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Abstract

In this paper we investigate how well the sys-
tems developed for automated evaluation of
written responses perform when applied to
spoken responses. We compare two state of
the art systems for automated writing evalua-
tion and a state of the art system for evaluat-
ing spoken responses. We find that the sys-
tems for writing evaluation achieve very good
performance when applied to transcriptions of
spoken responses but show degradation when
applied to ASR output. The system based on
sparse n-gram features appears to be more ro-
bust to such degradation. We further explore
the role of ASR accuracy and the performance
and construct coverage of the combined model
which includes all three engines.

1 Introduction

In this paper we evaluate how well the systems
developed for automated evaluation of written re-
sponses perform when applied to spoken responses.
We use a corpus of spoken responses to an English
language proficiency test and compare the perfor-
mance of two state-of-the-art systems for evaluating
writing and a state of the art system for evaluating
spoken responses.

Automated speech scoring, until recently, pri-
marily focused on evaluating pronunciation and
prosody of highly constrained read speech (Bern-
stein et al., 1990; Neumeyer et al., 1996; Witt and
Young, 2000). With the improvement in automatic
speech recognition technology, automated scoring
has lately also been applied to constructed responses
where the content of the response may not be known

in advance (Zechner et al., 2009; Cheng et al., 2014).
Earlier scoring systems for such responses still pri-
marily evaluated delivery aspect of the response, but
there has also been a growing amount of work on
automatic evaluation of grammar, vocabulary and
content of spoken responses (Bernstein et al., 2010;
Chen and Zechner, 2011; Xie et al., 2012; Bhat and
Yoon, 2015).

While automatic evaluation of these high-level as-
pects of language proficiency is a relatively new field
in automated speech scoring, there exists a substan-
tial body of research on evaluating these constructs
in written responses including several systems al-
ready used operationally for scoring responses to
high-stakes language proficiency tests (see Shermis
(2014) for a comprehensive overview).

Automated scoring systems for spoken and writ-
ten responses generally share a common structure:
they extract a set of features measuring different
aspects of language proficiency and use a machine
learning algorithm to map those features to a human
score. There is also a substantial overlap in the crite-
ria used to score grammar and vocabulary of spoken
and written responses. Therefore, it is not unreason-
able to expect that some of the features developed
for evaluating writing will also be applicable to scor-
ing spoken responses (cf. Crossley and McNamara
(2013)).

On the other hand, the performance of such fea-
tures can be affected by a number of factors. First
of all, many grammatical features rely on knowl-
edge of sentence boundaries in order to parse the
response into syntactic constituents. In written re-
sponses the sentence boundaries can be established
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based on punctuation. In spoken responses, how-
ever, these have to be estimated using machine learn-
ing algorithms such as the ones described in Chen
and Yoon (2011). Furthermore, sentence boundaries
in speech are often ambiguous. These factors may
lead to a decrease in feature performance.

Second, in automated speech scoring the tran-
scription of the spoken responses necessary to eval-
uate grammar and vocabulary is obtained using au-
tomated speech recognition (ASR) (Higgins et al.,
2011). These systems may incorrectly recognize
certain words introducing additional noise into the
feature input and consequently lowering their per-
formance.

Finally, spoken and written discourse differ in
what is considered appropriate in terms of language
use (Chafe and Tannen, 1987; Biber and Gray,
2013). Thus, for example, sentence fragments typ-
ically considered inappropriate for written language
are generally very common in unscripted spoken re-
sponses. This may also impact how well the features
developed for written responses perform on spoken
responses.

We first introduce three state-of-the-art opera-
tional systems for automated scoring. We then apply
the engines for evaluating writing to a corpus of spo-
ken responses. Finally, we evaluate whether com-
bining different engines leads to further improve-
ment in system performance and construct coverage.

