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Abstract

We experiment with learning word representa-
tions designed to be combined into sentence-
level semantic representations, using an ob-
jective function which does not directly make
use of the supervised scores provided with
the training data, instead opting for a simpler
objective which encourages similar phrases
to be close together in the embedding space.
This simple objective lets us start with high-
quality embeddings trained using the Para-
phrase Database (PPDB) (Wieting et al., 2015;
Ganitkevitch et al., 2013), and then tune these
embeddings using the official STS task train-
ing data, as well as synthetic paraphrases for
each test dataset, obtained by pivoting through
machine translation.

Our submissions include runs which only
compare the similarity of phrases in the em-
bedding space, directly using the similarity
score to produce predictions, as well as a run
which uses vector similarity in addition to a
suite of features we investigated for our 2015
Semeval submission.

For the crosslingual task, we simply translate
the Spanish sentences to English, and use the
same system we designed for the monolingual
task.

1 Introduction

We describe the work carried out by the DCU-
SEManiacs team on the Semantic Textual Similar-
ity (STS) task at SemEval-2016 (Agirre et al., 2013;
Agirre et al., 2014; Nakov et al., 2015).

The main ideas we investigate in our systems are:

1. Using a margin-based objective function to
train high-quality sentence embeddings with-
out using supervised scores

2. Creating new synthetic training data using ma-
chine translation to generate artificial para-
phrases

3. Using ensemble models to combine features
generated by our embedding networks with
features obtained from other sources

1.1 Task Description

The Semeval Semantic Textual Similarity (STS) task
provides participants with training data consisting of
pairs of sentences annotated with gold-standard se-
mantic similarity scores. The crowd-sourced simi-
larity scores are given on a scale from 0 (no relation)
to 5 (semantic equivalence). Thus, our aim is to use
the training data to learn a model which predicts a
score between 0 and 5 for unseen input pairs (Nakov
et al., 2015). The monolingual STS task has been or-
ganized each year since 2012, and most approaches
have viewed the learning task as a regression prob-
lem, where real-valued model output is clipped to
be 0 <= ŷ <= 5 (Agirre et al., 2013; Agirre et al.,
2014; Nakov et al., 2015).

For two of our three STS systems, we take a novel
approach to this task, and directly use the similar-
ity scores produced by the embedding networks as
the predicted score. When training the embedding
networks, we use the gold scores only to reduce the
task-internal data to segments with a high-semantic
similarity – embeddings are then learned using a
simplified training objective which only makes use
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of training pairs which are “perfect” paraphrases
(see section 2.1). Interestingly, these models per-
form very well without access to the gold standard
scores.

The 2016 edition of the STS task also introduced a
pilot crosslingual STS task in addition to the mono-
lingual STS task. The crosslingual task is similar
to monolingual STS, except either member of each
sentence pair may be in Spanish (language identi-
fication is not provided with the data). In order to
use our monolingual STS system in the crosslin-
gual task, we first automatically identify sentences
which are probably in Spanish, use machine transla-
tion to translate Spanish sentences to English, then
approach the crosslingual task as another monolin-
gual task.

Although our systems performed well in both
the crosslingual and monolingual STS tasks, we
also discuss some possible shortcomings of our ap-
proach, and opportunities for improvement.

The rest of the paper is organized as follows: sec-
tion 2 discusses the main novelties of our submis-
sions, and presents the task-internal and external
datasets we leverage for training our systems, sec-
tion 3 gives a detailed discussion of each of our sub-
mitted systems, including information on hyperpa-
rameters and training configuration, section 4 gives
a summary of experimental results, and section 5
discusses the advantages and disadvantages of our
approach, and proposes avenues for future work.

2 Methodology

2.1 Paragram Vectors and PPDB

Wieting (2015) introduced Paragram-phrase embed-
dings, which use a novel training objective designed
to learn robust sentence-level embeddings which are
simple bag-of-words averages of the embeddings in
each sequence. Wieting discusses several possible
means of encoding a sequence into a vector using
shallow and deep feedforward and recurrent net-
works. Surprisingly, the best performing model is
a single-layer word embedding matrix, where sen-
tence vectors are constructed by taking the mean of
the token embeddings (equation 1).

