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Abstract 

This study describes the design of the 
NTNU-YZU system for the automated 
evaluation of scientific writing shared task. 
We employ a convolutional neural network 
with the Word2Vec/GloVe embedding rep-
resentation to predict whether a sentence 
needs language editing. For the Boolean 
prediction track, our best F-score of 0.6108 
ranked second among the ten submissions. 
Our system also achieved an F-score of 
0.7419 for the probabilistic estimation 
track, ranking fourth among the nine sub-
missions.   

1 Introduction 

Automated grammatical error detection and correc-
tion are important tasks and research topics in 
computational linguistics. A number of competi-
tive tasks have been organized to encourage inno-
vation in this direction (Leacock et al., 2014). For 
examples, Helping Our Own (HOO) was a series 
of shared tasks used for correcting grammatical er-
rors of English texts written by non-native speak-
ers (Dale and Kilgarriff, 2011; Dale et al., 2012). 
The CoNLL 2013/2014 shared tasks aimed to cor-
rect grammatical errors among learners of English 
as a foreign language in the educational application 
(Ng et al., 2013; 2014). The first NLP-TEA work-
shop featured a shared task on grammatical error 
diagnosis for learners of Chinese as a foreign lan-

guage (Yu et al., 2014). The following year, a 
similar Chinese grammatical error diagnosis shared 
task was held in the second NLP-TEA workshop in 
conjunction with ACL-IJCNLP 2015 (Lee et al., 
2015). These competitions reflect the need for au-
tomated writing assistance for various applications. 

The Automated Evaluation of Scientific Writing 
(AESW) shared task seeks to promote the use of 
NLP tools to help improve the quality of scientific 
writing in English by predicting whether a given 
sentence needs language editing or not. The AESW 
shared task contains two tracks: (1) a Boolean pre-
diction track in which a sentence in need of editing 
will result in a binary classifier outputting true; 
otherwise the system should return false; and (2) a 
probabilistic estimation track in which the system 
estimates the editing probability (between 0 and 1) 
of each input sentence. A sentence is assigned 1 if 
it requires editing, and 0 otherwise. Each partici-
pating team can submit multiple results using dif-
ferent approaches for evaluation, but the final per-
formance comparisons are limited to two designat-
ed submissions for each track.  

This study describes the joint efforts between 
National Taiwan Normal University and Yuan Ze 
University (NTNU-YZU) in the AESW shared task. 
We introduce a convolutional neural network and 
its use for predicting language editing of scientific 
writing at the sentence level. The input sentence is 
represented as a sequence of words using distribut-
ed vectors looked up in a word embedding matrix. 
The datasets provided by the AESW organizers are 
used to train the neural network for the prediction 
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task. The output is a value for probabilistic estima-
tion. If the output value exceeds a certain threshold, 
it is considered as true for binary decision. Our be-
st results in terms of F-score are 0.6108 (ranked at 
2/10) and 0.7419 (4/9), respectively for the Boole-
an prediction track and the probabilistic estimation 
track. 

The rest of this paper is organized as follows. 
Section 2 introduces existing studies for grammati-
cal error detection and correction. Section 3 de-
scribes the details of the NTNU-YZU system ar-
chitecture for the AESW shared task. Section 4 
presents the evaluation results and their perfor-
mance comparison. Section 5 elaborates on the im-
plications and lessons learned. Conclusions are fi-
nally drawn in Section 6. 

2 Related Work 

Automated grammatical error detection and correc-
tion for second/foreign language learners has at-
tracted considerable research attention. Although 
commercial products such as Microsoft Word have 
long provided grammatical checking for English, 
researchers in NLP have found that there is still 
much room for improvement in this area. A num-
ber of techniques have recently been proposed to 
deal with various types of writing errors. A novel 
approach based on alternating structure optimiza-
tion was proposed to correct article and preposition 
errors (Dahlmeier and Ng, 2011). A linguistically 
motivated approach was also proposed to correct 
verb errors (Rozovskaya et al., 2014). A classifier 
was designed to detect word-ordering errors in 
Chinese sentences (Yu and Chen, 2012). Linguistic 
structures with interacting grammatical properties 
were identified to address such dependencies via 
joint inference and learning (Rozovskaya and Roth, 
2013). A set of linguistic rules with syntactic in-
formation was handcrafted for detecting errors in 
Chinese sentences (Lee et al., 2013). A sentence 
judgment system was developed using both rule-
based linguistic analysis and an n-gram statistical 
method for detecting grammatical errors (Lee et al., 
2014). A penalized probabilistic first-order induc-
tive learning algorithm was presented for Chinese 
grammatical error diagnosis (Chang et al., 2012). 
Relative position and parse template language 
models were proposed to correct grammatical er-
rors (Wu et al., 2010). Dependency trees were used 
to train a language model for correcting grammati-

