
Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, pages 162–171,
San Diego, California, June 16, 2016. c©2016 Association for Computational Linguistics

Feature-Rich Error Detection in Scientific Writing
Using Logistic Regression

Madeline Remse, Mohsen Mesgar and Michael Strube
Heidelberg Institute for Theoretical Studies gGmbH

Schloß-Wolfsbrunnenweg 35
69118 Heidelberg, Germany

(madeline.remse|mohsen.mesgar|michael.strube)@h-its.org

Abstract

The goal of the Automatic Evaluation of Sci-
entific Writing (AESW) Shared Task 2016
is to identify sentences in scientific articles
which need editing to improve their correct-
ness and readability or to make them better fit
within the genre at hand. We encode many dif-
ferent types of errors occurring in the dataset
by linguistic features. We use logistic regres-
sion to assign a probability indicating whether
a sentence needs to be edited. We participate
in both tracks at AESW 2016: binary pre-
diction and probabilistic estimation. In the
former track, our model (HITS) gets the fifth
place and in the latter one, it ranks first accord-
ing to the evaluation metric.

1 Introduction

The AESW 2016 Shared Task is about predicting
if a given sentence in a scientific article needs lan-
guage editing. It can therefore be pictured as a bi-
nary classification task. Two types of prediction are
evaluated: binary prediction (false or true) and prob-
abilistic estimation (between 0 and 1). These types
of prediction form the two tracks of the shared task,
both of which we participate in.

We solve both problems by applying a logistic
regression model. We design a variety of features
based on a thorough analysis of the training data.
We choose the set of features that yields the highest
performance on training and development sets.

Accounting for the imbalance of numbers of
wrong and correct sentences in the training data dur-
ing feature selection we obtain a model for the prob-
abilistic task that outranks our competitors’ systems.

However, a detailed analysis of the results shows
that the model takes advantage of the evaluation
metric and that our less informed system produces
results that are, although not yielding a top evalua-
tion score, more meaningful.

In the course of a profound analysis of the train-
ing data we encounter both linguistic errors, which
likely occur in diverse genres, and such errors
that are intrinsic to scientific writing and thus rank
among the major challenges of this task. As pointed
out on the AESW 2016 webpage1, correcting prob-
lems concerning diction and style is a matter of opin-
ion. It depends on factors that are not necessarily
deducible from linguistic properties. Common ab-
breviations are an example. There are cases where
they are accepted by an editor, and there are cases
where they are corrected. That is, sometimes e.g. is
left as is and sometimes it is changed to for instance
or for example without any obvious reason. There
are even words that are corrected in opposite direc-
tions. For example, the first letter of the name prefix
van has been corrected to be uppercase in some sen-
tences and also has been corrected to be lowercase
in other sentences. Especially abbreviations that are
not common within one particular domain, but are
used in isolated documents are problematic. This is
due to limitations of the dataset, which provides only
paragraphs, but not documents as contexts for sen-
tences. For example, we may assume that R-G has
been introduced as a technical term at some point in
a document. But since we do not know which para-
graphs belong to this document, we cannot be sure
that this is the case.

1http://textmining.lt/aesw/index.html

162

Section 2 gives an overview of the types of errors
we encountered. In Section 3 we introduce our sys-
tem design, detail on how we derive features from
our data analysis, what kinds of language models we
apply, give a short outline on logistic regression and
describe the implementation of our system. In Sec-
tion 4 we describe our training steps, followed by re-
porting results in Section 5, a discussion of lessons
learned in Section 6 and related work in Section 7.

2 Data Analysis2

2.1 Simple Errors

SPELLING ERRORS are frequent and many con-
cern using hyphens in compounds. Another com-
mon error is the wrong usage of ARTICLES. Def-
inite articles are missing or unnecessarily inserted
before generic nouns, (for instance over the for-
mula REF). Indefinite articles are erroneous
with respect to the subsequent phoneme, (e.g. a
open neighborhood). Some errors concern descrip-
tions of REFERENCES, which are usually capital-
ized (table REF or figures REF and REF).
NUMERALS are spelled out when they should not
be, and vice-versa (2 or seventy-three). It is
correct to spell numerals out if they are smaller
than 10, otherwise they are often spelled in dig-
its. CONTRACTIONS, such as doesn’t and what’s,
are considered too colloquial for scientific writ-
ing. Dots behind ABBREVIATIONS are omitted, and
also common abbreviations such as e.g., i.e. and
vs. are written wrongly. Other errors include in-
correct PLURALIZATION of decades (1980’s), reg-
ular past tense generation of IRREGULAR VERBS

(lighted) and the modification of words by the
wrong PREPOSITION (very different to the correc-
tion). Words are unnecessarily REPEATED some-
times (The the).

