
Proceedings of NAACL-HLT 2016, pages 670–680,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Syntactic Parsing of Web Queries with Question Intent

Yuval Pinter1, Roi Reichart1,2, and Idan Szpektor1

1Yahoo Research, Haifa 31905, Israel, {yuvalp, roiri, idan}@yahoo-inc.com
2Faculty of Industrial Engineering and Management, Technion, IIT

Abstract

Accurate automatic processing of Web queries is im-
portant for high-quality information retrieval from
the Web. While the syntactic structure of a large
portion of these queries is trivial, the structure of
queries with question intent is much richer. In this
paper we therefore address the task of statistical
syntactic parsing of such queries. We first show
that the standard dependency grammar does not ac-
count for the full range of syntactic structures man-
ifested by queries with question intent. To allevi-
ate this issue we extend the dependency grammar to
account for segments – independent syntactic units
within a potentially larger syntactic structure. We
then propose two distant supervision approaches for
the task. Both algorithms do not require manually
parsed queries for training. Instead, they are trained
on millions of (query, page title) pairs from the Com-
munity Question Answering (CQA) domain, where
the CQA page was clicked by the user who initiated
the query in a search engine. Experiments on a new
treebank1 consisting of 5,000 Web queries from the
CQA domain, manually parsed using the proposed
grammar, show that our algorithms outperform alter-
native approaches trained on various sources: tens of
thousands of manually parsed OntoNotes sentences,
millions of unlabeled CQA queries and thousands of
manually segmented CQA queries.

1 Introduction

As the World Wide Web grows in volume, it encompasses
ever-increasing amounts of text. A major gateway to this
invaluable resource is Web queries which users compose
to guide a search engine in retrieving the information they
desire to inspect. Automatic processing of Web queries is
therefore of utmost importance.

1This treebank has been released via Yahoo’s Webscope pro-
gram: webscope.sandbox.yahoo.com.

Previous research (Bergsma and Wang, 2007; Barr et
al., 2008) suggested that many Web queries are trivial in
structure, usually embodying entity lookup, e.g. “frozen”
or “condos in NY”. However, with the increasing popular-
ity of Community Question Answering (CQA) sites, such
as Yahoo Answers, StackOverflow and social QA forums,
more Web queries encompass information needs related
to questions that these sites can answer. We found that
this subcategory of queries, which we call CQA queries
(following Liu et al. (2011; Carmel et al. (2014)), exhibits
a wide range of structures. This suggests that the process-
ing of such queries, which constitute∼10% of all queries
issued to search engines (White et al., 2015), may benefit
from syntactic analysis (Tsur et al., 2016).

Recent progress in statistical parsing (Choi et al.,
2015) has resulted in models that are both fast, pars-
ing several hundred sentences per second, and accurate.
These parsers, however, still suffer from the problem
of domain adaptation (McClosky et al., 2010), excelling
mostly when their training and test domains are similar.
This problem is of particular importance in the hetero-
geneous Web (Petrov and McDonald, 2012) and is ex-
pected to worsen when addressing queries, due to their
non-standard grammatical conventions.

Some recent work addresses the syntactic analysis of
User Generated Content (UGC) (Petrov and McDonald,
2012; Eisenstein, 2013; Kong et al., 2014). Yet, these
efforts generally focus on UGC aspects related to gram-
matical mistakes made by users (Foster et al., 2008) and
to the unique writing conventions of specific Web plat-
forms, such as Twitter (Foster et al., 2011; Kong et al.,
2014). Our analysis of thousands of CQA queries, how-
ever, reveals that regardless of such issues, CQA queries
are generated by a well-defined grammar that sometimes
deviates from the one used to generate the standard writ-
ten language of edited resources such as newspapers.

Consequently, this work has two main contributions.
First, we extend the standard dependency grammar to de-

670



(a)
invent toy school project

root

nn
nn

dobj

(b)
invent toy school project

root

dobj nn

root

Figure 1: A two-segment query, parsed by an off-the shelf parser: (a) as
is, producing an incorrect noun phrase (“toy school project”); (b) after
correct segmentation.

scribe the syntax of queries with question intent. The ex-
tended grammar is driven by the concept of a syntactic
segment: an independent syntactic unit within a poten-
tially larger syntactic structure. A query may include
several segments, potentially related to each other se-
mantically but lacking an explicit syntactic connection.
Hence, query analysis consists of the query’s segments
and their internal dependency structure, and may be com-
plemented by the inter-segment semantic relationships.
Therefore, we constructed a new query treebank consist-
ing of 5,000 CQA queries, manually annotated accord-
ing to our extended grammar. A comparison of direct
application of an off-the-shelf parser (Clear (Choi and
McCallum, 2013)) trained on edited text (OntoNotes 5
(Weischedel et al., 2013)) to a raw query with the appli-
cation of the same parser to the gold-standard segments
of that query is given in Fig. 1.

Second, we develop two CQA query parsing algo-
rithms that can adapt any given off-the-shelf dependency
parser trained on standard edited text to produce syntactic
structures that conform to the extended grammar. Both
our algorithms employ distant supervision in the form
of a training set consisting of millions of (query, title)
pairs. The title is the title of the Yahoo Answers ques-
tion page that was clicked by the user who initiated the
query. The alignment between the query and the title
provides a valuable training signal for query segmenta-
tion and parsing, since the title is usually a grammatical
question. Both algorithms employ an off-the-shelf parser,
but differ on whether segmentation and parsing are per-
formed in a pipeline or jointly.

