
Proceedings of SemEval-2016, pages 52–57,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

CUFE at SemEval-2016 Task 4: A Gated Recurrent Model for Sentiment
Classification

Mahmoud Nabil1, Mohamed Aly2 and Amir F. Atiya3

1,2,3Computer Engineering, Cairo University, Egypt
2Visual Computing Center, KAUST, KSA

1mah.nabil@cu.edu.eg
2mohamed@mohamedaly.info

3amir@alumni.caltech.edu

Abstract

In this paper we describe a deep learn-
ing system that has been built for SemEval
2016 Task4 (Subtask A and B). In this work
we trained a Gated Recurrent Unit (GRU)
neural network model on top of two sets of
word embeddings: (a) general word embed-
dings generated from unsupervised neural lan-
guage model; and (b) task specific word em-
beddings generated from supervised neural
language model that was trained to classify
tweets into positive and negative categories.
We also added a method for analyzing and
splitting multi-words hashtags and appending
them to the tweet body before feeding it to our
model. Our models achieved 0.58 F1-measure
for Subtask A (ranked 12/34) and 0.679 Recall
for Subtask B (ranked 12/19).

1 Introduction

Twitter is a huge microbloging service with more
than 500 million tweets per day1 from different lo-
cations in the world and in different languages. This
large, continuous, and dynamically updated content
is considered a valuable resource for researchers.
However many issues should be taken into account
while dealing with tweets, namely: (1) informal lan-
guage used by the users; (2) spelling errors; (3) text
in the tweet may be referring to images, videos, or
external URLs; (4) emoticons; (5) hashtags used
(combining more than one word as a single word);
(6) usernames used to call or notify other users; (7)

1http://internetlivestats.com/
twitter-statistics/

spam or irrelevant tweets; and (8) character limit for
a tweet to 140 characters. This poses many chal-
lenges when analyzing tweets for natural language
processing tasks. In this paper we describe our sys-
tem used for SemEval 2016 (Nakov et al., 2016b)
Subtasks A and B. Subtask A (Message Polarity
Classification) requires classifying a tweet’s senti-
ment as positive; negative; or neutral,. Subtask B
(Tweet classification according to a two-point scale)
requires classifying a tweet’s sentiment given a topic
as positive or negative. Our system uses a GRU neu-
ral network model (Bahdanau et al., 2014) with one
hidden layer on top of two sets of word embeddings
that are slightly fine-tuned on each training set (see
Fig. 1). The first set of word embeddings is con-
sidered as general purpose embeddings and was ob-
tained by training word2vec (Mikolov et al., 2013)
on 20.5 million tweets that we crawled for this pur-
pose. The second set of word embeddings is consid-
ered as task specific set, and was obtained by train-
ing on a supervised sentiment analysis dataset using
another GRU model. We also added a method for
analyzing multi-words hashtags by splitting them
and appending them to the body of the tweet before
feeding it to the GRU model. In our experiments
we tried both keeping the word embeddings static
during the training or fine-tuning them and reported
the result for each experiment. We achieved 0.58
F1-measure for Subtask A (ranked 12/34) and 0.679
Recall for Subtask B (ranked 12/19).

2 Related Work

A considerable amount of research has been done
to address the problem of sentiment analysis for

52

Figure 1: The architecture of the GRU deep Learning model

social content. Nevertheless, most of the state-
of-the-art systems still extensively depends on fea-
ture engineering, hand coded features, and linguis-
tic resources. Recently, deep learning model gained
much attention in sentence text classification in-
spired from computer vision and speech recognition
tasks. Indeed, two of the top four performing sys-
tems from SemEval 2015 used deep learning mod-
els. (Severyn and Moschitti, 2015) used a Convo-
lution Neural Network (CNN) on top of skip-gram
model word embeddings trained on 50 million un-
supervised tweets. In (Astudillo et al., 2015) the
author built a model that uses skip-gram word em-
beddings trained on 52 million unsupervised tweets
then they project these embeddings into a small
subspace, finally they used a non-linear model that
maps the embedding subspace to the classification
space. In (Kim, 2014) the author presented a se-
ries of CNN experiments for sentence classification
where static and fine-tuned word embeddings were
used. Also the author proposed an architecture mod-
ification that allow the use of both task-specific and
static vectors. In (Lai et al., 2015) the author pro-
posed a recurrent convolutional neural network for
text classification. Finally regarding feature engi-
neering methods, (Büchner and Stein, 2015) the top
performing team in SemEval 2015, used an ensem-
ble learning approach that averages the confidence
scores of four classifiers. The model uses a large set
of linguistic resources and hand coded features.