2.2 Complex Errors

All errors described above can easily be categorized
by means of simple patterns. Other errors are harder
to capture, for example wrong word order or miss-
ing words. The most common errors that we come
across are mistakes in the PUNCTUATION of a sen-
tence, especially unnecessary or missing commas.

2All examples in this section have been drawn from the
training data.

NUMBER DISAGREEMENT is a common gram-
matical error. It occurs in passive or active clauses
(e.g. the system are assumed to be the following
form and the counter variables goes on changing)
and in nominal phrases (e.g. Three class of boundary
conditions and these new set of Lyapunov terms).

WORK-SPECIFIC ABBREVIATIONS such as the
insertion of R-G for the compound recombination-
generation are errors that occur in individual situa-
tions. Detecting issues with DICTION AND STYLE is
probably the most intricate problem in this task.

3 System Design

3.1 Formally Capturing Error Types

Simple errors can mostly be captured by binary fea-
tures that formalize rules. For example, if a sentence
contains an incorrect ABBREVIATION of id est, such
as ie., then it needs correction. Similar rules can
be applied to the spelling mode of cardinal numbers
and the CONTRACTION of auxiliary words, such as
’s, ’ve, etc. Also, when finding a four digit num-
ber starting with 1 and ending with 0, it is likely to
denote a decade. If it is directly followed by ’s, an
incorrect PLURALIZATION is detected.

Some rules formulated that way need additional
information. To assert that seventeen should not
be spelled out the system must be aware that it de-
notes a NUMERAL greater than 10. This informa-
tion can be made available through appropriate map-
pings. Lists of wrongly generated past tense forms
of IRREGULAR VERBS can be created with man-
agable effort, just like lists of common abbrevia-
tions.

SPELLING ERRORS can be detected by looking up
words in a dictionary. Whether or not a compound
requires being joined by a hyphen cannot be deter-
mined that way. Compounds can be created produc-
tively and are not necessarily in a dictionary.

NUMBER DISAGREEMENTS are easy to detect by
means of dependencies between head and modifiers
within phrases and part-of-speech tags, which often
carry information about the number of words. How-
ever, that means that recognizing these errors heav-
ily depends on the correctness of the dependency
trees and the part-of-speech tags.

Other error types are ascertainable by lan-
guage modeling. PREPOSITIONS often occur in

163

combination with the same words. Thus an appro-
priately trained language model learns that the word
different occurs with from much more frequently
than with to. Classic n-gram models account for un-
usual sequences of words and faulty word orderings.
Language models based on co-occurrences of con-
stituents in syntax trees can reveal grammatical er-
rors and indicate positions where a comma or article
is likely to be inserted.

3.2 Language Models
To capture more complex errors we use a variety of
language models that we compute on correct sen-
tences in the training data.

The n-gram probability of the ith linguistic unit
of a sentence li, being a token w or a part-of-speech
tag t, given its n− 1 predecessors is defined as

p(li | li−1
i−n+1) =

c(lii−n+1)

c(li−1
i−n+1)

,

where c(x) is the number of occurrences of x
throughout the dataset (Jurafsky and Martin, 2009,
pp. 117–147).

Language modeling is not limited to a language
unit and its direct predecessors. The probability of
the occurrence of a word or part-of-speech tag can
be computed depending on whatever might be ap-
propriate to model a linguistic phenomenon. There-
fore we compute the probability of a linguistic unit
given the subsequent n− 1 linguistic units:

p(li | li+n−1
i+1) =

c(li+n−1
i)

c(li+n−1
i+1)

.

The following formula for the probability of a word
w accounts for the relation between part-of-speech
tags and lexicals:

p(wi | ti) =
c(wi, ti)
c(ti)

.