We compared our algorithms to several alternatives:
(a) Direct application of an off-the-shelf parser to queries;
(b) A supervised variant of our pipeline algorithm where
thousands of manually segmented queries replace the dis-
tant supervision source; and (c) A pipeline algorithm sim-
ilar to ours where segmentation is based on the predic-
tions of a query language model. We report results on two
query treebank tasks: (a) Dependency parsing, reporting
Unlabeled Attachment Score (UAS); and (b) Query seg-
mentation, which reflects the core aspect of the extended

grammar compared to the standard one.
In experiments on our new treebank, our joint model

outperformed the alternatives on UAS for the full test set
and for the subset of single-segment queries. Our pipeline
model excelled both on UAS and on segmentation F1 for
two large subsets that are automatically identifiable at test
time: (a) Queries that consist mostly of content words
(42.4% of the test set); and (b) Queries for which the
confidence score of the off-the-shelf parser is at most 0.8
(30% of the test set). It also beat all other models on the
subset of multi-segment queries.

2 Previous Work

The Web attracts considerable NLP research attention
(e.g. Eisenstein (2013)). Here we focus on grammar and
parsing of Web data in general and queries in particular.

Syntactic Query Analysis Web queries differ from
standard sentences in a number of aspects: they tend to
be shorter, not to follow standard grammatical conven-
tions, and to convey more information than can be di-
rectly inferred from their words. Consequently, a number
of works addressed their syntactic analysis. Allan and
Raghavan (2002) use part-of-speech (POS) tag patterns
in order to manually map very short queries into clarifi-
cation questions, which are then presented to the user to
help them clarify their intent. Barr et al. (2008) trained
POS taggers for Web queries and used a set of rules to
map the resulting tagged queries into one of seven syntac-
tic categories, whose merit is tested in the context of in-
formation retrieval tasks. Manshadi and Li (2009) and Li
(2010) addressed the task of semantic tagging and struc-
tural analysis of Web queries, focusing on noun phrase
queries. Bendersky et al. (2010) used the POS tags of the
top-retrieved documents to enhance the initial POS tag-
ging of query terms. Bendersky et al. (2011) proposed
a joint framework for annotating queries with POS tags
and phrase chunks. Ganchev et al. (2012) trained a POS
tagger on automatically tagged queries. The POS tags of
the training queries are projected from sentences contain-
ing the query terms within Web pages retrieved for them.
The retrieved sentences were POS tagged using an off-
the-shelf tagger. These works, as opposed to ours, do not
aim to produce a complete syntactic analysis of queries.

Syntactic Parsing of Web Data To the best of our
knowledge, only a handful of works have aimed at build-
ing syntactic parsers for Web data. Petrov and McDonald
(2012) conducted a shared task on parsing Web data from
the Google Web Treebank, consisting of texts from the
email, weblog, CQA, newsgroup, and review domains.
The participating systems relied mostly on existing do-
main adaptation techniques to adapt parsers trained on
existing treebanks of edited text to the Web. Foster et al.

671



(2011) took a similar approach for tweet parsing. Con-
trary to our approach, these works rely on existing gram-
matical frameworks, particularly phrase-structure and de-
pendency grammars, and do not aim at adapting them to
domains such as Web queries, where standard grammar
does not properly describe the language. This may be the
reason Web queries were not included in the shared task.

A work that is more related to ours is Kong et al.
(2014), who addressed the task of tweet parsing. Like
us, they adapt the grammatical annotation scheme to the
target linguistic domain and produce a multi-rooted syn-
tactic structure. However, CQA queries and tweets ex-
hibit different syntactic properties: (1) tweets often con-
sist of multiple sentences, while CQA queries are con-
cise in nature and usually correspond to a phrase, a frag-
ment of a sentence, or several of these concatenated; and
(2) queries are generated in order to retrieve information
from the Web. Tweets, on the other hand, usually aim to
convey a short message. These differences lead us to take
approaches substantially different from theirs.

3 CQA Query Grammar

3.1 Motivating Analysis

In this section we define the class of CQA queries and
analyze their properties in comparison with other writing
genres. This analysis will establish the motivation for the
extension of standard dependency grammar so that it ac-
counts for CQA queries (§3.2).

The data we analyzed consists of queries randomly
sampled from the Yahoo Answers log. In cases where a
searcher, after issuing a Web query on a search engine,
viewed a question page on Yahoo Answers, a popular
CQA site, this query is logged. From this log we sampled
100K queries for our analysis, as well as 5,000 additional
queries for constructing a query treebank (see §3.3).

According to Barr et al. (2008), who analyzed queries
from Yahoo’s search engine, 69.8% of general Web
queries are composed of a single noun phrase, leaving lit-
tle room for a meaningful taxonomy. Focusing on CQA
queries removes this bias and allows exploration of ad-
ditional syntactic categories of queries. Especially, we
would like to delve into the categories Barr et al. label
as word salad (e.g. “mp3s free”) and other-query (e.g.
“florida reading conference 2006”), cited as composing
8.1% and 6.8% of all queries respectively and for which
no analysis is offered.

To characterize the domain of CQA queries, we com-
pare its properties to those of other Web domain sam-
ples: (a) 100K general Web queries; (b) 120K titles of
questions posted on Yahoo Answers; and (c) 100K story
bodies from Yahoo News. In our analysis, individual sen-
tences were identified using the OpenNLP sentence split-

ting tool2, POS-tagged by the Stanford parser (Klein and
Manning, 2003)3 and syntactically parsed using the Clear
parser (Choi and McCallum, 2013)4.

Table 1 presents four measures of syntactic complex-
ity (four leftmost measure columns). The first column re-
ports the average number of word tokens per parsed item.
The second column contains the median and mean de-
pendency tree depths, defined as the number of edges in
the longest path from the root node to a leaf in the tree.
The third and fourth columns present the fraction of de-
pendency tree root edges that go to words POS-tagged
as nouns or as verbs, respectively. We use these last two
measures as proxies of the syntactic category of the in-
put text, with noun roots often indicating simple noun
phrases and verb roots often indicating more complex
syntactic forms that include a verb argument structure5.
Finally, the rightmost column of the table presents the
average parser confidence per item provided by Clear,
which we use as a proxy for parsing difficulty.

