase (e.g. Givin
out Back shots). 5 of the missed MWEs could have
been found by accepting the particle to be followed
by a SCONJ, or to be followed by the end of the line
as delimiters. Most of the false positives were due
to the verb being followed by an indirect object or
prepositional phrase. We believe that disambiguat-
ing these cases would require valency information,
either from a lexicon or automatically acquired from
large corpora (Preiss et al., 2007).

ADJ_N errors While the few ADJ_N pairs that our
system identified were usually correct MWEs, most
of the annotated cases were missed. This is because
we do not specifically look for adjective-noun pairs,
due to the high likelihood of them being compo-
sitional. For example, a simple ADJ_N annotation
scheme (as performed in NOUN2-UKN) would have
achieved a precision of only 69/505 = 14%.

Out of all annotated sentences, in 23 cases the
noun is transparent, and we could replace the ad-
jective by a synonym; e.g. I guess people are go-
ing again next week, do you think you’ll go? (which
could be replaced by the following week). In another
17 cases, the noun is transparent and the adjective
suggestive of the global meaning, even though it is
fixed; e.g. 23 is the lucky number (but not *fortunate
number, albeit related to luck).

These cases could be dealt with using fixedness
tests such as substitution and permutation (Fazly et
al., 2009; Ramisch et al., 2008).

PROPN_PROPN errors Since our system looks for
all occurrences of adjacent PROPN pairs, we obtain
near-perfect recall for PROPN_PROPN compounds.
Most false positives were caused by possessives or
personal titles, which were annotated as part of the
MWE in the gold standard.

VERB_PART errors The results for VERB_PART are
similar to the ones found for VERB_ADP: 3 false neg-
atives are due to the particle not being in our list,
and in another 7 cases they are followed by a noun
phrase. Additionally, in 6 cases the particle was fol-

lowed by a verb (e.g. Stupid Kilkenny didn’t get to
meet @Royseven). 4 false positives were CONTIG

cases of go to being identified as a MWE (e.g.
*In my mother’s day, she didn’t go to college). In
the training corpus, this MWE had been annotated
57% of the time, but in future constructions (e.g.
Definitely not going to purchase a car from here).
Canonical forms would be easy to model with a spe-
cific contextual rule of the form going to verb.

PROPN_N errors While the few PROPN_N pairs we
found were all correct MWEs, most of the anno-
tated cases were missed. These cases did not earn
special attention during the development of the sys-
tem due to an incorrectly perceived infrequency.
However, using only an annotation scheme such as
NOUN2-UKN, we could have achieved a precision of
72% for these MWEs.

N_N_N errors The occurrence of N_N_N sequences
is rare in the training corpus, and we did not specifi-
cally look for them, which explains our recall of 0%.
By annotating the longest sequence of Ns in the cor-
pus (NOUN2..∞), we could have obtained a precision
of 56% and recall of 91% for N_N_N. The precision
of N_N would also increase to 70% (with a recall of
93%). If we then replace NOUN2 by NOUN2..∞, the
full-system’s F-score increases to 56.23%.

ADP_N errors The false positives were ambiguous
determinerless PPs that can be compositional or not
according to the context. For instance, the system
identified *Try them all, in order after seeing The
Big Lebowski is in order tonight. False negatives
were mainly due to threshold-based filters, like at
all and in peace. Unsupervised MWE discovery
on large corpora using context-sensitive association
measures could have helped in these cases.

VERB_N errors We only generated 4 false pos-
itives, which look like light-verb constructions
missed by the annotators (give ride, place order)
False negatives include 8 cases of gerunds POS-
tagged as verbs (e.g. to listen to flying saucers),
which are actualy similar to ADJ_N cases discussed
above. We also found 7 false negatives, mainly light-
verb constructions, that were not present in the train-
ing corpus (take place, take control).
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DET_N errors 8 false negatives were composi-
tional time adjuncts (e.g. this morning, this season).
False positives are mainly cases that seem inconsis-
tent between training and test data concerning fre-
quent quantifiers (e.g. a lot, a bit, a couple).

Noun compounds (two or more Ns in a row) ac-
count for a significant proportion of MWEs in the
training corpus (601/4232 = 14%) and an even larger
amount of the testing corpus (203/837 = 24%). The
NOUN2 rule sets were essential to obtaining good
results. If we remove NOUN2 from our system, its
global performance would drop to a fuzzy F1 =
33.79%.

The domain of the corpus does not seem to have a
great influence on our method’s performance. Our
lowest performance is on the Reviews subcorpus
(fuzzy F1 = 49.57%) and our best performance is
on TED (fuzzy F1 = 56.76%).

Some of the missed MWEs are questionable and
we feel that our system should not annotate them.
These include regular verbal chains (shouldn’t have,
have been), infinitival and selected preposition to (to
take, go to) and compositional noun phrases (this
Saturday). Fortunately, these cases correspond to a
small proportion of the data.