In order to identify words that are typically preceded
by a particular part-of-speech, we compute

p(ti | wi+1) =
c(ti, wi+1)
c(wi+1)

.

Given a syntax tree, let succ(g) be the right sibling
of a node g, let pred(g) be the left sibling of a node

g, and let child(g) be the set of children of a node g.
We define:

p(pred(h) = g | h) =
c(pred(h) = g)∑

g′∈C c(pred(h) = g′)
,

p(succ(h) = g | h) =
c(succ(h) = g)∑

g′∈C c(pred(h) = g′)
,

p(g ∈ child(h) | h) =
c(g ∈ child(h))∑

g′∈C c(g′ ∈ child(h))
,

where C is the set of constituents.
Other sets of features address the probability of

prepositional phrases as modifiers of words. Let
nmod(v) be a preposition that modifies a word v:

p(nmod(v) = w) =
c(nmod(v) = w)∑

w′∈V c(nmod(v) = w′)
.

Smoothing: Since the purpose of our language
models is to identify unusual combinations and or-
derings of words, part-of-speech tags, and chunks,
we go without strong smoothing measures and leave
it to machine learning to reveal the point where
a language construct qualifies as unacceptably im-
probable. Also, we do not prune the vocabulary, be-
cause technical terms which are limited to very spe-
cific scientific fields or even to only few documents
are characteristic for scientific writing. For practi-
cal reasons we apply the very basic add-δ smooth-
ing (Jurafsky and Martin, 2009, p. 134), choosing
δ = 0.1 in order to prevent zero-division.

3.3 Features
We implement a total of 82 features based on the
data analysis described in Section 2. These fea-
tures can be classified into three sets, depending on
their range. Features 1–14 (see Table 1) are integer-
valued, features 15–55 (see Table 2) are binary, and
features 56–82 (see Table 3) are real-valued.

Most of the integer-valued features originate in
readability research and address the coherence of
documents, but they may also be helpful to assess
sentence quality (Pitler and Nenkova, 2008). It is
plausible that long sentences or sentences with a
very high parse tree should be shortened or split
into more sentences in order to simplify their syntax.
Thus they account for those cases where phrases are
deleted in favor of conciseness. Many occurrences
of constituents such as VP, SBAR or NP are likely to

164

ID Definition
1 number of definite articles (token the with POS-tag DT)
2 number of pronouns (tokens with POS-tag PRP)
3 number of SBAR (subtrees of syntax tree with root SBAR)
4 number of VP (subtrees of syntax tree with root VP)
5 number of NP (subtrees of syntax tree with root NP)
6 sentence length (number of tokens)
7 parse tree height (edges on the longest path between the root and a leaf of the syntax tree)
8 number of constituents (subtrees of the syntax tree)
9 number of words not in vocabulary (tokens never seen in training)
10 number of words unknown to WordNet (ignores stop words, compounds with hyphens, tokens with digits)
11 number of words unknown to pyenchant-package using en US-dictionary

(ignores stop words, compounds with hyphen, tokens with digits)
12 maximal number of verb forms in a row (longest row of POS-tags starting with ‘VB’)
13 number of dots (ignores period at the end of a sentence)
14 number of abbreviations in paragraph (feature 13, summed over all sentences of a paragraph)

Table 1: Integer-valued features.

occur in too complex sentences. Many pronouns are
indicative for ambiguity, since it is more difficult to
identify the corresponding antecedents.

The binary features are mostly designed for spe-
cific error types, looking for patterns or exact strings
found to be frequently corrected in the training data.

Abbreviations sometimes are and sometimes are
not accepted (Section 2). In order to capture more
information on their usage we added Features 13 and
14. They count the number of abbreviations in the
sentence and in the whole paragraph respectively.
The general idea is that if an author has a tendency
to use abbreviations, an editor does not perceive an
individual abbreviation as inconsistent.

Features 47–55 recognize domain-related errors.
Although the domain is unlikely to be directly de-
cisive for distinguishing correct from incorrect sen-
tences, some kinds of errors might coincide with in-
dividual domains. Our model does not take into ac-
count dependencies between features (Jurafsky and
Martin, 2009, p. 238). However we examine their
impact on the model’s performance. They could be
beneficial for other machine learning algorithms.