As the table shows, both CQA and general Web queries
are harder to parse (according to parser confidence) com-
pared to news article sentences and CQA question ti-
tles. Yet, CQA and general Web queries strongly differ
with respect to their syntactic complexity. Indeed, CQA
queries have substantially more tokens and deeper trees.
Moreover, while 62.9% of the root nodes in general query
parse trees govern a noun and 30.3% govern a verb, in
CQA queries the respective figures are flipped: 32.2%
and 62.7%, respectively.

3.2 Dependency Grammar Extension for Queries

Our analysis above reveals the special status of CQA
queries. Like general Web queries, CQA queries are hard
to parse. However, while the difficulty of parsing general
Web queries may result from their short length and shal-
low syntactic structure, CQA queries are longer and seem
to have a deeper syntactic structure.

Based on our manual inspection of thousands of the
queries used in the above analysis, we propose an exten-
sion of the standard dependency grammar so that it ac-
counts for CQA queries. Our reasoning is that the gram-
matical structure of CQA queries is a syntactic forest.
The query’s tokens are partitioned into one or more con-
tiguous syntactic segments, each representing a maximal
constituent unit syntactically independent of the other
units. The final syntactic representation of the query con-
sists of a set of trees produced according to the Stanford
Dependency schema (De Marneffe and Manning, 2008),

2opennlp.apache.org
3Manual inspection revealed that this parser outperforms the Stan-

ford tagger (Toutanova et al., 2003) on these sets.
4Version 2.0.1, parsing model 1.2. www.clearnlp.com
5We verified this hypothesis by manual inspection of the 1,000 de-

velopment set queries (see §3.3).

672



Corpus Average Median (mean) root→ NN∗ root→ V B∗ Average parser
token count tree depth edges (%) edges (%) confidence

News article sentences 18.4 6 (6.5) 12.0 84.8 0.898
CQA question titles 10.5 4 (4.5) 10.0 86.9 0.991
CQA queries 6.4 4 (3.7) 32.2 62.7 0.809
General queries 4.5 3 (3.0) 62.9 30.3 0.752

Table 1: Syntactic properties of four types of Web domains. The four leftmost properties are proxies of syntactic complexity. The fifth property
(parser confidence) is a proxy of parsing difficulty. The “root → NN∗ edges” and “root → V B∗ edges” columns present the fraction of edges
from the root of the parse tree that go to words POS-tagged as nouns and verbs respectively.

a.
make fake smoke

root

amod
dobj

b.

how is it done o’sullivan test

root root
advmod

auxpass

nsubjpass nn

c.
snowcap lard what animal

root root

nn det

Figure 2: Queries segmented and parsed according to our extended dependency grammar.

one tree per segment. Based on this observation, CQA
queries may consist of several syntactically independent
segments, as opposed to grammatical sentences which
consist of exactly one segment. Importantly, query seg-
ments are syntactically independent, although they tend
to be semantically related.

Figure 2 provides examples of parsed queries. Query
(a) consists of a single segment, a verb phrase rooted by
the word make. Query (b) is composed of two segments
that are syntactically independent, but semantically con-
nected. Particularly, the first segment is an interrogative
sentence rooted in the word done and the second is a noun
phrase which specifies the pronoun it from the first seg-
ment. Finally, query (c) consists of two segments, each
a noun phrase, presumably connected by an is-made-of
semantic relation. As in query (b), the segments of this
query are syntactically independent, but unlike query (b),
their semantic connection is more loose. The existence of
such loose connections motivates us to exclude semantic
subcategorization from the syntactic layer.

We note that the notion of segment has another mean-
ing, within the task of query segmentation (Bergsma and
Wang, 2007; Guo et al., 2008; Tan and Peng, 2008;
Mishra et al., 2011; Hagen et al., 2012). This task’s
goal is to identify words in the query that together form
compound concepts or phrases, like “Chicago Bulls”. As
such, this task differs from ours as it defines segmentation
in semantic rather than syntactic terms.

We also note that query segments are distinct from the
concept of fragments in constituency parsing. Marcus
et al. (1993) introduce fragments in order to overcome
problems involving the attachment point of various mod-
ifying phrases, e.g. in the sentence ‘In Asia, as [FRAG
in Europe], a new order is taking shape’. While proper
treatment of such phrases often requires extra syntactic
information, their syntactic connection to other parts of
the sentence is present, unlike between query segments.

3.3 Query Treebank
Following our proposed grammar, we constructed a tree-
bank by manually annotating 5,000 queries that landed on
Yahoo Answers (see §3.1). These queries were randomly
split into a 4,000-query test set and a 1,000-query devel-
opment set. Four human annotators segmented both sets,
and parsed the test set with unlabeled dependency trees
(including POS tags). The annotators’ sets did not over-
lap, yet cross-reviews were made in cases deemed diffi-
cult by them. On a validation set of 100 queries tagged by
all annotators, the agreement scores measured were 0.97
for segmentation and 0.96 for dependency edges.

To evaluate how well out-of-the-box parsers conform
with our grammar, we applied seven dependency parsers
to the 4,000-query test set. We trained all parsers on the
OntoNotes 5 training set 6 and applied them: (a) to each
gold-standard segment of each query; and (b) to full, un-
segmented, queries. For comparison we also recap the
performance of the parsers on the OntoNotes 5 test set as
reported in Choi et al. (2015). The same non-gold POS
tags were provided to all parsers (see §6.2).

