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Abstract

We investigate questions of how to reason
about learner meaning in cases where the set
of correct meanings is never entirely com-
plete, specifically for the case of picture de-
scription tasks (PDTs). To operationalize
this, we explore different models of represent-
ing and scoring non-native speaker (NNS) re-
sponses to a picture, including bags of depen-
dencies, automatically determining the rele-
vant parts of an image from a set of native
speaker (NS) responses. In more exploratory
work, we examine the variability in both NS
and NNS responses, and how different system
parameters correlate with the variability. In
this way, we hope to provide insight for fu-
ture system development, data collection, and
investigations into learner language.

1 Introduction and Motivation

Although much current work on analyzing learner
language focuses on grammatical error detection
and correction (e.g., Leacock et al., 2014), there is
a growing body of work covering varying kinds of
semantic analysis (e.g., Meurers et al., 2011; Bai-
ley and Meurers, 2008; King and Dickinson, 2014,
2013; Petersen, 2010), including assessment-driven
work (e.g., Somasundaran et al., 2015; Somasun-
daran and Chodorow, 2014). One goal of such work
is to facilitate intelligent language tutors (ILTs) and
language assessment tools that maximize commu-
nicative interaction, as suggested by research in sec-
ond language instruction (cf. Celce-Murcia, 1991,
2002; Larsen-Freeman, 2002). Whether for feed-
back or for assessment, however, there are lingering

questions about the semantic analysis to address. We
investigate questions of how to reason about learner
meaning in cases where the set of correct meanings
is never entirely complete.

Focusing on semantic analysis requires a sense of
what counts as a semantically appropriate utterance
from a language learner. Consider when a learner
has to describe the contents of a picture (see sec-
tion 3). There are a number of questions to address
in such a situation: 1) Does a semantically correct
answer have to sound nativelike or only convey the
correct facts? 2) Which facts from the picture are
more or less relevant? 3) Are responses strictly cor-
rect or not, or is it better to treat correctness as a
gradable phenomenon? Additionally, a gold stan-
dard of correct responses cannot capture all possible
variations of saying the correct content (cf. para-
phrases, Barzilay, 2003). We thus must address the
specific question of how one can reason about se-
mantic correctness from a (necessarily) incomplete
gold standard of answers.

In this paper, we build from our previous work
(King and Dickinson, 2013, 2014) and move to-
wards finding a “sweet spot” of semantic analy-
sis (cf. Bailey and Meurers, 2008) for such image-
based learner productions. In particular, using avail-
able NLP tools, we move away from specific cor-
rect semantic representations and an exact defini-
tion of correctness, to more abstract data representa-
tions and more gradable notions of correctness (sec-
tion 4). A benefit of more abstract representations is
to allow correct and relevant information to be de-
rived from a relatively small set of native speaker
responses, as opposed to deriving them by hand, in
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addition to allowing for a range of sentence types.
We should note, in this context, that we are dis-

cussing semantic analysis given a gold standard of
native sentences. Image description tasks can of-
ten rely on breaking images into semantic primitives
(see, e.g., Gilberto Mateos Ortiz et al., 2015, and
references therein), but for learner data, we want to
ensure that we can account not just for correct se-
mantics (the what of a picture), but natural expres-
sions of the semantics (the how of expressing the
content). In other words, we want to reason about
meaning based on specific linguistic forms.

A second issue regarding semantic analysis, be-
yond correctness, stems from using an incomplete
gold standard, namely: assessing the degree of se-
mantic variability, both for native speakers (NSs)
and non-native speakers (NNSs). In addition to pro-
viding insight into theoretical research on variability
in learner language (cf. Ellis (1987), Kanno (1998)),
analyzing variability can help determine the best pa-
rameters for an NLP system for different kinds of
responses. That is, different types of image content
might require different mechanisms for processing.
Additionally, knowing how different pictures elicit
different kinds of content can provide feedback on
appropriate types of new data to collect. We ap-
proach this issue by clustering responses in various
ways (section 5) and seeing how the clusters connect
to system parameters.

For both the experiments involving the accuracy
of different system parameters (section 4) and the
clustering of different responses (section 5), we
present results within those sections that show the
promise of moving to abstract representations, but
in different ways for different kinds of data.

2 Related Work

In terms of the overarching goals of developing an
interactive ILT, a number of systems exist (e.g.,
TAGARELA (Amaral et al., 2011), e-Tutor (Heift
and Nicholson, 2001)), but few focus on matching
semantic forms. Herr Komissar (DeSmedt (1995))
is one counter-example; in this game, German learn-
ers take on the role of a detective interviewing sus-
pects and witnesses. The system relies largely on
a custom-built database of verb classes and related
lexical items. Likewise, Petersen (2010) has a sys-

tem to provide feedback on questions in English, ex-
tracting meanings from the Collins parser (Collins,
1999). We also rely on reusing modern NLP soft-
ware, as opposed to handcrafting a system.