cal errors at the tree level (Zhang and Wang, 2014). 
A classification-based system and a statistical ma-
chine translation-based system were combined to 
improve correction quality (Susanto et al., 2014). 
Different from correcting grammatical errors inde-
pendently, integer linear programming was used to 
model the inference process considering all possi-
ble errors (Wu and Ng, 2013). The theory of con-
trastive analysis was formalized to demonstrate 
that language-specific error distributions could be 
predicted from the typological properties of the na-
tive language and its relation to English (Berzak et 
al., 2015).  

Chodorow et al. (2012) presented the evaluation 
scheme for mapping writer, annotator, and system 
output onto traditional evaluation metrics for 
grammatical error detection. In addition to the 
choice of metric, they argued that the data skew is 
an important factor that should be considered. 
Evaluation methods from WMT human evaluation 
campaigns were also adapted to grammatical error 
correction (Grundkiewicz et al., 2015). The evalua-
tion method based on globally optimal alignment 
between the source, a system hypothesis, and a ref-
erence was used to provide scores for both detec-
tion and correction (Felice and Briscoe, 2015). In-
ter-annotator agreement statistics in grammatical 
error correction was analyzed (Bryant and Ng, 
2015). They found that the human upper bound is 
roughly 73% in terms of the F-score between hu-
man annotators.  

More recently, deep learning techniques have 
been widely applied to problems in natural lan-
guage processing with promising results. This 
trend motivates us to explore convolutional neural 
networks to automatically evaluate scientific writ-
ing at the sentence level.  

3 The NTNU-YZU System 

Figure 1 shows our Convolutional Neural Network 
(CNN) architecture for the AESW shared task. An 
input sentence is represented as a sequence of 
words. Each word refers to a row looked up in a 
word embedding matrix generating from 
Word2Vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014). We use convolutions over the 
sentence matrix to extract the features. A single 
convolution layer is adopted. The sliding window 
is called a filter in the CNN. We obtain the full 
convolutions by sliding the filters over the whole 
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matrix. Each filter performs the convolution opera-
tion on the sentence matrix and generates a feature 
map. A pooling layer is then used to subsample 
features over each map. The most common ap-
proach to pooling is to apply a max operation to 
reduce the dimensionality for keeping the most sa-
lient features, which are then concatenated to form 
the flatten for neural computing. The final softmax 
layer then receives this flatten as input and uses it 
to classify the sentence.  

During the training phase, a CNN automatically 
learns the values of its filters. If a sentence needs 
language editing to improve its grammaticality, the 
class is assigned as 1, and 0 otherwise. All training 
sentences accompanying their classes are used for 
learning in our CNN model. 

To classify a sentence during the testing phase, 
we directly use the probability of the class 1 (i.e., 
needs improvements) as the result for probabilistic 
estimation track. For the Boolean prediction track, 
if this probability exceeds a predefined threshold, 
then its output will be considered as true.  

4 Evaluations 

4.1 Data 

The datasets for the AESW shared task were pro-
vided by task organizers (Daudaravicius, 2016), 
including a collection of texts extracted from 9,919 
selected papers published in 2006-2013 by Spring-
er Publishing Company and edited at VTex by na-
tive English speaking editors. The training, devel-
opment and test datasets were comprised of data 
from an independent set of articles. After editing, 
the training and development sets respectively con-
sists of 1,196,940 and 148,478 sentences, for de-
signing and implementing the system. In total, 
143,804 sentences in the test dataset were used for 
final performance evaluation.  

The pre-trained word vectors we used are pub-
licly available for download at the official 
Word2Vec and GloVe web sites. For Word2Vec 
representation, the model was trained on part of the  
Google News dataset, producing 300 dimensional 

 
 

Figure 1: The illustration of our convolutional neural network architecture for the AESW shared task. 
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vectors for 3 millions words and phrases as a result. 
For the GloVe representation, we adopted 4 differ-
ent datasets for training the vectors including one 
from Wikipedia 2014 and Gigaword 5 (400K vo-
cabulary), two common crawl datasets (uncased 
1.9M vocabulary, and cased 2.2M vocabulary) and 
one Twitter dataset (1.2M vocabulary). 