In our preliminary experiments, we also exper-
imented with deeper feedforward models, as well
as mono-directional and bi-directional Long Short-

Term Memory (LSTM) recurrent models (Hochre-
iter and Schmidhuber, 1997) in place of the simple
averaging approach; however, we did not observe an
improvement in performance, which supports the re-
sults presented by Wieting (2015).

We also experimented with objective functions
that are more representative of the task objective,
such as Kullback-Leibler Divergence (Tai et al.,
2015; Wieting et al., 2015); however, we found that
the simple margin-based training objective outper-
forms cost-functions which take the score into ac-
count. We hypothesize that this is because the notion
of “partial-similarity” is mostly captured by the bag-
of-words averaging of all token embeddings to com-
pose the vector representation of a sequence, and be-
cause the semantic similarity scores for the STS task
are sufficiently coarse that the bulk of their seman-
tic content can be efficiently captured even when all
structural information has been discarded.

Equation 2 shows the objective function for the
Paragram-phrase model. This function pushes sim-
ilar examples together, and dissimilar examples
apart, driven by the margin δ. g(x) is some differ-
entiable function which transforms a sequence of to-
kens into a fixed-size vector. This model is simple
to implement, and very fast to train1. An additional
advantage of the margin-based objective function is
that the model can learn from any dataset containing
pairs of phrases which are semantically equivalent,
enabling the use of unsupervised paraphrase data
during training. We exploit this flexibility to greatly
improve the performance of our models by tuning
the Paragram vectors with new data (section 3.2).

embedding(x) =
1
n

n∑
i

W xi

word (1)

The word embeddings are the only parameters of
this network. Intuitively, tokens whose embeddings
have a high L2 norm in this space contribute more
to the semantics of a sentence than those whose
norm is low. This simple parameterization has the
added advantage that it is very fast to train, rela-
tive to other possible architectures, such as mono-
or bi-directional LSTMs or Gated Recurrent Units
(GRUs) (Chung et al., 2015). However, the main

1our implementations will be made available at
https://www.github.com/chrishokamp/synthetic-embeddings
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min
Ww

1
|X|

∑
〈x1,x2〉∈X

max(0, δ − cos(g(x1), g(x2)) + cos(g(x1), g(t1)))

+max(0, δ − cos(g(x1), g(x2)) + cos(g(x2), g(t2)))

+λw||Wwinitial
−Ww||2

(2)

Dataset DCU 2015 model Paragram Raw Paragram + DCU 2015
forums .673 .647 .672
students .682 .773 .732

belief .708 .774 .762
headlines .810 .748 .816
images .840 .826 .850
ALL .743 .754 .766

Table 1: Using the 2015 STS data as development data, a comparison of our 2015 model with raw results from paragram vectors

trained on PPDB, and an ensemble system of our 2015 model with the paragram similarity included as a feature.

advantage of this objective function for our work is
that models can now be trained with any dataset con-
sisting of pairs of sequences which are semantically
equivalent. Thus datasets such as PPDB can be used
to train high-quality embeddings.

We start by using the 300-dimensional vectors
provided by Wieting (2015). These vectors were
trained using the XXL version of PPDB (Ganitke-
vitch et al., 2013). The sentence embeddings ob-
tained by averaging the raw paragram vectors are
used as the development baseline for our systems,
and we look for ways to tune the model for the STS
task without changing the training objective.

This training objective assumes that each pair is
“sufficiently similar” – there is no explicit way to
represent partial similarity, since the δ margin dic-
tates that the model should predict a score of at least
δ for positive training examples. Therefore, we filter
the Semeval STS 2012-2014 training data to contain
only those pairs whose similarity is >= 3.82.

