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Abstract

We build a multi-source machine translation
model and train it to maximize the probabil-
ity of a target English string given French and
German sources. Using the neural encoder-
decoder framework, we explore several com-
bination methods and report up to +4.8 Bleu
increases on top of a very strong attention-
based neural translation model.

1 Introduction

Kay (2000) points out that if a document is trans-
lated once, it is likely to be translated again and
again into other languages. This gives rise to an in-
teresting idea: a human does the first translation by
hand, then turns the rest over to machine translation
(MT). The translation system now has two strings
as input, which can reduce ambiguity via “triangu-
lation” (Kay’s term). For example, the normally
ambiguous English word “bank” may be more eas-
ily translated into French in the presence of a sec-
ond, German input string containing the word “Flus-
sufer” (river bank).

Och and Ney (2001) describe such a multi-source
MT system. They first train separate bilingual MT
systems F→E, G→E, etc. At runtime, they sep-
arately translate input strings f and g into candi-
date target strings e1 and e2, then select the best one
of the two. A typical selection factor is the prod-
uct of the system scores. Schwartz (2008) revisits
such factors in the context of log-linear models and
Bleu score, while Max et al. (2010) re-rank F→E
n-best lists using n-gram precision with respect to
G→E translations. Callison-Burch (2002) exploits

hypothesis selection in multi-source MT to expand
available corpora, via co-training.

Others use system combination techniques to
merge hypotheses at the word level, creating the
ability to synthesize new translations outside those
proposed by the single-source translators. These
methods include confusion networks (Matusov et
al., 2006; Schroeder et al., 2009), source-side string
combination (Schroeder et al., 2009), and median
strings (González-Rubio and Casacuberta, 2010).

The above work all relies on base MT systems
trained on bilingual data, using traditional meth-
ods. This follows early work in sentence align-
ment (Gale and Church, 1993) and word alignment
(Simard, 1999), which exploited trilingual text, but
did not build trilingual models. Previous authors
possibly considered a three-dimensional translation
table t(e|f, g) to be prohibitive.

In this paper, by contrast, we train a P(e|f, g)
model directly on trilingual data, and we use that
model to decode an (f, g) pair simultaneously. We
view this as a kind of multi-tape transduction (Elgot
and Mezei, 1965; Kaplan and Kay, 1994; Deri and
Knight, 2015) with two input tapes and one output
tape. Our contributions are as follows:
• We train a P(e|f, g) model directly on trilin-

gual data, and we use it to decode a new source
string pair (f, g) into target string e.
• We show positive Bleu improvements over

strong single-source baselines.
• We show that improvements are best when the

two source languages are more distant from
each other.

We are able to achieve these results using
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A B C <EOS> W X Y Z 

<EOS> Z Y X W 

Figure 1: The encoder-decoder framework for neural machine

translation (NMT) (Sutskever et al., 2014). Here, a source sen-

tence C B A (presented in reverse order as A B C) is translated

into a target sentence W X Y Z. At each step, an evolving real-

valued vector summarizes the state of the encoder (white) and

decoder (gray).

the framework of neural encoder-decoder models,
where multi-target MT (Dong et al., 2015) and
multi-source, cross-modal mappings have been ex-
plored (Luong et al., 2015a).

2 Multi-Source Neural MT

In the neural encoder-decoder framework for MT
(Neco and Forcada, 1997; Castaño and Casacuberta,
1997; Sutskever et al., 2014; Bahdanau et al., 2014;
Luong et al., 2015b), we use a recurrent neural net-
work (encoder) to convert a source sentence into a
dense, fixed-length vector. We then use another re-
current network (decoder) to convert that vector in a
target sentence.1

In this paper, we use a four-layer encoder-decoder
system (Figure 1) with long short-term memory
(LSTM) units (Hochreiter and Schmidhuber, 1997)
trained for maximum likelihood (via a softmax
layer) with back-propagation through time (Werbos,
1990). For our baseline single-source MT system we
use two different models, one of which implements
the local attention plus feed-input model from Lu-
ong et al. (2015b).