In order to detect spelling errors, some of the bi-
nary features check if all words in a sentence are
present within specific sets, such as the vocabu-
lary used in the correct training data, an American
English dictionary3, or WordNet4. We implement

3We used the pyenchant package:
http://pythonhosted.org/pyenchant/

4https://wordnet.princeton.edu/

integer-valued counterparts for these features, be-
cause an absolute decision might be too restrictive.

Most of the real-valued features consist of proba-
bilities computed in our language models. We com-
pute maximum likelihood estimates of sentences
based on different models. We use part-of-speech
n-grams and token n-grams for n ∈ {1, 2, 3} and
a Hidden Markov Model. We also capture those
n-grams in a sentence that yield the lowest proba-
bility compared to all other n-grams. Furthermore
there are features that detect the position where a
comma is most likely to be inserted with respect
to the preceding and succeeding tokens and part-
of-speech tags as well as the preceding, succeed-
ing and superordinate constituents in the syntax tree.
The same is done for inserting and deleting articles
and substituting prepositions by other prepositions.
Mostly we do not compute an isolated probability,
but rather connect it with comparative probabilities.
For instance, feature 82 does not only compute the
probability of a comma before a pair of words, but
returns the factor by which a comma is more likely
than the word actually preceding the pair. That way
the feature does depend on the subsequent word pair
and also on the word to be substituted.

3.4 Machine Learning Approach

We participate in the binary and the probabilistic
track using a logistic regression model. Logistic re-
gression is capable of performing both probabilis-
tic estimation and binary classification. Its training

165

ID Definition
15 contains Van
16 contains van
17 contains n’t
18 contains is or us contraction (where’s, what’s, that’s, it’s, let’s)
19 contains ’ve
20 contains ’d
21 first word not capitalized
22 dot after MATH or MATHDISP
23 wrong decade pluralization (1**0’s)
24 reference description not capitalized (token table, figure, lemma, etc. before token REF)
25 abbreviation without dot (token Tab, Fig, Figs, Eq, etc. not ended or followed by .)
26 contains word unknown to pyenchant-package (binary version of Feature 11)
27 contains word not in vocabulary (binary version of Feature 9)
28 contains word unknown to WordNet (binary version of Feature 10)
29 two nouns connected by hyphen (parts of compound are all in WordNet as nouns)
30 contains small cardinal number in digits (e.g. 2)
31 contains high cardinal number in letters (e.g. seventeen, thirty)
32 contains two cardinal numbers in letters, joined by a hyphen (e.g. seventy-three)
33 contains two cardinal numbers in letters in a row (e.g. fifty two, one zero)
34 wrong first letter after indefinite article

(to a limited extent recognizes excepions: an honest, a one-dimensional space, an SVM, etc.)
35 contains the same token twice in a row (e.g. The the)
36 number mismatch between passive auxiliary verb and subject

(number of nsubjpass and number of auxpass of a verb do not match according to the POS-tags.)
37 number mismatch between verb and subject

(number of verb and nsubj do not match according to the POS-tags.)
38 number mismatch between article and head of a noun phrase
39 number mismatch between number modifier and head of a noun phrase
40 contains vs (not followed by .)
41 contains vs (ended with or followed by .)
42 contains ie or ie.
43 contains i.e.
44 contains eg or eg.
45 contains irregular verb with regular suffix (lighted, builded, etc.)
46 contains token based not followed by on
47–55 occurs in domains: Astrophysics, Chemistry, Computer Science, Economics/Management,

Engineering, Human Sciences, Mathematics, Physics, Statistics
Table 2: Binary Features

phase is also not very time-consuming, which is ben-
eficial for our feature selection procedure. It derives
the probability of an observation x to belong to a
particular class y from a linear combination of the
observed feature vector f and a weight vector w (Ju-
rafsky and Martin, 2009, pp. 231–239). It applies
a logistic function to map the result of this linear
combination to lie between 0 and 1. In the train-
ing phase the parameters in w are chosen to maxi-
mize the probability of the observed y values. Dur-
ing testing unseen samples are classified according
to their probability computed by linearly combining

their feature vectors with the very weight vector w
that was determined in training.