The results, presented in Table 2, establish the diffi-
culty of our task: UAS differences between OntoNotes
and full queries range from 13.4% to 18.6%. Moreover,
injecting gold segmentation knowledge increases the per-
formance of the parsers by 5.3-5.9%, highlighting the
value of accurate segmentation in syntactic query anal-
ysis. Finally, the ranking of the parsers with respect to
their accuracy on queries differs from their ranking with
respect to accuracy on OntoNotes, raising Redshift to first
place and dropping RBG to last place.

Since knowledge of segment boundaries consistently
improves parsing quality in our analysis, we next present
two distant supervision approaches that attempt to dis-
cover the segments of an input query and return a parse
forest that adheres to the segment boundaries.

6This parser training convention was kept throughout the paper.

673



Parser ON5 Segmented Full
Queries Queries

Redshift (Honnibal et al., 2013) 91.0 82.5 76.6
Mate (Bohnet and Nivre, 2012) 91.6 81.4 75.5
Clear (Choi and McCallum, 2013) 91.3 80.7 75.4
SNN (Chen and Manning, 2014) 88.2 80.7 74.8
GN13 (Goldberg and Nivre, 2013) 89.2 80.5 74.8
Turbo (Martins et al., 2013) 89.6 79.4 73.9
RBG (Lei et al., 2014) 91.4 78.5 72.8

Table 2: UAS of out-of-the-box parsers trained on OntoNotes 5. RBG is reported on its best-performing setting, basic.

Question Title Associated Query (After segmentation) Segmentation Cue
1 How many crickets to feed 7 month old leopard gecko? [leopard gecko] [7 month old] [how many to feed] Reordering (x2)
2 Does any1 think that Heath Ledger is Cute? [heath ledger] [cute] Intruding BE
3 Does Beijing still have license plate restrictions? [beijing] [license plate restrictions] Intruding HAVE
4 Do you know the song “Little Sister” by Queens of the Stone Age? [little sister] [queens] Intruding IN
5 What came first the jedi or the sith? [what came first jedi] [sith] Intruding CC
6 What do you think of a double major in Finance and Marketing? [double major] [finance] [marketing] Intruding IN, CC

Table 3: Examples for title-query pairs with the resulting segmentation and the corresponding segmentation cues. Note that they do not necessarily
produce correct data.

4 A Pipeline Segmentation-Parsing Model

As our first approach, we present a query segmentation
algorithm which can be combined with an off-the-shelf
parser in two ways in order to form a pipeline query pars-
ing system: (a) first segmenting the query and then apply-
ing the parser to each of the segments; or (b) first parsing
the query and then fixing the resulting dependency tree
so that it conforms with the segmentation. In the sec-
ond setup the parser’s output is aligned against the seg-
mentation such that dependency edges which cross seg-
ment boundaries are re-assigned to become root edges. In
our experiments we found that, for all our tested pipeline
models, the first setup performed slightly better. We
therefore report results only for this setup.

Our segmentation algorithm is based on the observa-
tion that CQA queries are generated in order to express
a searcher’s need which is likely to be formulated as a
question on the web page that they then visit, and that
this paraphrasing can serve as a source for query seg-
mentation cues. The algorithm therefore inspects at train-
ing time (query,title) pairs where title is the title of a Ya-
hoo Answers question page that was clicked by the user
who initiated query. A query for which a full word-wise
alignment to the clicked question can be found is an-
notated with segmentation markers according to several
cues, then added to the training set.

Segmentation Cues The following cues are used for
detection of query segment boundaries:

• Reordering: a part of the query which appears in
the title out of order relative to another part of the
query is marked as a segmentation location on both
ends (ex. #1 in Table 3). This rule accounted for

about 32% of the segmentation cues.

• Intruding word classes: if between two words
which appear adjacent in the query there are words
of certain classes in the question title, the position
between them is marked for segmentation. These
classes include the verb BE and its conjugations (ex.
#2), HAVE and its conjugations (ex. #3), preposi-
tions (ex. #4, #6), and conjunctions (ex. #5, #6).
In addition, any multi-word intruding sequence that
contains a word of these classes in one of the last
three positions is construed as a cue.

Training Set Generation We started with a query log
for 60 million Yahoo Answers pages. We filtered out ti-
tles of more than 20 words, titles that do not start with a
question word, and titles that do not have an associated
query which after lowercasing and punctuation removal
contains only words from the title (as well as possibly
‘site:’ terms or the word ‘to’). The remaining 7.5 mil-
lion queries were automatically segmented according to
the above cues. A sample of 100 queries was found to
have a segmentation F1 score (defined in §6.2) of 64.5.

Model and Training We trained a linear chain CRF
with pairwise potentials (Lafferty et al., 2001)7 on the
set of 7.5M automatically segmented queries. The model
employs the following standard features: (a) unigram
and bigram word features (±2 and ±1 windows around
the represented word respectively); (b) unigram and bi-
gram POS features (in a ±2 window); (c) unigram
word+POS features (±1 window); and (d) distance of
word from start and end of query, as well as each distance
combined with word and/or POS.