Figure 2 shows our approach to multi-source MT.
Each source language has its own encoder. The
question is how to combine the hidden states and cell
states from each encoder, to pass on to the decoder.
Black combiner blocks implement a function whose
input is two hidden states (h1 and h2) and two cell
states (c1 and c2), and whose output is a single hid-

1We follow previous authors in presenting the source sen-
tence to the encoder in reverse order.

den state h and cell state c. We propose two combi-
nation methods.

2.1 Basic Combination Method
The Basic method works by concatenating the two
hidden states from the source encoders, applying a
linear transformation Wc (size 2000 x 1000), then
sending its output through a tanh non-linearity. This
operation is represented by the equation:

h = tanh
(
Wc[h1;h2]

)
(1)

Wc and all other weights in the network are learned
from example string triples drawn from a trilingual
training corpus.

The new cell state is simply the sum of the two
cell states from the encoders.

c = c1 + c2 (2)

We also attempted to concatenate cell states and ap-
ply a linear transformation, but training diverges due
to large cell values.

2.2 Child-Sum Method
Our second combination method is inspired by the
Child-Sum Tree-LSTMs of Tai et al. (2015). Here,
we use an LSTM variant to combine the two hidden
states and cells. The standard LSTM input, output,
and new cell value are all calculated. Then cell states
from each encoder get their own forget gates. The
final cell state and hidden state are calculated as in a
normal LSTM. More precisely:

i = sigmoid
(
W i

1h1 +W i
2h2

)
(3)

f = sigmoid
(
W f

i hi

)
(4)

o = sigmoid
(
W o

1h1 +W o
2h2

)
(5)

u = tanh
(
W u

1 h1 +W u
2 h2

)
(6)

c = if � uf + f1 � c1 + f2 � c2 (7)

h = of � tanh(cf ) (8)

This method employs eight new matrices (the
W ’s in the above equations), each of size
1000 x 1000. The � symbol represents an elemen-
twise multiplication. In equation 3, i represents the
input gate of a typical LSTM cell. In equation 4,
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<EOS> Z Y X W 

A B C 
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I J K 

Figure 2: Multi-source encoder-decoder model for MT. We have two source sentences (C B A and K J I) in different languages.

Each language has its own encoder; it passes its final hidden and cell state to a set of combiners (in black). The output of a combiner

is a hidden state and cell state of the same dimension.

there are two forget gates indexed by the subscript i
that serve as the forget gates for each of the incom-
ing cells for each of the encoders. In equation 5, o
represents the output gate of a normal LSTM. i, f ,
o, and u are all size-1000 vectors.

2.3 Multi-Source Attention

Our single-source attention model is modeled off the
local-p attention model with feed input from Luong
et al. (2015b), where hidden states from the top de-
coder layer can look back at the top hidden states
from the encoder. The top decoder hidden state is
combined with a weighted sum of the encoder hid-
den states, to make a better hidden state vector (h̃t),
which is passed to the softmax output layer. With
input-feeding, the hidden state from the attention
model is sent down to the bottom decoder layer at
the next time step.

The local-p attention model from Luong et al.
(2015b) works as follows. First, a position to look at
in the source encoder is predicted by equation 9:

pt = S · sigmoid(vT
p tanh(Wpht)) (9)

S is the source sentence length, and vp and Wp are
learned parameters, with vp being a vector of di-
mension 1000, and Wp being a matrix of dimension
1000 x 1000.

After pt is computed, a window of size 2D + 1 is
looked at in the top layer of the source encoder cen-
tered around pt (D = 10). For each hidden state in
this window, we compute an alignment score at(s),

between 0 and 1. This alignment score is computed
by equations 10, 11 and 12:

at(s) = align(ht, hs)exp
(−(s− pt)

2

2σ2

)
(10)

align(ht, hs) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs′))

(11)

score(ht, hs) = hT
t Wahs (12)

In equation 10, σ is set to be D/2 and s is the
source index for that hidden state. Wa is a learnable
parameter of dimension 1000 x 1000.

Once all of the alignments are calculated, ct is cre-
ated by taking a weighted sum of all source hidden
states multiplied by their alignment weight.