4 Supersense Tagging

Supersense tagging takes place after MWE identi-
fication. Sense tags are coarse top-level Wordnet
synsets. The tagset for nouns and verbs has re-
spectively 26 and 15 supersense tags. We use a
predominant-sense heuristic to perform WSD.

Before tagging the test data, our system collects
all annotated supersense tags from MWEs in the
training corpus. We create a mapping with entries of
the form (w1, w2, . . . ,wN ) 7→ S, where each MWE
component wi = (lemmai, POStagi). This map-
ping indicates the most frequent tag S associated a
given MWE. Single words are treated as length-1
MWEs and are also added to this mapping.

The supersense tagging algorithm then goes
through all segmented units (MWEs or single
words) in the test corpus and annotates them accord-
ing to the most common tag seen in the training set.
If a tag has not been seen for a given word or MWE,
we do not tag it at all. This heuristic is very simple
and not very realistic. Nonetheless, it allowed us to

have a minimal supersense tagger quickly and then
focus on accurate MWE identification as the main
contribution of our system.

4.1 Error Analysis

Tables 3 and 4 show the confusion matrices of our
system for the 10 most common tags. Each row cor-
responds to a gold tag and contains the distribution
of predicted tags. The perfect system would have
numbers only in the main diagonal and zeros every-
where else. The skewed distribution of supersense
tags makes our simple heuristic quite effective when
the MWE/word has been observed in the training
data.

Known nouns seem easy to tag. Most of our er-
rors come from the fact that we did not observe in-
stances of a noun in the training data, and thus did
not assign it any tag (column “skipped”). Some dis-
tinctions seem harder than others due to similar se-
mantic classes: attributive/cognition and event/time.

The occurrence of verbs in the training data is less
of a problem than their polysemy. Stative verbs cor-
respond to the large majority of verbs in the dataset.
This is magnified by the nature of the corpus: re-
views tend to use stative verbs to talk about prod-
uct characteristics, tweets often use them to describe
the state of the author. While very frequent, stative
verbs are also difficult to disambiguate: most false
negatives were tagged as change verbs while most
false positives were tagged as social verbs. Some
distinctions seem extremely hard to make, specially
for less frequent supersense tags like contact/motion
and perception/cognition.

5 Conclusions and Future Work

We developed a simple rule-based system that was
able to obtain competitive results. Its main ad-
vantage is that it was very quick to implement
in the context of the generic framework of the
mwetoolkit. The system is freely available as part
of the official mwetoolkit release.5 The main limi-
tation of our system is that it cannot properly take
unseen MWEs into account and generalize from
seen instances. Moreover, most of our rule sets are
highly language dependent.

Ideas for future improvements include:

5http://mwetoolkit.sourceforge.net
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n.person 157 1 8 3 238 413
n.artifact 2 103 6 3 6 5 3 8 187 337
n.communic 2 4 128 4 2 1 6 2 2 1 119 284
n.act 1 9 5 111 4 1 9 14 83 256
n.group 6 4 2 1 54 2 1 130 205
n.time 1 114 2 6 56 180
n.cognition 1 4 3 3 48 1 5 51 130
n.attribute 3 1 3 1 30 10 53 130
n.location 5 2 9 7 2 23 1 45 99
n.event 1 16 1 28 31 84
not-a-noun 123 18 23 12 44 39 25 138 8 87 587

Table 3: Confusion matrix for noun supersense tagging. Skipped segments are those absent in training data.

Gold tag ST
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v.stative 617 5 21 3 3 14 4 47 1 53 769
v.communic 8 201 3 2 7 1 4 14 4 36 280
v.cognition 14 14 158 1 1 2 11 22 1 25 250
v.change 49 5 2 67 12 6 22 6 39 210
v.emotion 2 7 44 1 72 3 1 12 143
v.motion 5 2 9 77 8 20 122
v.perception 1 16 1 2 1 69 8 1 10 109
v.possession 17 5 1 1 1 43 5 5 79
v.social 16 2 3 2 5 29 18 75
v.contact 10 4 1 2 2 14 4 3 10 15 70
not-a-verb 355 9 9 12 7 7 4 405

Table 4: Confusion matrix for verb supersense tagging. Skipped segments are those absent in training data.

• Adding specific rules for verb-particle construc-
tions, probably based on a lexicon of idiomatic
combinations.

• Replacing the CONTIG method by a sequence tag-
ger for contiguous MWEs (e.g. using a CRF), in
order to identify unknown MWEs based on gen-
eralizations made from known MWEs (Constant
and Sigogne, 2011; Schneider et al., 2014).

• Taking parse trees into account to distinguish
MWEs from accidental cooccurrences (Nasr et
al., 2015).

• Using semantic-based association measures and
semantic-based features based on word embed-
dings to target idiomatic MWEs (Salehi et al.,
2015).

• Using fixedness features to identify and dis-
ambiguate very productive patterns like ADJ_N
(Ramisch et al., 2008; Fazly et al., 2009).

• Developing a more realistic WSD algorithm for
supersense tagging, able to tag unseen words and
MWEs and to take context into account.
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