7We used CRF++ (crfpp.googlecode.com)

674



Algorithm 1 Projection-based query parsing
1: function FINDPROJECTIONBASEDSEGMENTPARSE-

TREES(QUERY)
2: question← Q2Q(query)
3: parse← OffTheShelfParse(question)
4: for Node n in parse do
5: if n.text does not match token in query then
6: CollapseAllEdges(n, parse)
7: parse.remove(n)
8: segment-trees← ∅
9: for Node r in parse.root.children do

10: segment-trees.add(Tree(r))
return segment-trees

1: function COLLAPSEALLEDGES(N, PARSE)
2: in← n.incomingEdge
3: for Edge out in n.outgoingEdges do
4: label← GenerateLabel(in.type, out.type)
5: if n.POS is preposition or conjunction then
6: parse.addEdge(parse.root, out.target, ’root’)
7: else
8: parse.addEdge(in.source, out.target, label)

5 A Joint Projection-based Model
An alternative distant supervision approach is to employ
the (query,title) pair set in the training of a model that
maps queries to natural language questions. These in-
ferred questions are supposedly easier to parse as they
follow standard grammatical conventions. A query pars-
ing algorithm that employs such a mapping component
has three steps: first, a grammatical question with a sim-
ilar information need to that of the query is automati-
cally inferred. Then, the inferred question is parsed by
an off-the-shelf dependency parser, trained on a gram-
matical corpus. Finally, the question parse is projected
onto the query, inducing the query’s multi-rooted syn-
tactic forest. Algorithm 1 presents pseudo-code for the
projection-based query parsing algorithm.

The first step maps a given user query to a syn-
thetic natural-language question. For this step we imple-
mented the Query-to-Question (Q2Q) algorithm of Dror
et al. (2013). Q2Q maps queries into valid CQA ques-
tions by instantiating templates that were extracted out
of (query,title) pairs taken from the page view log of a
CQA site. We trained the Q2Q algorithm on millions
of (query,title) pairs taken from the Yahoo Answers log,
where each title starts with a question word and query
length ≥ 3.

Our algorithm obtains the top inferred Q2Q ques-
tion and parses it using an off-the-shelf parser, trained
on grammatical English sentences (lines 2-3 in Algo-
rithm 1). It then projects the question parse tree onto the
original query to generate its syntactic structure, in ac-
cordance with the extended dependency grammar (§3.2),
as follows. First (lines 4-7), the algorithm traverses the

question parse, removing all question tokens that do not
appear in the query and reassigning the dependents of
each removed token to be headed by its parent. In ad-
dition, as prepositions and conjunctions inserted by the
Q2Q templates are strong signals of segmentation, parse
subtrees governed by such nodes are also treated as sepa-
rate segments. Following this phase, all remaining ques-
tion tokens appear in the query. The algorithm is then left
with a syntactic forest, since the root node may have mul-
tiple children, each one defining a query segment. Lines
8-10 extract these segments and their parse trees.

Figure 3 shows the projection process for two queries,
the second of which demonstrates how an added prepo-
sition (‘on’) invokes segmentation. We emphasize that
the only manually annotated data required for the train-
ing of our joint model is a treebank of standard edited text
(OntoNotes 5), used for training the off-the-shelf parser.

Since we expect the projected query parse to produce
trees for contiguous segments, we only accept the top
Q2Q result where the query word order is maintained in
the question, and use an off-the-shelf parser which pro-
duces projective trees. In addition, the projection algo-
rithm may collapse several edges from the question tree
into a single edge within a query segment tree, leaving
the resulting label unspecified. In this work we evaluate
unlabeled parse trees and therefore defer the treatment of
this issue to future work (leaving GenerateLabel() in
line 4 of Algorithm 1 unspecified).

6 Experiments
6.1 Models
We evaluated the following models (summarized in Ta-
ble 4) on our new query treebank (§3.3):

Distant Supervision Models Our proposed pipeline
(§4) and joint (§5) models. Our pipeline model, de-
noted by DistPipe, performs query segmentation and then
parses each segment. Our projection-based joint model,
denoted by Q2QProj, parses an inferred question for the
query and projects the parse tree on the query. Both mod-
els use the Clear parser for parsing. Importantly, both our
models do not require any type of manually annotated
queries (parsed or segmented) for training.

The Q2Q algorithm employed by our joint model re-
turns a question for only 2954 of the 4000 test set queries.
We thus reverted to the full-query parsing baseline when
it returned no result.

Baselines The first natural baseline is the Clear parser,
which is employed by our models. We note that while
Clear is not constrained to output a single segment tree8,
in practice it generated a multi-segment structure for
∼2% of the development queries, compared to ∼25% of

8Personal communication with the authors.

675



are instant noodles bad for you

root

amod

nsubj

acomp

prep

pobj

=⇒
instant noodles bad

root root

amod

what is a command prompt on a mac

root

nsubj

det

nn

attr

prep

det

pobj

=⇒
command prompt mac

root root

nn

Figure 3: Question parse trees and their projections onto the queries they were generated for. Solid edges are preserved in the projection, dotted
edges are removed, and dashed edges are collapsed (in both cases demonstrated, into root edges).

Group Setup name Segmentation Process
Benchmark Gold gold pipeline
Ensemble Ens CRF ensemble pipeline

Supervised Sup supervised CRF pipeline
Distant DistPipe distant CRF pipeline

Supervision Q2QProj from question parse projection

Baselines Lm NNLM pipeline
Clear from parse parser only

Table 4: The algorithms evaluated in this work.

the queries in the gold standard annotation, making it ill-
qualified for multi-segment queries.

As a second baseline, denoted by Lm, we constructed
a pipeline model identical to ours expect that segmen-
tation is performed with a Language model (LM) based
approach. For this aim we applied a Neural-Network
language model (NNLM) (Mikolov, 2012) to each input
query. For each word the language model computes its
likelihood given the current model state, which is based
on previous words. We then used the 1,000-query devel-
opment set to find the optimal probability threshold for
which words with estimated probability under the thresh-
old are considered “surprising” and therefore mark the
beginning of a new segment. We learned a language
model9 with 200 dimensions over 20M randomly sam-
pled queries of length ≥ 3.

Supervised Models We further compare our distant su-
pervision approach to an algorithm that does use manu-
ally annotated queries for training, denoted by Sup. For
this aim we implemented a pipeline model identical to
ours, except that the pairwise linear-chain CRF is trained
on manually-annotated queries. The algorithm is trained
and tested following a 5-fold cross-validation protocol
over the 4,000-query test set.