The final hidden state sent to the softmax layer is
given by:

h̃t = tanh
(
Wc[ht; ct]

)
(13)

We modify this attention model to look at both
source encoders simultaneously. We create a context
vector from each source encoder named c1t and c2t
instead of the just ct in the single-source attention
model:

h̃t = tanh
(
Wc[ht; c1t ; c

2
t ]
)

(14)

In our multi-source attention model we now have
two pt variables, one for each source encoder. We
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French English German
Word tokens 66.2m 59.4m 57.0m
Word types 424,832 381,062 865,806
Segment pairs 2,378,112
Ave. segment 27.8 25.0 24.0
length (tokens)

Figure 3: Trilingual corpus statistics.

also have two separate sets of alignments and there-
fore now have two ct values denoted by c1t and c2t as
mentioned above. We also have distinct Wa, vp, and
Wp parameters for each encoder.

3 Experiments

We use English, French, and German data from a
subset of the WMT 2014 dataset (Bojar et al., 2014).
Figure 3 shows statistics for our training set. For de-
velopment, we use the 3000 sentences supplied by
WMT. For testing, we use a 1503-line trilingual sub-
set of the WMT test set.

For the single-source models, we follow the train-
ing procedure used in Luong et al. (2015b), but with
15 epochs and halving the learning rate every full
epoch after the 10th epoch. We also re-scale the
normalized gradient when norm > 5. For training,
we use a minibatch size of 128, a hidden state size
of 1000, and dropout as in Zaremba et al. (2014).
The dropout rate is 0.2, the initial parameter range
is [-0.1, +0.1], and the learning rate is 1.0. For the
normal and multi-source attention models, we ad-
just these parameters to 0.3, [-0.08, +0.08], and 0.7,
respectively, to adjust for overfitting.

Figure 4 shows our results for target English,
with source languages French and German. We see
that the Basic combination method yields a +4.8
Bleu improvement over the strongest single-source,
attention-based system. It also improves Bleu by
+2.2 over the non-attention baseline. The Child-
Sum method gives improvements of +4.4 and +1.4.
We confirm that two copies of the same French input
yields no BLEU improvement. Figure 5 shows the
action of the multi-attention model during decoding.

When our source languages are English and
French (Figure 6), we observe smaller BLEU gains
(up to +1.1). This is evidence that the more distinct
the source languages, the better they disambiguate
each other.

Target = English
Source Method Ppl BLEU
French — 10.3 21.0
German — 15.9 17.3
French+German Basic 8.7 23.2
French+German Child-Sum 9.0 22.5
French+French Child-Sum 10.9 20.7
French Attention 8.1 25.2
French+German B-Attent. 5.7 30.0
French+German CS-Attent. 6.0 29.6

Figure 4: Multi-source MT for target English, with source lan-

guages French and German. Ppl reports test-set perplexity as

the system predicts English tokens. BLEU is scored using the

multi-bleu.perl script from Moses. For our evaluation we use a

single reference and they are case sensitive.

Source 1: UNK Aspekte sind ebenfalls wichtig . 
 
Target:     UNK aspects are important , too . 
 
Source 2: Les aspects UNK sont également importants . 

Figure 5: Action of the multi-attention model as the neural

decoder generates target English from French/German sources

(test set). Lines show strengths of at(s).

4 Conclusion

We describe a multi-source neural MT system that
gets up to +4.8 Bleu gains over a very strong
attention-based, single-source baseline. We ob-
tain this result through a novel encoder-vector com-
bination method and a novel multi-attention sys-
tem. We release the code for these experiments at
www.github.com/isi-nlp/Zoph RNN.

Target = German
Source Method Ppl BLEU
French — 12.3 10.6
English — 9.6 13.4
French+English Basic 9.1 14.5
French+English Child-Sum 9.5 14.4
English Attention 7.3 17.6
French+English B-Attent. 6.9 18.6
French+English CS-Attent. 7.1 18.2

Figure 6: Multi-source MT results for target German, with

source languages French and English.
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