To implement the system, a python library 
Theano (Bastien et al., 2012) was used. The 
abovementioned datasets and linguistic resources 
were used to construct a convolutional neural net-
work for this shared task.  

4.2 Scores  

For performance evaluation, this shared task 
adopted three metrics: precision, recall, and F-
score. The scores were calculated for both tracks 
individually. 

For the Boolean prediction track, precision 
measures the proportion of the gold standard sen-
tences among all sentences reported by the system 
as positive examples. Recall measures the propor-
tion of gold standard sentences correctly identified 
as needing improvement. F-score is the harmonic 
means of precision and recall. 

For the probabilistic estimation track, the Mean 
Squared Error (MSE) is used. The precision (de-
noted as P), recall (R), and F-score (F) are defined 
in the following equations: 

𝑃 = 1 − !
!

𝑞! − 𝑠! !, 𝑖𝑓 𝑞!! > 0.5    (1) 

𝑅 = 1 − !
!

𝑞! − 𝑠! !, 𝑖𝑓 𝑠!! = 1  (2) 

𝐹 = !∗!∗!
!!!

     (3) 

where qi is the probabilistic estimation, si is the 
gold standard, n is the number of sentences pre-
dicted as requiring improvement, and m is the 
number of gold standard sentences needing im-
provement. 

4.3 Experiments 

In the first set of experiments, we fine-tuned sever-
al parameter combinations to obtain the Convolu-
tional Neural Network (CNN). Three main pa-
rameters may affect system performance: (1) 
Number of epochs, which is the number of itera-
tions required to learning the network parameters 
(set from 3 to 5); (2) Number of filters, which is 
regarded as the number of features used to train the 

network (100 and 250 in this experiment); and (3) 
Filter length, which denotes the number of contexts 
for convolution (set from 2 to 4). We used mini-
batches to train the network. The size of each mini-
batch was set as 100. We also considered the num-
ber of learning instances. In addition to adopting 
training instances used only for network learning, 
we incorporate sentences from the development 
datasets for model training. To optimize training 
CNN efficiently, this set of experiments adopts the 
conventional bag-of-word vectors used to index a 
word as vocabulary. In addition, the default 
threshold was set as 0.5 for binary decisions. 

In the second set of experiments, we compared 
the effects of different word embedding methods 
including Word2Vec and Glove. We also evaluat-
ed the influence of the number of dimensions used 
for word representation.  

In the third set of experiments, we adopted the 
best settings generated from the above experiments 
to fine-tune the threshold for Boolean decision. We 
increase the threshold from 0.1 to 0.9 in increments 
of 0.1, and then fine tune in increments of 0.01 to 
obtain approximately optimal performance for the 
CNN model.  

4.4 Results 

Table 1 shows the Boolean results with different 
parameter settings. A greater number of epochs do 
not always produce the better results. A smaller 
number of filters obtained better outcomes in more 
than two-thirds of testing cases with the same set-
tings. Similarly, a longer filter length does not 
guarantee better results. In more than half of test-
ing cases, using more sentences from the develop-
ment dataset in model training did not produce bet-
ter F-scores. In summary, 4 epochs, 100 filters, and 
a filter length of 3 achieved the best recall of 
0.5251 and an F-score of 0.5526. We used these 
parameter settings for the following experiments. 

Table 2 shows the results of our CNN model 
with different word embedding methods for the 
Boolean prediction track. Within the GloVe repre-
sentation, the Twitter dataset (only 200 dimensions) 
does not achieve good results, possibly due to the 
poor suitability of textual usages of social media 
for the automated evaluation of scientific writing. 
With 300 dimensions each, trained word vectors 
from Wikipedia and Gigaword obtained relatively 
better effects than that from common crawl data. In 
addition, more dimensions usually lead to better 

125



 

results. Comparing the representations of GloVe 
and Word2Vec, the GloVe achieves better recall 
and a higher F-score than Word2Vec, while 
Word2Vec provides higher precision. Again, using 
more sentences to train the CNN does not result in 
better performance in this set of experiments. In 
summary, the Word2Vec training from the Google 
News data obtains the best precision at 0.6717. The 
best recall 0.5344 and F-score 0.5618 were 
achieved using the GloVe representation learning 
from Wikipedia and Gigaword (300 dimensions).  