Ensemble Model We also tested the complementary
aspects of distant and manual supervision by construct-

9NNLM implementation in rnnlm.org with default parameters.

ing the same pipeline model, except that segmentation
is based on both types of supervision sources. We ex-
perimented with various ensemble generation techniques,
and the one that has shown to work best was a method
that unifies the segmentation decisions of the distant-
supervised and supervised CRFs: the model, denoted by
Ens, considers a token to be a segment boundary if it is
considered to be so by at least one of the CRFs.

Gold Segmentation An upper-bound benchmark to our
pipeline approach. This is a pipeline model, denoted by
Gold, that is identical to ours, except that the segmenta-
tion is taken from the gold standard.

6.2 Evaluation Tasks and Data Pre-Processing
We consider two evaluation tasks: (a) Dependency pars-
ing, reporting Unlabeled Attachment Score (UAS); and
(b) Query Segmentation, reporting the F1 score, where
each segment is represented by its boundaries: in order
for an observed segment to be considered correct, both of
its ends must match those of a gold segment.

All tested algorithms, except for our joint model, di-
rectly segment and parse queries and hence require these
queries to be POS-tagged. Thus, we POS-tagged the test-
set queries with the OpenNLP10 POS tagger which was
adapted to queries using the self-training algorithm of
Ganchev et al. (2012). Our self-training set consisted of
14M (query,title) pairs from the Yahoo Answers log. This

10opennlp.apache.org

676



tagger reached 88.2% accuracy on our query treebank,
compared to 81.3% of the off-the-shelf tagger11.

Analyzing our development set we noticed that a very
strong indicator that a query is a grammatical, and thus
consists of a single segment, is when it starts with a WH-
word or an auxiliary verb. Hence, in all pipeline models,
except Gold, we do not segment such queries but rather
directly apply the Clear parser to them. In postmortem
analysis of the test set we found that this indicator was
correct for 93.2% of the 1600 detected queries with 40%
recall with respect to the single-segment queries subset.

6.3 Results
Tables 5 and 6 present the results of our experiments. The
All Queries column in Table 5 reports the performance of
the tested models on the full test set. Overall, methods
based on distant and manual supervision are superior to
the baseline methods in both measures. Interestingly, our
Q2QProj model performs best in terms of UAS (77.1%)
although its segmentation F1 is mediocre (63.5). In terms
of UAS, the distant-supervised and supervised models ap-
proach the performance of the upper bound gold standard
segmentation. For example, Q2QProj is outperformed by
Gold by only 3.6%. The Clear parser baseline, which is
not trained to identify multiple segments, lags 5.7-5.8 F1
points behind the models that employ CRF segmentation.
This is translated to a difference in UAS of up to 1.7%.
The Lm baseline, on the other hand, scores substantially
lower than the other models in both measures. This may
be an indication of the syntactic, rather than lexical, na-
ture of our task.

In development set experiments we were able to char-
acterize two subsets of queries on which our distant su-
pervised pipeline model performs particularly well, out-
performing even the supervised pipeline algorithm which
requires thousands of manually annotated queries for
training. One such set is the subset of queries that con-
tain at most one word not tagged with what we define to
be a content word POS, namely: noun, verb, adjective or
adverb (‘≤ 1 ncw’ column in Table 5). Intuitively, this
subset, which accounts for 42.4% of the test set, consists
of queries that convey larger amounts of semantic con-
tent and are structured less coherently. On this subset, our
DistPipe model outperforms the supervised Sup model by
4.1 segmentation F1 points, and by 1.7% in UAS.

The other subset, which accounts for 30% of the test
set, includes those queries for which the confidence score
of the Clear parser, when applied to the whole query, is
at most 0.8 (LowConf column in Table 5). This subset
singles out cases deemed difficult by the parser, indicat-
ing queries with non-standard syntax. Indeed, the perfor-
mance of all models substantially drops compared to the

11Several other taggers we experimented with gave similar accuracy
figures: ClearNLP, the Stanford tagger and the Stanford parser.

full set or the ‘≤ 1 ncw’ set. Here again, DistPipe im-
proves over Sup by 5.8 segmentation F1 points and 1.9%
in UAS, with additional gain by the ensemble model Ens.

Q2QProj performs lower than the pipeline models on
both subsets, suggesting that this approach does not work
for difficult queries as well as it does for more simple
queries. The decreased performance of the Clear baseline
on both these subsets compared to the entire test set is not
surprising, given their challenging syntactic properties.

Altogether, queries belonging to either of the two sub-
sets (or both) account for 50.2% of the full set, empha-
sizing the benefit of developing more sophisticated en-
semble approaches, based on the above characteristics of
queries and the individual tested models.

Next, we turn to Table 6, which compares the per-
formance of the various models on the test subsets
that consist of single-segment or multi-segment queries
only12. Our pipeline model, DistPipe, excels on the
multi-segment subset, achieving a segmentation F1 of
42.2 and UAS of 67.5% compared to only 23.5 and 64.3%
respectively of the fully supervised Sup model. Our joint
model Q2QProj achieves a UAS score similar to the su-
pervised model, though its segmentation performance is
lower. The ensemble model Ens provides additional im-
provement, hinting that the Sup and DistPipe models may
have learned somewhat different segmentation cues. The
segmentation F1 of Clear is as low as 2.2, as its training
set contains only single-segment sentences.

We note that the intersection between the multi-
segment subset and the ‘≤ 1 ncw’ subset is only 622
queries (63.4% of the multi-seg set, 36.7% of ‘≤ 1 ncw’),
and with LowConf it is only 524 queries (53.3% of the
multi-seg set, 43.7% of LowConf ). This demonstrates
that our Dist model is of merit for a variety of query types.