3.5 Implementation

Our system is based on an object-oriented data
model that provides information on the different
datasets. Sentence objects comprise every piece
of information at hand, including the actual tagged
data and supplementary information such as lists of
tokens and part-of-speech tags, a graph-like struc-
ture implementing the syntax tree, and a dictionary
mapping tuples of indices in the token list to the

166

ID Definition
56 average word length
57 max. gain of changing a preposition (nmod(w) denotes preposition that modifies w):

max(
{ pmodify(w′,wi)

pmodify(nmod(wi),wi)
: 1 ≤ i ≤ |S| AND w′ ∈ V AND ∃j[1 ≤ j ≤ |S| ∧ nmod(wi) = wj

]}
),

58 max. gain of swapping the case of a first letter (swap(w) is w with case of first letter swapped)):
max(

{pngram(wi−2,wi−1,swap(wi))
pngram(wi−2,wi−1,wi)

: 1 ≤ i ≤ |S| }),
59 maximum likelihood estimate (token unigrams):

∏
1≤i≤|S| p(wi)

60 maximum likelihood estimate (POS-tag unigrams):
∏

1≤i≤|S| p(ti)
61 maximum likelihood estimate (token bigrams):

∏
1≤i≤|S| p(wi | wi−1)

62 maximum likelihood estimate (POS-tag bigrams):
∏

1≤i≤|S| p(ti | ti−1)
63 maximum likelihood estimate (token trigrams):

∏
1≤i≤|S| p(wi | wi−2wi−1)

64 maximum likelihood estimate (POS-tag trigrams):
∏

1≤i≤|S| p(ti | ti−2ti−1)
65 maximum likelihood estimate (Hidden Markov Model):

∏
1≤i≤|S| p(ti | ti−1) · p(wi | ti)

66 min. probability of any POS-tag trigram: min(
{
p(ti | ti−2ti−1) : 1 ≤ i ≤ |S|})

67 min. probability of any POS-tag bigram: min(
{
p(ti | ti−1) : 1 ≤ i ≤ |S|})

68 min. probability of any POS-tag unigram: min(
{
p(ti) : 1 ≤ i ≤ |S|})

69 min. probability of any token trigram: min(
{
p(wi | wi−2wi−1) : 1 ≤ i ≤ |S|})

70 min. probability of any token bigram: min(
{
p(wi | wi−1) : 1 ≤ i ≤ |S|})

71 min. probability of any token unigram: min(
{
p(wi) : 1 ≤ i ≤ |S|})

72 min. lexical probability of any token: min(
{
p(wi | ti) : 1 ≤ i ≤ |S|})

73 fraction of tokens that are commas: |{i:wi=,:1≤i≤|S|}|
|S|

74 max. gain of inserting comma after chunk: max(
{
p(succ(g) = , | g) : g ∈ Tree(S) AND succ(g) 6= ,

}
)

75 max. gain of inserting comma before chunk: max(
{
p(pred(g) = , | g) : g ∈ Tree(S) AND pred(g) 6= ,

}
)

76 max. gain of inserting comma within subtree: max(
{
p(, ∈ g | g) : g ∈ Tree(S) AND , /∈ child(g)})

77 max. gain of inserting article: max(
{ p(DT | wi)

p(ti−1,wi)
: 1 ≤ i ≤ |S| AND ti−1 6= DT

}
)

78 max. gain of deleting article: max(
{p(ti−2,wi)

p(DT | wi)
: 1 ≤ i ≤ |S| AND ti−1 = DT

}
)

79 max. gain of inserting comma after pair of POS-tags: max(
{ p(, | ti−2ti−1)

p(ti | ti−2ti−1)
: 1 ≤ i ≤ |S|})

80 max. gain of inserting comma after pair of words: max(
{ p(, | wi−2wi−1)

p(wi | wi−2,wi−1)
: 1 ≤ i ≤ |S|})

81 max. gain of inserting comma before pair of POS-tags: max(
{ p(, | ti+1ti+2)

p(ti | ti+1ti+2)
: 1 ≤ i ≤ |S|})

82 max. gain of inserting comma before pair of words: max(
{ p(, | wi+1wi+2)

p(wi | wi+1wi+2)
: 1 ≤ i ≤ |S|})

Table 3: Real-valued features

dependency relation between the corresponding to-
kens. The object can hold both its correct and its
incorrect versions. The Sentence class also imple-
ments all features and methods needed for data anal-
ysis. The purpose of the Corpus class is to gather
and manipulate sentence information and transfer it
to convenient output formats. It also holds a static
object that encapsulates all functionality regarding
language modeling.