3 System Description

Fig 1 shows the architecture of our deep learning
model. The core of our network is a GRU layer,
which we chose because (1) it is more computational
efficient than Convolutional Neural Network (CNN)
models (Lai et al., 2015) that we experimented with
but were much slower; (2) it can capture long se-
mantic patterns without tuning the model parame-
ter, unlike CNN models where the model depends
on the length of the convolutional feature maps for
capturing long patterns; (3) it achieved superior per-
formance to CNNs in our experiments.

Our network architecture is composed of a word
embeddings layer, a merge layer, dropout layers, a
GRU layer, a hyperbolic tangent tanh layer, and a
soft-max classification layer. In the following we
give a brief description of the main components of
the architecture.

3.1 Embedding Layer

This is the first layer in the network where each
tweet is treated as a sequence of words w1, w2...wS

of length S, where S is the maximum tweet length.
We set S to 40 as the length of any tweet is limited
to 140 character. We used zero padding while deal-
ing with short tweets. Each word wi is represented
by two embedding vectors wi1 , wi2∈Rd where d is
the embedding dimension, and according to (As-
tudillo et al., 2015) setting d to 200 is a good choice
with respect to the performance and the computa-
tion efficiency. wi1 is considered a general-purpose
embedding vector while wi2 is considered a task-

53

specific embedding vector. We performed the fol-
lowing steps to initialize both types of word embed-
dings:

1. For the general word embeddings we collected
about 40M tweets using twitter streaming API
over a period of two month (Dec. 2015 and Jan.
2016). We used three criteria while collecting
the tweets: (a) they contain at least one emoti-
con in a set of happy and sad emoticons like
’:)’ ,’:(’, ’:D’ ... etc. (Go et al., 2009); (b) hash
tags collected from SemEval 2016 data set; (c)
hash tags collected from SemEval 2013 data
set. After preparing the tweets as described in
Section 4 and removing retweets we ended up
with about 19 million tweet. We also appended
1.5 million tweets from Sentiment140 (Go et
al., 2009) corpus after preparation so we end up
with about 20.5 million tweet. To train the gen-
eral embeddings we used word2vec (Mikolov
et al., 2013) neural language model skipgram
model with window size 5, negative sampling
and filtered out words with frequency less than
5.

2. For the task specific word embeddings we used
semi-supervised 1.5 million tweets from sen-
timent140 corpus, where each tweet is tagged
either positive or negative according to the
tweet’s sentiment . Then we applied another
GRU model similar to Fig 1 with a modifica-
tion to the soft-max layer for the purpose of the
two classes classification and with random ini-
tialized embeddings that are fine-tuned during
the training. We used the resulting fine-tuned
embeddings as task-specific since they contain
contextual semantic meaning from the training
process.

3.2 Merge Layer

The purpose of this layer is to concatenate the two
types of word embeddings used in the previous layer
in order to form a sequence of length 2S that can be
used in the following GRU layer.

3.3 Dropout Layers

The purpose of this layer is to prevent the previous
layer from overfitting (Srivastava et al., 2014) where

some units are randomly dropped during training so
the regularization of these units is improved.

3.4 GRU Layer
This is the core layer in our model which takes an in-
put sequence of length 2S words each having dimen-
sion d (i.e. input dimension is 2Sd) . The gated re-
current network proposed in (Bahdanau et al., 2014)
is a recurrent neural network (a neural network with
feedback connection, see (Atiya and Parlos, 2000))
where the activation hj

t of the neural unit j at time t
is a linear interpolation between the previous activa-
tion hj

t−1 at time t − 1 and the candidate activation
h̃j

t (Chung et al., 2014):

hj
t = (1−zj

t)h
j
t−1 + zj

t h̃
j
t

where zj
t is the update gate that determines how

much the unit updates its content, and h̃j
t is the

newly computed candidate state.