On Single-segment queries, our joint model, Q2QProj,
achieves the best UAS. This may be because it pro-
vides the parser with more context for telegraphic single-
segment queries, so much so, that it even outperforms the
Gold benchmark. Both the Q2QProj and DistPipe mod-
els over-segment (86.5 and 86.8 F1), compared to the
near perfect single-segment detection of the supervised
Sup model (96.2). Still, these differences are only mildly
reflected in the UAS scores for single-segment queries.

6.4 Error Analysis
To better understand our distant-supervised signal, we
applied the CRF tagger introduced in §4 (without addi-
tional filtering) to the test set and analyzed two cases:
100 false positives – single-segment queries which were
incorrectly tagged with multiple segments, and 100 false
negatives – multi-segment queries the tagger was wrong
to tag as having a single segment.

12These subsets are extracted using the gold standard and are there-
fore not available to the models at inference time.

677



Test Set All Queries ≤ 1 ncw LowConf
Setup (N=4000) (N=1694) (N=1199)

F1 UAS F1 UAS F1 UAS
Gold 100 80.7 100 81.9 100 73.5
Ens 70.4 76.4 63.5 73.0 59.2 64.6
Sup 70.3 76 59.1 71.1 52.8 62.4
DistPipe 70.3 76.3 63.2 72.8 58.6 64.3
Q2QProj 63.5 77.1 53.1 70.5 47.2 61.1
Lm 37.2 66.6 31.6 59.9 30.8 54.4
Clear 64.6 75.4 51.3 69.5 42.9 60.7

Table 5: Performance of the various models on various automatically-extractable subsets of the data. All Queries is our test set, the others are its
subsets with: ≤ 1 ncw – at most one non-content word according to POS tags; LowConf – a Clear parser confidence score of at most 0.8. ‘F1’
denotes segmentation F1.

Test Set Multi-segment Single-segment
Setup (N=984) (N=3016)

S. F1 UAS S. F1 UAS
Gold 100 83.9 100 79.8
Ens 46.6 68.7 84.8 78.7
Sup 23.5 64.3 96.2 79.4
DistPipe 42.2 67.5 86.8 78.9
Q2QProj 21.2 64.3 86.5 80.9
Lm 29.6 60.4 41.6 68.4
Clear 2.2 60.5 96.9 79.8

Table 6: Performance on queries which have a single segment or mul-
tiple segments according to the gold standard.

Two types of queries cause most false positives cases.
The first type, making up 65% of the errors, is a full (or
nearly-full) question or sentence. In half of these cases,
a word in the middle of the query, which often marks
the beginning of a grammatical question, is incorrectly
marked as a segment start. Such an example is “[sher-
lock is the best show ever]”, where the underlined word
is the incorrectly tagged segment start. The other main
error is the segmentation of a query consisting of a single
noun phrase (19% of the cases), for example “[clothing
product testing]”.

Our false negative analysis discovered four main types
of errors, where a multi-segment query is not segmented.
The most frequent one (35%) is cases where the tagger
did not detect a syntactic cue for a segment start, e.g. in
“[grilling pork chops] [seasoning]”, where ‘and’ is po-
tentially missing. Another common mistake (24%) is a
named entity which is added as its own segment for con-
text (usually in the beginning or the end of the query).
Such a query is “[biotin] [mcg vs mg]”. The third type
of errors (17%) is queries for which segmentation de-
tection requires the understanding of the semantics be-
hind the query. One example is “[movies on youtube]
[list]”, where ‘youtube list’ was construed as a single
noun phrase. The forth type (11%) contains a reference

for a preferred content provider by the searcher on its own
segment, such as “[is illuminati good] [yahoo]”.

This analysis shows that the more frequent errors in-
volve semantics and require either a different segmenta-
tion approach, or more semantic-oriented features.

7 Conclusions
We studied the syntactic properties of Web queries with
question intent. We motivated the need to extend the de-
pendency grammar framework so that it accounts for such
queries, and constructed a new Query Treebank, anno-
tated according to the extended grammar. We then devel-
oped distant-supervised algorithms that can parse queries
according to our grammar. Our algorithms outperform
strong baselines, including a supervised model trained on
thousands of manually segmented queries.

In future work we would like to improve the query
analysis performance of our algorithms. In addition, we
plan to assess the contribution of query parsing to IR
tasks such as document retrieval and query reformulation.

Acknowledgments
We thank: Bettina Bolla and Shir Givoni, for their an-
notation work on Query Treebank; Avihai Mejer, for im-
plementing the Q2Q element of the projection algorithm;
and Joel Tetreault, for providing the infrastructure for the
experiments in Section 3.3.

References
James Allan and Hema Raghavan. 2002. Using part-of-speech

patterns to reduce query ambiguity. In Proceedings of SIGIR.
Cory Barr, Rosie Jones, and Moira Regelson. 2008. The lin-

guistic structure of english web-search queries. In Proceed-
ings of the Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguis-
tics.

Michael Bendersky, W Bruce Croft, and David A Smith.
2010. Structural annotation of search queries using pseudo-

678



relevance feedback. In Proceedings of the 19th ACM inter-
national conference on Information and knowledge manage-
ment, pages 1537–1540. ACM.

Michael Bendersky, W Bruce Croft, and David A Smith. 2011.
Joint annotation of search queries. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1. As-
sociation for Computational Linguistics.

Shane Bergsma and Qin Iris Wang. 2007. Learning noun
phrase query segmentation. In EMNLP-CoNLL. Citeseer.