Each step on the way to the final system is then
implemented in a seperate script that accesses the
data model described above. These steps can be
combined to form a closed system or be extended to
do further data analysis or to use machine learning
approaches other than logistic regression.

For machine learning we used the

scikit-learn5 implementation of logistic
regression.

4 Training

All sentences in the training set are used for train-
ing, that is, a sentence that needs correction enters
the training set with both its original and its cor-
rected version and thus introduces two samples with
different labels to the training data, namely −1 for
the correct version and +1 for the wrong version.
Sentences that do not need modification have the
label −1. To prevent single features from being
predominant we scale all feature vectors using the
scikit-learn MaxAbsScaler. It maps all our

5http://scikit-learn.org/stable/

167

values to lie between 0 and 1 by dividing by the
largest absolute value that occurs in each feature dur-
ing training. That way binary features and 0 values
remain unaffected. Note that test data samples can
still end up with feature values greater than 1, but all
features will still be cut to reasonable sizes.

4.1 Feature Selection
In order to determine which of the features are help-
ful in an actual system, we first extract a small sub-
set of binary features that all yield a high precision
when classifying sentences of the development set
solely based on their value. Seven of the features
yield a precision of more than 90%, namely 17, 18,
19, 22, 23, 32, and 42. We train a logistic regres-
sion model using only these features. We evaluate
the predictions of the model using the F1-scores for
both tracks of the shared task, as defined in (Dau-
daravičius, 2015). Then we add each of the remain-
ing features and keep the one that improves the F1-
score most. We repeat that process until none of
the features improves the score anymore. We per-
form this process on both training and development
data seperately. Note that we do not include the fea-
tures which encode the domain of a sentence. In-
stead, their combined impact is tested at the end of
the procedure. If and only if adding them all yields
an improvement, they are kept in the final model.

After having determined the most informative
features, we account for distributional properties of
our training set by adjusting some parameters. The
training set is heavily biased towards correct sen-
tences, because for each sentence (even with error)
there is a correct version, but there is not neces-
sarily a wrong version for each sentence. In or-
der to make up for this imbalance we set the class
weights inversely proportional to their respective
proportions in the training data, as suggested by the
scikit-learn-documentation6. Applying L1 reg-
ularization instead of L2 regularization gives us a
minor performance boost, too. Table 4 shows the
feature sets determined by the feature selection pro-
cess along with the performances of the models on
the different datasets with weighted classes and us-
ing L1 regularization.

6http://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html

Model precision recall F1
prob.u.L2 0.6655 0.7889 0.722
prob.w.L1 0.9333 0.7491 0.8311
bool.w.L1 0.3765 0.9480 0.5389

Table 6: Results on test data

Seeing how setting the right parameters can im-
prove the performance of logistic regression, we do
another feature selection on the development data.
This time we weight the classes as described above
and apply L1 regularization from the outset. That
way we obtain the feature sets reported in Table 5.

5 Results

Since the results in Table 5 yield very promising
results on the development data, we apply the two
models to the test data, which yields comparable re-
sults (see models bool.w.L1 and prob.w.L1 in Ta-
ble 6). Taking a closer look at the individual out-
comes, however, reveals that they are by no means
expressive. In the binary task our system almost al-
ways assigns true and thereby ensures the high re-
call. The precision on the other hand is relatively
low and roughly matches the proportion of spurious
sentences in the data. Hence our system would be
outperformed by one that assigns true to all samples.

Our results on the probabilistic track look similar.
Apart from a few instances to which our model as-
signs a probability around 95%, the estimations are
always very close to 50%.

In order to examine the effects of a larger set of
features we also apply the model resulting from fea-
ture selection on the training data to the test data
for the probabilistic task. We expect that thanks to
the multitude of features this model (prob.u.L2) will
eventuate in a more diverse result. Despite the fact
that as reported in Table 6 the F1-score drops by
11 points compared to our other system, the indi-
vidual outcomes in fact seem to be much more ex-
pressive. The results still have a tendency to range
around 50% but there are considerably more outliers
and a lot more probabilities greater than 95%.