3 System Descriptions

3.1 Generating Negative Examples

Wieting (2015) discusses two ways of selecting neg-
ative examples for the paragram vector training ob-
jective. The first is to compute the similarity of x1

2This cutoff parameter was tuned between 3-4.5 with incre-
ments of 0.1, note that lowering this threshold results in more
training data, but also lowers the quality of the paraphrases,
since more partially-similar pairs are included

and x2 with every segment in the training minibatch,
choosing the most similar segment t1 to x1 and the
most similar segment t2 to x2 that are not members
of the current pair (x1, x2), and to use these as the
negative training examples for the pair. The sec-
ond is to alternate between choosing a random neg-
ative example and choosing the most similar phrase.
Although the approach of choosing the most simi-
lar negative example is theoretically satisfying, there
are heavy computational costs: this requires at least
N vector comparisons for each example in each pair,
where N is the size of the minibatch, and the com-
parisons must be repeated for each training epoch,
since the most similar segment may have changed
since the previous epoch. Due to the computational
overhead associated with computing the most sim-
ilar example for each example in each minibatch,
we opt instead to use randomly chosen segments as
the negative examples. Because the random neg-
ative examples are re-selected for each epoch, the
model also views more data – each time a training
pair is seen, the negative examples t1 and t2 selected
for x1 and x2 are different. Intuitively, this should
positively contribute to desirable invariance in the
learned semantic embeddings; however, we did not
validate this empirically.

3.2 Synthetic Data Generation

We believe that the requirement for human anno-
tation is the major bottleneck for producing more
training data for the STS task. Inspired by the
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Dataset task-internal synthetic fusion Median Best System
answer-answer .627 .688 .583 .480 .692

headlines .719 .687 .764 .764 .827
plagiarism .808 .819 .814 .789 .841
postediting .809 .809 .847 .812 .867

question-question .516 .506 .566 .571 .747
ALL .699 .7133 .717 0.689 .778

Table 2: Monolingual STS results by run, with median scores and best scores for reference. “fusion” indicates the ensemble

system. Our best performing systems are bolded.

Dataset task-internal synthetic Best System
News .894 .897 .912

Multi-source .769 .793 .819
Mean* .832 .846 .863

Table 3: Crosslingual STS results by run, with best scores for reference. Our best performing systems are bolded.

methodology used to create PPDB (Ganitkevitch et
al., 2013), we propose a novel means of produc-
ing paraphrases which combines domain-adaptation
with paraphrase generation using two or more MT
systems. For the experiments presented here, we
translate every test sentence into Spanish, then
back into English, and add the resulting “pseudo-
instance” to the data provided by the task organiz-
ers. This method has the additional advantage that
we can generate new paraphrases targeted at the sen-
tences in the test data, allowing unsupervised do-
main adaptation of the model to the test datasets.

This approach is obviously dependent upon the
quality of the machine translation output; however,
if translation from e → f → ê outputs exactly the
input e, the new synthetic training example would
be of little use. Therefore, the MT systems used
for synthetic generation should ideally produce flu-
ent output ê which paraphrases the original input e,
but is diverse with respect to the gold-standard ref-
erence translations.

In order to validate that adding synthetic data
actually improves performance, we generated syn-
thetic paraphrases for the 2015 Images dataset, and
compared performance with respect to the Paragram
baseline, and with respect to a model trained with
only the task-internal data. These experiments con-
firmed that synthetic data generation can signifi-
cantly improve performance. During development,
we did not test performance on all of the 2015 data
because the process of generating paraphrases is

time-consuming, and because we wanted to keep our
usage of the Google Translate API within the free
credit allocated for test usage of the API, to ensure
that our results can be easily replicated.

3.3 Semantic Textual Similarity

We submit three systems to the monolingual STS
task. The first system is an ensemble of features
from our 2015 submission, together with two fea-
tures produced by the embedding systems. The sec-
ond system uses the task-internal data from Semeval
2012-2015 to tune the Paragram embeddings for the
STS task. The third system includes one synthetic
paraphrase for each sentence in each test dataset,
generated by first translating the sentence into Span-
ish, then back into English. Note that, due to time
constraints we did not tune a separate model for
each test dataset, instead we used one model trained
with all synthetic paraphrases from all test datasets.
We believe that training a separate model for each
test dataset with synthetic data for only that dataset
would improve performance somewhat. Because the
scores of the embedding models are in the range 0–
1, we scale the outputs by a factor of 5 to match the
Semeval scoring system.