Bernd Bohnet and Joakim Nivre. 2012. A transition-based
system for joint part-of-speech tagging and labeled non-
projective dependency parsing. In Proceedings of EMNLP-
CoNLL, pages 1455–1465. Association for Computational
Linguistics.

David Carmel, Avihai Mejer, Yuval Pinter, and Idan Szpektor.
2014. Improving term weighting for community question
answering search using syntactic analysis. In Proceedings
of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, CIKM 2014,
Shanghai, China, November 3-7, 2014, pages 351–360.

Danqi Chen and Christopher D Manning. 2014. A fast and
accurate dependency parser using neural networks. In Pro-
ceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), volume 1, pages
740–750.

Jinho D Choi and Andrew McCallum. 2013. Transition-based
dependency parsing with selectional branching. In ACL (1),
pages 1052–1062.

Jino Choi, Joel Tetreault, and Amanda Stent. 2015. It depends:
Dependency parser comparison using a web-based evalua-
tion tool. In Proceedings of ACL-IJCNLP.

Marie-Catherine De Marneffe and Christopher D Manning.
2008. The stanford typed dependencies representation.
In Coling 2008: Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser Evaluation, pages 1–
8. Association for Computational Linguistics.

Gideon Dror, Yoelle Maarek, Avihai Mejer, and Idan Szpektor.
2013. From Query to Question in One Click: Suggesting
Synthetic Questions to Searchers. In Proceedings of WWW
2013.

Jacob Eisenstein. 2013. What to do about bad language on the
internet. In Proceedings of NAACL-HLT.

Jennifer Foster, Joachim Wagner, and Josef van Genabith.
2008. Adapting a wsj-trained parser to grammatically noisy
text. In Proceedings of ACL-HLT: Short Papers.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner, Joseph
Le Roux, Stephen Hogan, Joakim Nivre, Deirdre Hogan,
Josef Van Genabith, et al. 2011. # hardtoparse: Pos tagging
and parsing the twitterverse. In proceedings of the Workshop
On Analyzing Microtext (AAAI 2011), pages 20–25.

Kuzman Ganchev, Keith Hall, Ryan McDonald, and Slav
Petrov. 2012. Using search-logs to improve query tagging.
In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers).

Yoav Goldberg and Joakim Nivre. 2013. Training deterministic
parsers with non-deterministic oracles. Transactions of the
association for Computational Linguistics, 1:403–414.

Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. 2008. A uni-
fied and discriminative model for query refinement. In Pro-
ceedings of the 31st annual international ACM SIGIR confer-
ence on Research and development in information retrieval,
pages 379–386. ACM.

Matthias Hagen, Martin Potthast, Anna Beyer, and Benno Stein.
2012. Towards optimum query segmentation: in doubt with-
out. In Proceedings of CIKM.

Matthew Honnibal, Yoav Goldberg, and Mark Johnson. 2013.
A non-monotonic arc-eager transition system for dependency
parsing. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages 163–172.
Citeseer.

Dan Klein and Christopher D. Manning. 2003. Accurate unlex-
icalized parsing. In Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics - Volume 1.

Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta,
Archna Bhatia, Chris Dyer, and Noah A. Smith. 2014. A
dependency parser for tweets. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

John Lafferty, Andrew McCallum, and Fernando CN Pereira.
2001. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi
Jaakkola. 2014. Low-rank tensors for scoring dependency
structures. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, volume 1, pages
1381–1391.

Xiao Li. 2010. Understanding the semantic structure of noun
phrase queries. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics.

Qiaoling Liu, Eugene Agichtein, Gideon Dror, Evgeniy
Gabrilovich, Yoelle Maarek, Dan Pelleg, and Idan Szpek-
tor. 2011. Predicting web searcher satisfaction with existing
community-based answers. In Proceeding of the 34th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2011, Beijing, China,
July 25-29, 2011, pages 415–424.

Mehdi Manshadi and Xiao Li. 2009. Semantic tagging of web
search queries. In Proceedings of the ACL-IJCNLP.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus of en-
glish: The penn treebank. Computational linguistics.

André FT Martins, Miguel Almeida, and Noah A Smith. 2013.
Turning on the turbo: Fast third-order non-projective turbo
parsers. In ACL (2), pages 617–622. Citeseer.

David McClosky, Eugene Charniak, and Mark Johnson. 2010.
Automatic domain adaptation for parsing. In Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics.

Tomáš Mikolov. 2012. Statistical Language Models Based on
Neural Networks. Ph.D. thesis, Ph. D. thesis, Brno Univer-
sity of Technology.

Nikita Mishra, Rishiraj Saha Roy, Niloy Ganguly, Srivatsan
Laxman, and Monojit Choudhury. 2011. Unsupervised
query segmentation using only query logs. In Proceedings
of WWW, pages 91–92.

679



Slav Petrov and Ryan McDonald. 2012. Overview of the
2012 shared task on parsing the web. In Notes of the First
Workshop on Syntactic Analysis of Non-Canonical Language
(SANCL), volume 59. Citeseer.

Bin Tan and Fuchun Peng. 2008. Unsupervised query segmen-
tation using generative language models and wikipedia. In
Proceedings of WWW.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and
Yoram Singer. 2003. Feature-rich part-of-speech tagging
with a cyclic dependency network. In Proceedings of HLT-
NAACL.

Gilad Tsur, Yuval Pinter, Idan Szpektor, and David Carmel.
2016. Identifying web queries with question intent. In Pro-
ceedings of WWW.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen
Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mo-
hammed El-Bachouti, Robert Belvin, and Ann Houston,
2013. OntoNotes Release 5.0.

Ryen W. White, Matthew Richardson, and Wen-tau Yih. 2015.
Questions vs. queries in informational search tasks. In Pro-
ceedings of WWW’15 Companion, pages 135–136. WWW.

680