6 Discussion

6.1 Lessons learned

It is noticeable that we end up with very few fea-
tures when performing the feature selection process

168

features F1-score
bool: training data 1, 7, 8, 9, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 34, 0.4251

40, 42, 43, 44, 45, 46, 57, 58, 73, 77, 78, 79, 81, 82
prob: training data 7, 9, 11, 14, 17, 18, 19, 22, 23, 32, 42, 47, 48, 49, 50, 51, 52, 53, 54, 0.7500

55, 56, 60, 66, 67, 69, 70, 73, 74, 75
bool: development data 1, 3, 8, 9, 13, 14, 17, 18, 19, 22, 23, 24, 25, 30, 31, 32, 34, 35, 41, 42 0.5264

43, 45, 46, 57, 58, 77, 82
prob: development data 11, 14, 17, 18, 19, 22, 23, 26, 30, 32, 39, 42, 56, 66, 67, 69, 70, 74, 75 0.7547

Table 4: F1-scores resulting from feature selection, weighting classes and applying L1 regularization afterwards

features F1-score
bool: development data 17, 18, 19, 22, 23, 32, 42, 69, 79 0.5701
prob: development data 17, 18, 19, 22, 23, 32, 42, 44, 72 0.8477

Table 5: F1-scores resulting from feature selection with classes weighted and L1 regularization applied from the outset

weighting the classes beforehand. By weighting the
classes inversely proportional to their proportions
in the training data, the system is immediately bi-
ased towards high probabilities for true labels, trying
to compensate the superior number of false labels
in the training data. Starting the feature selection
process with high-precision features, the probabil-
ity spikes whenever these features are 1. So both the
model for the boolean track and the one for the prob-
abilistic track start out with very high precisions.
Due to the strong true-bias, all other probabilities
are close to but still smaller than 50%, yielding a rel-
atively high recall in the probabilistic system, which
results in a very good performance according to the
provided evaluation metric. The boolean system, on
the other hand, has a very low recall, so in order to
increase its F1-score, the precision is sacrificed dur-
ing feature selection in favor of a better recall.

The feature selection processes show which fea-
tures are more useful than others. We see that
most of the integer-valued features that are valuable
for readability assessment are never chosen for any
model. A possible reason is that readability ease in
scientific writing is not as important as in other do-
mains, since the target readers are highly educated.
A high linguistic complexity is rather characteristic
for scientific writing and is possibly not perceived as
a deficiency as much.

Interestingly the WordNet features (10, 28) do
not work well, in contrast to the features using the
pyenchant-package (11, 26).

The number of abbreviations in a paragraph (14)
is chosen by every model so it is possible that an

author’s writing style throughout the rest of a doc-
ument affects the editor’s acceptance of individual
sentences. It is worth considering to design more
features that account for consistency in a paragraph.

Binary features often manage to improve the
models, except for features 15 and 16, which is not
surprising, given the fact that they denote exactly op-
posite properties and the model is not able to account
for dependencies between features. Features 36–39
try to detect number disagreements and seem to per-
form poorly. Being based on both dependency trees
and part-of-speech tags, these features rely on the
correctness of the supplementary data, which in this
case has been generated automatically, and hence
cannot be guaranteed to be correct.

Our results also show that the domain-related fea-
tures are not very helpful in combination with logis-
tic regression. We can report that they only make a
minor difference in the one model they entered.

Especially the models for probabilistic estimation
are improved by features 66, 67 and 69, which are
supposed to detect the most unlikely n-grams in a
sentence. They are better in detecting local discrep-
ancies in a sentence than the maximum likelihood
estimation features 59–65, because an unlikely n-
gram does not have much impact on the likelihood
estimation of a sentence, so even a major error re-
flected in a very low n-gram probability can possi-
bly go unnoticed. That cannot happen in the features
66–72.

The remaining features, dealing with the effects
of insertion, deletion, and substitution of commas,
articles, and prepositions, have positive impact on

169

some of the models, which is why we are confident
that language modeling is the key to other helpful
features yet to be found.