Compared with the default threshold of 0.5, 
evaluation results showed that the F-score obtained 
using the Word2Vec representation could be im-
proved to 0.6108 by setting the threshold to 0.21. 
Similarly, the F-score of the GloVe representation 
learning from Wikipedia and Gigaword (300 di-
mensions) can be slightly improved to 0.6046 with 
a threshold of 0.34. We also analyzed why the low 
thresoulds resulting the better results. In our 
obserations, the class (0/1) in the training set is 
imbalanced. The number of instances with class 0 
(i.e., without needing improvements) is about 1.5 
times than that with the class 1, which may affect 

the model favors the class 0 and generates a low 
probability of the class 1.  

Table 3 shows the results of our CNN model 
with different word embedding methods for the 
probabilistic estimation track. Similar outcomes 
are obtained for the probabilistic estimation track. 
Our CNN using the Word2Vec representation 
achieved the best precision of 0.79. Also, using the 
CNN model with the GloVe representation trained 
from Wikipedia and Gigaword (300 dimensions) 
obtained the best recall of 0.7177 and the highest 
F-score of 0.7419. 

4.5 Comparisons 

In this shared task, each participant can submit 
up to two results as final submissions for each 
track. Our submission selected the result with best 
F-score and the result with relatively better preci-
sion without obviously bad recall. For the Boolean 
prediction track, we selected the best F-score of 
0.6108 (with a precision at 0.5025 and recall at 
0.7785) achieved by the Word2Vec representation 
with a threshold 0.21, and a precision of 0.6717 

Number 
of Epochs 

Number 
of Filters 

Filter 
Length 

Training Training + Development 

Precision Recall F-score Precision Recall F-score 

3 100 2 0.5964 0.4567 0.5173 0.5908 0.482 0.5309 
3 100 3 0.6058 0.4751 0.5325 0.6285 0.4294 0.5102 
3 100 4 0.6151 0.4388 0.5122 0.5942 0.5006 0.5434 
4 100 2 0.5876 0.4692 0.5218 0.5959 0.4534 0.515 
4 100 3 0.6049 0.4558 0.5199 0.5832 0.5251 0.5526 
4 100 4 0.6099 0.4441 0.5139 0.6026 0.465 0.525 
5 100 2 0.5644 0.5167 0.5395 0.5851 0.466 0.5188 
5 100 3 0.5952 0.4769 0.5295 0.6064 0.4569 0.5211 
5 100 4 0.5981 0.4451 0.5103 0.6132 0.4156 0.4954 
3 250 2 0.6081 0.4381 0.5093 0.6085 0.4363 0.5082 
3 250 3 0.6222 0.4466 0.5199 0.6102 0.4726 0.5327 
3 250 4 0.632 0.4007 0.4904 0.6067 0.4702 0.5298 
4 250 2 0.5828 0.4874 0.5308 0.5944 0.4558 0.516 
4 250 3 0.6187 0.4362 0.5116 0.626 0.4263 0.5072 
4 250 4 0.6091 0.4479 0.5162 0.6325 0.3995 0.4897 
5 250 2 0.5929 0.4325 0.5001 0.6 0.4388 0.5069 
5 250 3 0.6052 0.4427 0.5113 0.5972 0.4725 0.5276 
5 250 4 0.6413 0.3431 0.4471 0.6424 0.3545 0.4569 

Table 1: Boolean results of our CNN model with different parameters. 
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and recall of 0.3805 (the F-score of 0.4858 as a re-
sult) with the same word embedding method at the 
default threshold 0.5. For the probabilistic estima-
tion track, we submitted a result with an F-score of 
0.7419 (with a precision at 0.7678 and recall of 
0.7177) using the GloVe representation trained 
from Wikipedia and Gigaword at 300 dimensions, 
and the result with best precision at 0.79 and recall 
at 0.6166 (the F-score was 0.6926) using the 
Word2Vec embedding.  

The official results of this shared task for the 
Boolean prediction track and probabilistic estima-
tion track can be found in the organizers’ task re-
port (Vidas et al., 2016). The organizers also pro-
vided the baseline method using random guess. If 
the F-score is considered, our first NTNU-YZU 
submission for the Boolean track ranked a close 
second (the best is 0.6278) among the ten submis-
sions. The second NTNU-YZU submission 
achieved the best precision among all submissions 

Word Embedding 
Training Training + Development 

Precision Recall F-score Precision Recall F-score 

Word2Vec (Google News, 300d) 0.79 0.6166 0.6926 0.7759 0.6805 0.7251 

GloVe  
(Wikipedia 2014 + Gigaword 5, 50d) 0.7675 0.6865 0.7248 0.7714 0.6853 0.7258 