2 Automated scoring systems

2.1 e-rater R©

e-rater R© (E) is an engine that can automatically pro-
vide feedback on students’ writing, as well as au-
tomatically assign a score to that writing. Using
statistical and rule-based NLP methods, E identifies
and extracts several feature classes for model build-
ing and essay scoring (Attali and Burstein, 2006;
Burstein et al., 2013)). Individual feature classes
typically represent an aggregate of a larger feature
set and are designed to capture a specific aspect of
the construct being measured. The feature classes
used in this paper include the following: (a) gram-
matical errors (e.g., subject-verb agreement errors),
(b) word usage errors (e.g., their versus there), (c)
presence of essay-based discourse elements (e.g.,
thesis statement, main points, supporting details,

and conclusions), (d) development of essay-based
discourse elements, (e) a feature that considers cor-
rect usage of prepositions and collocations (Futagi
et al., 2008), and (f) sentence variety. To train a new
scoring model, features are extracted from a training
data set, and a linear model (roughly equivalent to
non-negative least squares regression) is learned.

2.2 c-rater-ML

c-rater-ML (C) is an automated scoring engine orig-
inally designed to evaluate the content of a student
response. It is typically applied to short responses
ranging from a few words to a short paragraph.
Therefore, in contrast to E and S many of the fea-
tures used in the C engine are sparse lexicalized fea-
tures similar to the ones described in Heilman and
Madnani (2013). In addition to word and character
n-gram features, the models also include syntactic
dependency features. As a result of the large num-
ber of sparse features, the modeling technique for
this kind of feature set needs to be different from
a straightforward linear model. C employs a Sup-
port Vector Regressor with a radial basis function
kernel. We use this alternative approach to scor-
ing (with many sparse lexical features and a non-
linear learning function) to contrast with the typical
scoring models used for evaluating speech or writing
quality.

2.3 SpeechRater

SpeechRatersm (S) (Zechner et al., 2009) is an auto-
mated scoring engine that is designed to evaluate the
quality of spontaneous spoken responses. Using sig-
nal processing as well as NLP techniques, S extracts
features for evaluating both the delivery characteris-
tics (e.g. fluency, pronunciation) and the language
use characteristics (e.g. grammar, vocabulary) of
each response.

The features are extracted from the sound record-
ing of the response using the two stage method de-
scribed in Higgins et al. (2011) where the transcrip-
tion of the responses is obtained using automated
speech recognition technology. The ASR engine in-
corporated into S was trained on over 800 hours of
non-native speech from the same assessment used
in this study with no speaker overlap. The ASR sys-
tem uses a GMM-based crossword triphone acoustic
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model and a 4-gram language model with a vocabu-
lary size of 65,000 words.

The S model used in this study contained 18 fea-
tures. Of these, 15 features covered various as-
pects of delivery such as fluency, pronunciation and
rhythm. Three features measured language use.
These feature were: (1) average log of the frequency
of all content words (Yoon et al., 2012), (2) CVA-
based comparison between the lexical content of
each response and the reference corpus (based on
Xie et al. (2012)) and (3) a CVA-based comparison
computed based on part-of-speech tags (Bhat and
Yoon, 2015). As in case of E, the final score is com-
puted as a linear combination of these features.

3 Data and methodology

3.1 Corpus of spoken responses

The study is based on a corpus of 5,884 spoken re-
sponses to an English language proficiency test ob-
tained from 996 speakers. The corpus contains up to
six responses from each speaker. Each response was
unscripted and around 1 minute long.

The corpus was equally split into training and
evaluation sets (2,941 responses each). There was
no overlap of speakers or prompts in the two sets.
All responses were assigned a holistic proficiency
score by expert raters. The scores ranged from 1
(low proficiency) to 4 (high proficiency). The raters
evaluated the overall intelligibility of responses,
grammar, the use of vocabulary, and topic develop-
ment. To obtain human benchmarks, 136 responses
from the evaluation set were scored by two raters.
The agreement between the two raters was Pearson’s
r = 0.56.

All responses were transcribed by a professional
transcription agency. The average length of tran-
scribed responses was 104 words (σ = 30) with the
length of 50% of the responses falling between 84
and 124 words. The responses from more profi-
cient speakers were generally longer: the number
of words in the response was moderately correlated
with proficiency score with Pearson’s r = 0.51 (p <
0.0001). Table 1 shows the number of responses in
the evaluation set assigned to each score category as
well as the mean and standard deviation of the num-
ber of words in the transcriptions of these responses.