6.2 Evaluation Metric

The evaluation score works well for a system whose
only purpose is the identification of erroneous sen-
tences, so for the binary classification task the F1-
score is perfectly suitable. However, it may be worth
considering whether the information that a sentence
is fine could be valuable, too. That might be the
case whenever sentences must be further processed.
In that case the accuracy metric might be the bet-
ter choice, because it takes all correct classifications
into account, whereas the F1-score does not reward
instances correctly classified as false.

As for the probabilistic task, our results show that
the evaluation score is not strict enough, and that it
is prone to misjudge the expressiveness of the re-
sults. In fact, correctly assigning 1.0 to only one
faulty sentence and 0.5 to all other sentences yields
a score of 0.8571. The result is not as extreme if pre-
cision and recall are computed based on the mean
absolute error, which results in 0.6667. This, still,
clearly overestimates the quality of the results.

7 Related Work

As Daudaravičius (2015) states, a lot of scientists
authoring scientific papers are nonnative English
speakers. This insight suggests a relation of auto-
matic evaluation of scientific writing to the field of
language learner systems. Gamon (2010) mainly ad-
dresses article and preposition errors, which have
shown to be frequent errors in the dataset provided
for the AESW 2016 Shared Task, too. He uses lan-
guage models on both a lexical and a syntactical
level to find more likely alternatives for prepositions
and articles with respect to the linguistic environ-
ment they occur in. He also bases some features on
ratios of language model outcomes, rather than on
individual probabilities, which is an approach that
underlies many of our real-valued features.

Tetreault et al. (2010) examine how helpful parser
output features are when modeling preposition us-
age. They present several phrase structure and
dependency-based features, including left and right
contexts of constituents in parse trees and the

lexicals modified by a prepositional phrase.
For our features we extract those ideas from these

works that seem the most promising for the chal-
lenge we encounter. But they both hold inspiration
for even more features than those we implement in
the course of our participation in the shared task and
will be reconsidered in future work.

8 Conclusions

To detect spurious sentences in scientific writing we
trained a logistic regression model. After a thor-
ough data analysis, which gave us some profound
insight into the types of errors occurring in scien-
tific writing, we designed a number of features to
detect these errors. We identified the most mean-
ingful features by performing an incremental feature
selection. Some of the resulting features show that
corrections which seemed arbitrary might be justi-
fied by means of consistency of a text. We also
used the probabilities of sentences according to lan-
guage models as features, which our feature selec-
tion process determined to be helpful. Using the
selected features our regression model achieved re-
spectable results compared to our competitors’ sys-
tems. Weighting our classes during the feature se-
lection procedure, we accomplished a score to rank
highest according to the evaluation metric in the
probabilistic track of the task. However, we dis-
covered that these results are very homogeneous and
thus not expressive enough for a real life system. For
future improvements of our system, we plan on de-
veloping an evaluation metric that takes the diversity
of result data into account.

Acknowledgements

This work has been funded by the Klaus Tschira
Foundation, Heidelberg, Germany. The second au-
thor has been supported by a HITS Ph.D. schol-
arship. We would like to thank Mark-Christoph
Müller for giving feedback on earlier drafts of this
report.

170

References
Vidas Daudaravičius. 2015. Automated evaluation of

scientific writing: AESW shared task proposal. In
Proceedings of the Tenth Workshop on Innovative Use
of NLP for Building Educational Applications, Den-
ver, Col., 4 June 2015, pages 56–63.

Michael Gamon. 2010. Using mostly native data to
correct errors in learners’ writing: A meta-classifier
approach. In Proceedings of Human Language Tech-
nologies 2010: The Conference of the North American
Chapter of the Association for Computational Linguis-
tics, Los Angeles, Cal., 2–4 June 2010, pages 163–
171.

Daniel Jurafsky and James H. Martin. 2009. Speech and
Language Processing. Pearson Education, Upper Sad-
dle River, N.J., second edition.

Emily Pitler and Ani Nenkova. 2008. Revisiting
readability: A unified framework for predicting text
quality,. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Process-
ing, Waikiki, Honolulu, Hawaii, 25–27 October 2008,
pages 186–195.

Joel Tetreault, Jennifer Foster, and Martin Chodorow.
2010. Using parse features for preposition selection
and error detection. In Proceedings of the ACL 2010
Conference Short Papers, Uppsala, Sweden, 11–16
July 2010, pages 353–358.

171