GloVe (W. 2014 + G. 5, 100d) 0.779 0.6552 0.7117 0.7744 0.6818 0.7252 

GloVe (W. 2014 + G. 5, 200d) 0.7767 0.6819 0.7262 0.7785 0.6775 0.7245 

GloVe (W. 2014 + G. 5, 300d) 0.7678 0.7177 0.7419 0.7745 0.6938 0.7319 

GloVe  
(Common Crawl, uncased, 300d) 0.7755 0.6916 0.7311 0.7784 0.68 0.7259 

GloVe  
(Common Crawl, cased, 300d) 0.773 0.704 0.7369 0.779 0.6789 0.7255 

GloVe (Twitter, 200d) 0.784 0.649 0.7102 0.7817 0.668 0.7204 

Table 3: Probabilistic results of our CNN model with different word embedding methods. 

 

Word Embedding 
Training Training + Development 

Precision Recall F-score Precision Recall F-score 

Word2Vec (Google News, 300d) 0.6717 0.3805 0.4858 0.6279 0.4871 0.5486 

GloVe  
(Wikipedia 2014 + Gigaword 5, 50d) 0.5956 0.4539 0.5152 0.6084 0.437 0.5086 

GloVe (W. 2014 + G. 5, 100d) 0.6357 0.3968 0.4886 0.6178 0.451 0.5214 
GloVe (W. 2014 + G. 5, 200d) 0.6234 0.4548 0.5259 0.6303 0.4422 0.5198 
GloVe (W. 2014 + G. 5, 300d) 0.5923 0.5344 0.5618 0.6164 0.4842 0.5424 

GloVe  
(Common Crawl, uncased, 300d) 0.6222 0.4843 0.5447 0.6293 0.4584 0.5304 

GloVe  
(Common Crawl, cased, 300d) 0.6129 0.508 0.5555 0.6328 0.4634 0.535 

GloVe (Twitter, 200d) 0.6532 0.3925 0.4903 0.6419 0.4301 0.5151 

Table 2: Boolean results of our CNN model with different word embedding methods. 
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with a moderate F-score. For the probabilistic es-
timation track, the F-score of our first NTNU-YZU 
submission ranked fourth among the nine submis-
sions. In terms of precision, our second NTNU-
YZU submission ranked second among all submis-
sions.  

5 Lessons 

The CodaLab is used to evaluate this competition-
based shared task. This open-source system is very 
helpful for automating such competitions, but is 
still in development. About 12%(=31/269) of our 
submissions for the Boolean prediction track failed 
with/without error information. Similarly, 
16%(=13/81) of submissions for the probabilistic 
estimation track failed.  

Based on our experience in organizing or partic-
ipating in shared tasks, all participants should in-
dependently complete the systems and their eval-
uation. The CodaLab automatically keeps the last 
submission of each participant in the leaderboard. 
All participants have access to the current leader-
board results during the testing phrase, which may 
affect system development and the final result se-
lection.  

For the shared task, only about three months are 
allowed for system design and implementation, 
and some participants were unable to complete the 
task in time, or withdrew because of unsatisfactory 
results. The schedule left our team time to only ex-
plore one of possible machine learning models. Al-
lowing more time to complete the task, may pro-
duce better results.  

In addition to using precision, recall, and F-
score as evaluation metrics, we suggest evaluating 
the false positive rate, which is the proportion of 
sentences that incorrectly identified as needing im-
provement. Although high precision usually im-
plies a low error rate, a low false positive rate is 
still considered as an important metric in the real 
world, because frequently and incorrectly identify-
ing sentences as in need of improvement may 
cause user frustration.  

6 Conclusions and Future Work 

This study describes the NTNU-YZU system in the 
AESW shared task, including system design, im-
plementation, and evaluation. We trained a convo-
lutional neural network using two embedding 
methods (Word2Vec and GloVe) for the automated 

evaluation of scientific writing. Our system 
achieved an F-score of 0.6108, ranking second 
among the ten submissions for the Boolean predic-
tion track. For the probabilistic estimation track, 
our best F-score of 0.7419 ranked fourth among 
the nine submissions.  

This is our first exploration for this research top-
ic and future work will explore other machine 
learning approaches to improve system perfor-
mance. In addition to predicting whether a given 
English sentence needs language editing or not, we 
will focus on detecting/correcting grammatical er-
rors in sentences written by Chinese learners.  
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