3.5 Tanh Layer
The purpose of this layer is to allow the neural net-
work to make complex decisions by learning non-
linear classification boundaries. Although the tanh
function takes more training time than the Rectified
Linear Units (ReLU), tanh gives more accurate re-
sults in our experiments.

3.6 Soft-Max Layer
This is last layer in our network where the output of
the tanh layer is fed to a fully connected soft-max
layer. This layer calculates the classes probability
distribution.

P (y = c |x, b) =
exp

(
wT

c x + bc

)
∑K

k=1 exp
(
wT

k x + bk

)
where c is the target class, x is the output from the
previous layer, wk and bk are the weight and the bias
of class k, and K is the total number of classes. The
difference between the architecture used for Subtask
A and Subtask B is in this layer, where for Subtask
A three neurons were used (i.e. K = 3) while for
Subtask B only two neurons were used (i.e. K = 2).

4 Data Preparation

All the data used either for training the word em-
beddings or for training the sentiment classification
model undergoes the following preprocessing steps:

54

Pattern Examples Normalization
Usernames @user1,@user2 UserName

Happy emotions :), :-), :=) :)
Sad emotions :(, :-(, :=(:(

Laugh emotions :D, :-D, :=D :D
Kiss emotions :-*, :*, :-)* KISS

Surprise emotions :O, :-o :o
Tongue emotions :P, :p :p

Numbers 123 NUM
URLs www.google.com URL

Topic (Subtask B only) Microsoft Entity

Table 1: Normalization Patterns

1. Using NLTK twitter tokenizer2 to tokenize
each tweet.

2. Using hand-coded tokenization regex to split
the following suffixes: ’s, ’ve, ’t , ’re, ’d, ’ll.

3. Using the patterns described in Table 1 to nor-
malize each tweet.

4. Adding StartToken and EndToken at
the beginning and the ending of each tweet.

5. Splitting multi-word hashtags as explained be-
low.

Consider the following tweet “Thinking of revert-
ing back to 8.1 or 7. #Windows10Fail”. The sen-
timent of the tweet is clearly negative and the sim-
plest way to give the correct tag is by looking at the
word “Fail“ in the hashtag “#Windows10Fail”. For
this reason we added a depth first search dictionary
method in order to infer the location of spaces inside
each hashtag in the tweet and append the result to-
kens to the tweet’s end. We used 125k words dictio-
nary3 collected from Wikipedia. In the given exam-
ple, we first lower the hashtag case, remove numbers
and underscores from the hashtag then we apply our
method to split the hashtag this results in two tokens
“windows” and “fail”. Hence, we append these two
tokens to the end of the tweet and the normal prepa-
ration steps continue. After the preparation the tweet
will look like “ StartToken Thinking of reverting
back to NUM or NUM . #Windows10Fail. win-
dows fail EndToken ”.

2http://nltk.org/api/nltk.tokenize.html
3http://pasted.co/c1666a6b

Dataset all pos. neg. neut.
train-A 12886 5651 1967 5268
dev-A 3222 1395 462 1365
train-B 6324 5059 1265 -
dev-B 1265 1059 206 -

Table 2: Tweets distribution for Subtask A and B

Dataset Subtask A Subtask B
GRU-static 0.635 0.826

GRU-fine-tuned 0.639 0.829
GRU-fine-tuned + Split Hashtag 0.642 0.830

Table 3: Development results for Subtask A and B. Note: av-

erage F1-mesure for positive and negative classes is used for

Subtask A, while the average recall is used for Subtask B.

5 Experiments

In order to train and test our model for Subtask A, we
used the dataset provided for SemEval-2016 Task 4
and SemEval-2013 Task 2. We obtained 8,978 from
the first dataset and 7,130 from the second, the re-
maining tweets were not available. So, we ended up
with a dataset of 16,108 tweets. Regarding Subtask
B we obtained 6,324 from SemEval-2016 provided
dataset. We partitioned both datasets into train and
development portions of ratio 8:2. Table 2 shows the
distribution of tweets for both Subtasks.