Finally, we computed the word error rate (WER)

Score 1 2 3 4
N responses 104 1005 1485 347
Average N words 51.5 91.0 111.9 126.5
Std. N words 25.4 24.7 25.5 28.9
Average WER 48% 36% 31.5% 30%

Table 1: The total number of responses in each score category,

the average number of words/standard deviation of transcribed

responses and the average ASR word error rate for responses in

each category.

for the ASR output for each response in our corpus.
The average WER for the whole corpus was 34%
(σ = 13.7). The ASR was somewhat more accu-
rate for more proficient speakers with the correlation
between response WER and response score Pear-
son’s r = -0.24 (p < 0.0001). As can be seen from
Table 1, the relationship between WER and profi-
ciency scores was non-linear: the WER was sub-
stantially greater for speakers with the lowest pro-
ficiency level (score 1), the difference between the
rest of the speakers was smaller.

3.2 Method

3.2.1 Feature extraction
We used each of the three engines to extract

the corresponding features for each response. Fea-
tures for S were extracted following the operational
pipeline from the sound recording of the response
with all features including those related to language
use computed on the ASR output. For E and C the
features were extracted using three different inputs:
(1) the ASR output (the same as used in S), (2) the
expert human transcription which included punctua-
tion, and (3) the human transcription after removing
all punctuation. All transcriptions were processed
to remove fillers such as ‘uhm’ and ‘uh’, word frag-
ments and repeated words.

3.2.2 Model building
We then used various combinations of features to

compare the performance of the engines. For S and
E we used the actual feature values returned by each
system (18 S features and 9 E features). Since C is
based on numerous sparse features we used a stack-
ing approach (Wolpert, 1992) to combine it with the
other two engines: we used 10-fold cross-validation
to generate predicted scores for all responses in the
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training set and used these predicted scores as a sin-
gle “C” feature. For the evaluation set this feature
corresponded to scores predicted for the evaluation
set using the C model trained on the training set.

We then trained a series of models based on differ-
ent combinations of features from the three engines.
The coefficients for all models were estimated on the
training set using non-negative least squares regres-
sion. The models were then used to generate predic-
tions on the evaluation set. Finally, in all cases the
predictions were re-scaled using a normal transfor-
mation to match the distribution of human scores on
the training set.

4 Results

Table 2 shows the performance of all 19 models in
terms of correlation (Pearson’s r) between predicted
and observed scores for the evaluation set. We used
Steiger’s method for comparing dependent correla-
tions (Steiger, 1980)1 to evaluate whether the dif-
ferences between models are statistically significant.
Unless stated otherwise, all reported differences are
significant at α = 0.01 after applying Bonferroni cor-
rection for multiple comparisons.

4.1 Performance of E and C on transcriptions

When used with human transcription, both E and
C performed close to the S baseline (r = 0.61 for
E, 0.61 for C and 0.63 for S, the differences are not
significant). There was a small improvement from
combining the two automated writing evaluation en-
gines (EC) with r increasing to 0.64.

4.2 Performance of E and C on ASR output

There was a decrease in performance of both writing
engines when the features were computed on ASR
output. The degradation was larger for E (from 0.61
to 0.52). C appeared to be more robust to the noise
introduced by ASR with the performance decreas-
ing from 0.61 to 0.58. The model based on the com-
bination of both engines computed on ASR output
achieved r = 0.60.

We further explored the reason for degradation
between the features computed on transcription and
ASR output. As discussed in the introduction, ASR

1We used the Python implementation from
https://github.com/psinger/CorrelationStats

output does not contain sentence boundaries neces-
sary for the computation of some of the features.
To evaluate the impact of this factor we computed a
new set of features using human transcriptions with
punctuation removed. We found that this had no sig-
nificant effect on model performance.

We next looked at the effect of response WER on
the accuracy of the scoring engine for this response.
We first hypothesized that the scoring error may be
greater for responses with higher WER. To test this
hypothesis we computed the correlation between the
scoring error (the absolute difference between pre-
dicted and observed score) and the WER for each
response. As expected, there was no significant cor-
relation when automated scores were computed on
transcriptions with or without punctuation. Surpris-
ingly, the correlations between WER and scoring er-
ror for scores computed on ASR output were very
low: r = 0.09 (p < 0.00001) for E and r = 0.07, p
= 0.0001 for C . In other words, there was no lin-
ear relationship between the response WER and the
scoring error.