3.4 Ensemble Model

In order to test the use of embedding model similar-
ity scores as downstream features, we train an en-
semble system with all features from our 2015 sub-
mission along with the similarity scores generated
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Feature Gini Coefficient Description
paraphrase1 0.337 Vector similarity
paraphrase2 0.073 Vector similarity with synthetic data
cosine icf 0.054 Normalized cosine similarity

f15 0.049 Weighted Word Match
f14 0.042 WordNet match
f20 0.038 Relative length difference

product 0.036 Word2Vec based sentence similarity score
f2 0.033 F1-score of number match

nn1 0.028 Comparing only nouns using Word2Vec
Table 4: Ensemble model top 10 features in decreasing order

by both the task-internal and synthetic models. This
ensemble, which we call “fusion” was our best sys-
tem overall (see table 2). We used gradient boosting
regressor3 model trained over combined set of previ-
ous year’s Semeval STS data sets from 2012-2015.
The details of this system are described in (Arora et
al., 2015).

3.5 Cross-lingual

For our submission to the cross-lingual STS task, we
leverage the Google translate API4 in three ways:
the language identification API is used to detect
which segments are in Spanish, the translation API
is used to translate Spanish sentences into English,
and the pivoting method for generating synthetic
paraphrases discussed in section 3.2 is used to gen-
erate one new paraphrase for each segment in each
test instance. We then apply our monolingual em-
bedding methodology to the translated text with no
modification.

3.6 Training Configuration

For the final systems, we use all existing task-
internal training data from the Semeval STS task
from 2012-2015. The 2015 datasets were used
as validation data to find the best system settings,
and then included in the training data for the fi-
nal systems. δ from equation 2 is set to 0.8 for
all of our experiments. Embedding dimensional-
ity is 300. We use a minibatch size of 100, and
use AdaDelta (Zeiler, 2012) as the gradient update

3http://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
GradientBoostingRegressor.html

4https://cloud.google.com/translate/

method. The regularization weight λ is set to 10−5

for all models.

Dataset % Unknown
question-question 3.2

plagiarism 4.9
post-editing 4.2

headlines 4.86
answer-answer 0.81

Table 5: Total % unknown for each 2016 dataset

The pretrained paragram vectors have a size of
42091; we do not add any new tokens to the in-
dex. Table 5 gives the total percentage of each 2016
test dataset which is unknown with respect to our
index. Because the baseline paragram vector index
does not contain a special “UNKNOWN” token, we
randomly choose a low-frequency token to assign as
unknown. Some experimentation showed that using
a rare token instead of a stopword results in a small
performance improvement.

4 Results

Our monolingual STS systems all performed bet-
ter than the median system, with the fusion system
slightly outperforming the embedding model trained
with synthetic data (see tables 2 and 3).

For all systems in both the monolingual and
crosslingual STS tasks, we observe an overall im-
provement over the Paragram baseline when using
task-internal training data, and a further improve-
ment when we incorporate synthetic training exam-
ples. This result validates the utility of synthetic
paraphrases generated by machine translation, and
encourages us to explore this avenue further.
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For our ensemble based approach, we analyzed
the features using Gini importance5 (Singh et al.,
2010). Table 4 shows the importance of the top 10
features in our ensemble model. The relative impact
of our two paraphrase features is very high, confirm-
ing the utility of the paragram embedding model for
the STS task.

Our Features
task-internal paraphrases, synthetic paraphrases,

cosine icf, product w2v, nn w2v, vb w2v, cosine,
sum w2v, det 1, det 2

TakeLab (Šarić et al., 2012) features
weighted word match, wn sim match, relative len-

difference, number features, weighted dist sim,
case matches, relative ic difference

Table 6: Important features.

5 Conclusions

We have presented a method of fine-tuning
Paragram-phrase vectors for the STS task using both
task-internal and synthetic paraphrases. Our embed-
ding models achieve surprisingly good performance
on the STS task without directly taking advantage of
the gold-standard scores during training. We have
also introduced a novel method of generating syn-
thetic paraphrases for test instances using machine
translation. Finally we have shown that a combina-
tion of traditional features with the similarity score
learned by our embedding models outperforms each
individual system.

Future work will focus on increasing the diversity
of the synthetic data, and on incorporating multiple
objective functions into different stages of the train-
ing process.
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