For optimizing our network weights we used
Adam (Kingma and Ba, 2014), a new and compu-
tationally efficient stochastic optimization method.
All the experiments have been developed using
Keras4 deep learning library with Theano5 backend
and with CUDA enabled. The model was trained
using the default parameters for Adam optimizer,
and we tried either to keep the weights of embed-
ding layer static or slightly fine-tune them by using
a dropout probability equal to 0.9. Table 3 shows
our results on the development part of the data set
for Subtask A and B where we report the official
performance measure for both subtasks (Nakov et
al., 2016a). From 3 the results it is shown that
fine-tuning word embeddings with hashtags splitting
gives the best results on the development set. All our
experiments were performed on a machine with In-
tel Core i7-4770 CPU @ 3.40GHz (8 cores), 16GB

4http://keras.io/
5http://deeplearning.net/software/

theano/

55

Dataset Baseline F-measure (Old) F-measure (New)
Tweet-2013 0.292 0.642 0.665
SMS-2013 0.190 0.596 0.665
Tweet-2014 0.346 0.662 0.676

Tweet-sarcasm 0.277 0.466 0.477
Live-Journal 0.272 0.697 0.631
Tweet-2015 0.303 0.598 0.624
Tweet-2016 0.255 0.580 0.608

Table 4: Results for Subtask A on different SemEval datasets.

Dataset Baseline Recall (Old) Recall (New)
Tweet-2016 0.389 0.679 0.767
Table 5: Result for Subtask B on SemEval 2016 dataset.

of RAM and GeForce GT 640 GPU. Table 4 shows
our individual results on different SemEval datasets.
Table 5 shows our results for Subtask B. From the re-
sults and our rank in both Subtasks, we noticed that
our system was not satisfactory compared to other
teams this was due to the following reasons:

1. We used the development set to validate our
model in order to find the best learning param-
eters, However we mistakenly used the learn-
ing accuracy to find the optimal learning pa-
rameters especially the number of the training
epochs. This significantly affected our rank
based on the official performance measure. Ta-
ble 4 and Table 5 show the old and the new re-
sults after fixing this bug.

2. Most of the participating teams in this year
competition used deep learning models and
they used huge datasets (more than 50M
tweets) to train and refine word embeddings ac-
cording to the emotions of the tweet. However,
we only used 1.5M from sentiment140 corpus
to generate task-specific embeddings.

3. The model used for generating the task-specific
embeddings for Subtask A should be trained on
three classes not only two (positive, negative,
and neutral) where if the tweet contains pos-
itive emotions like “:)” should be positive, if
it contains negative emotions like “:(“ should
be negative, and if it contains both or none it
should be neutral.

6 Conclusion

In this paper, we presented our deep learning model
used for SemEval2016 Task4 (Subtasks A and B).

The model uses a gated recurrent layer as a core
layer on top of two types of word embeddings
(general-purpose and task-specific). Also we de-
scribed our steps in generating both types word em-
beddings and how we prepared the dataset used es-
pecially when dealing with multi-words hashtags.
The system ranked 12th on Subtask A and 12th for
Subtask B.

Acknowledgments

This work has been funded by ITIDA’s ITAC project
number CFP65.

References

Ramon F Astudillo, Silvio Amir, Wang Ling, Bruno Mar-
tins, Mário Silva, Isabel Trancoso, and Rua Alves
Redol. 2015. Inesc-id: Sentiment analysis without
hand-coded features or liguistic resources using em-
bedding subspaces. SemEval-2015, page 652.

Amir F Atiya and Alexander G Parlos. 2000. New results
on recurrent network training: unifying the algorithms
and accelerating convergence. Neural Networks, IEEE
Transactions on, 11(3):697–709.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Matthias Hagen Martin Potthast Michel Büchner and
Benno Stein. 2015. Webis: An ensemble for twitter
sentiment detection. SemEval-2015, page 582.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1:12.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In AAAI, pages 2267–2273.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

56

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Se-
bastiani, and Veselin Stoyanov. 2016a. Evaluation
measures for the semeval-2016 task 4 sentiment anal-
ysis in twitter (draft: Version 1.1).

Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin Stoy-
anov, and Fabrizio Sebastiani. 2016b. SemEval-2016
task 4: Sentiment analysis in Twitter. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation (SemEval 2016), San Diego, California, June.
Association for Computational Linguistics.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Unitn: Training deep convolutional neural network for
twitter sentiment classification. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), Association for Computational Lin-
guistics, Denver, Colorado, pages 464–469.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

57