We also tested whether the relationship between
the scoring error and WER was further obscured by
training the models on already “noisy” ASR outputs.
We retrained the E, C and EC models using the fea-
tures computed on transcriptions and then evaluated
them using features computed on ASR outputs. We
found that the performance of these new models was
similar (E) or slightly lower (C and EC) than the
performance of the models trained on ASR outputs.
Furthermore, the correlation between the WER and
scoring error for these models were as low as the
correlations observed for ASR-trained models.

4.3 Combined performance of all three engines
Finally, we evaluated the performance and construct
coverage of the model based on the combination of
all three engines.

We found that the performance improved if S fea-
tures were combined with writing features computed
based on transcriptions. This is not surprising con-
sidering that all S features were computed on ASR
output and therefore the new features computed on
transcriptions most likely contained the information
lost due to inaccurate ASR.

For features computed on ASR output, we found
that there was no further gain in performance from
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Model Description Org N feats trans trans-no-punct asr
S Baseline model containing S features only 18 0.63
E The model containing only E features 9 0.61 0.60 0.52
C The original C model (see text) 0.61 0.62 0.58
EC The model which combined E features and pre-

dictions from C (see main text)
10 0.64 0.64 0.60

SE The combination of S and E features 27 0.67 0.66 0.63
SC The combination of S features and predictions

from C (see main text)
19 0.66 0.66 0.64

SEC The combination of S and E features and predic-
tions from C

28 0.67 0.67 0.64

Table 2: Summary of performance (Pearson’s r between the predicted and human score) of all 19 models evaluated in this study.

The table shows the original number of features and the model performance for different types of input (see section 3.2.1). The

final number of features in the model may be less than the original number of features since all coefficients were set to be positive.

combining S and E (SE), C (SC) or all three engines
(SEC).

We also evaluated which features had the biggest
contribution to the final score in different models. In
the baseline S model, delivery features (fluency, pro-
nunciation, and prosody) accounted for 80% of the
final score. The language use features accounted for
the remaining 20%. In the combined model, the rel-
ative contribution of language use features increased
to 38% for SE, 37% for SC and 44% for SEC. Thus
in the combined model the delivery and language
use features are more evenly balanced.

5 Discussion

In this paper we explored how well state-of-the-
art engines for evaluating written responses per-
form when applied to transcriptions of spoken re-
sponses. Surprisingly, we found that the writing en-
gines achieve relatively high agreement with human
scores even though they do not measure some funda-
mental aspects of spoken language proficiency: flu-
ency and pronunciation. At the same time, there was
no improvement between the baseline S system and
a system that combines all three engines.

Furthermore, the drop in performance of writing
engines when moving from well-formed transcribed
text to ASR output is not as high as one might ini-
tially expect given the relatively high WER in this
data set. We also found that the relationship between
the ASR accuracy and scoring error was not straight-
forward and deserves further study. Finally, lack of
sentence boundaries had no effect on the engine per-

formance.

C engine showed good agreement with human
scores even though there was no overlap between
prompts in training and evaluation sets and there-
fore the model could not learn any specifics relevant
to particular prompts and had to rely on general pat-
terns of word use.

Our results highlight the complex role of con-
struct in automated scoring. The majority of speak-
ers who show good performance along one of the
dimensions of language proficiency generally also
score high along other dimensions. This is ex-
emplified by our result that writing engines which
measured only one aspect of spoken responses
still showed relatively high agreement with holistic
scores. Consequently, as shown in this study, the
gain in performance from combining different en-
gines is small or non-existent. However, a system
which heavily relies on features measuring a single
aspect of proficiency is sub-optimal both in terms of
validity of the final score and the system vulnerabil-
ity to various gaming behaviours.

We showed that combining the speech scoring en-
gine with the existing features developed for scoring
written responses produces a model where the con-
tribution of different proficiency aspects to the final
score is more balanced leading to a more valid sys-
tem, which is potentially more robust to gaming. In
future study we will investigate the individual con-
tribution of different features in these engines.
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