The basic semantic analysis in this paper paral-
lels work on content assessment (e.g., c-rater (Lea-
cock and Chodorow, 2003)). These systems are
mostly focused on relatively open-ended short an-
swer scoring, with some systems employing task-
based restrictions. As one example, Meurers et al.
(2011) evaluate English language learners’ short
answers to reading comprehension questions, con-
strained by the topic at hand. Their approach per-
forms multiple levels of annotation, including de-
pendency parsing and lexical analysis from Word-
Net (Fellbaum, 1998), then aligns elements of the
sentence with those of the (similarly annotated)
reading prompt, the question, and target answers to
determine whether a response is adequate. We ex-
plore here a looser notion than alignment for match-
ing NNS responses to a gold standard.

In research closer to our own image-based
work, Somasundaran and Chodorow (2014) analyze
learner responses to a PDT where the responses
were constrained by requiring the use of specific
words. The pictures were annotated by experts, and
the relevance of responses was calculated through
the overlap of the response and annotation contents.
Somasundaran et al. (2015) present similar work an-
alyzing responses to sequences of pictures. While
they score via a machine learning system, we stick
closer to the original forms in trying to find an appro-
priate way to analyze the data; the notion of overlap
for relevance, however, is very similar in spirit to our
count-based methods (section 4.2).

We build directly from King and Dickinson
(2013, 2014), where the method to obtain a semantic
form from a NNS production is: 1) obtain a syntac-
tic dependency representation from the off-the-shelf
Stanford Parser (de Marneffe et al., 2006; Klein and
Manning, 2003), and 2) obtain a semantic form from
the parse, via a small set of hand-written rules. It is
this method we attempt to generalize (section 4).

3 Data Collection

Because our approach requires both NS and NNS re-
sponses and necessitates constraining both the form
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and content of responses, we previously assembled
a small corpus of NS and NNS responses to a PDT
(King and Dickinson, 2013). Research in SLA often
relies on the ability of task design to induce particu-
lar linguistic behavior (Skehan et al., 1998), and the
PDT should induce context-focused communicative
behavior. Moreover, the use of the PDT as a reliable
language research tool is well-established in areas
of study ranging from SLA to Alzheimer’s disease
(Ellis, 2000; Forbes-McKay and Venneri, 2005).

We rely on visual stimuli here for a number of
reasons. First, an overarching goal of our work is
the development of an ILT that feels like more like
a computer game than a grammar drill, and visual
stimuli are essential to many games. Secondly, by
using images, the information the response should
contain is limited to the information contained in the
image. Relatedly, particularly simple images should
restrict elicited responses to a tight range of expected
contents. The current visual stimuli present events
that are mainly transitive in nature and likely to elicit
responses with an unambiguous subject, verb and
object, thereby restricting form in addition to con-
tent. Finally, this format allows one to investigate
pure interlanguage without the influence of verbal
prompts and shows learner language being used to
convey meaning and not just manipulate forms.

The PDT consists of 10 items (8 line drawings and
2 photographs1) intended to elicit a single sentence
each; an example is given in Figure 1. Participants
were asked to view the image and describe the ac-
tion in past or present tense. The data consist of
responses from 53 informants (14 NSs, 39 NNSs),
for a total of 530 sentences, with the NNSs being in-
termediate and upper-level adult English learners in
an intensive English as a Second Language program.
The distribution of first languages (L1s) is: 14 En-
glish, 16 Arabic, 7 Chinese, 2 Japanese, 4 Korean, 1
Kurdish, 1 Polish, 2 Portuguese, and 6 Spanish.

Responses were typed by the participants them-
selves, with spell checking disabled in some cases.
Even among the NNSs that used spell checking, a
number of spelling errors resulted in real words. To
address this, we use a spelling correction tool to ob-
tain candidate spellings for each word, prune the

1We have not observed substantial differences between re-
sponses for the drawings and the photographs.

Response (L1)
The man killing the beard. (Arabic)
A man is shutting a bird. (Chinese)
A man is shooting a bird. (English)
The man shouted the bird. (Spanish)

Figure 1: Example item and responses

candidates using word lists from the NS responses,
recombine candidate spellings into candidate sen-
tences, and evaluate these with a trigram language
model (LM) to select the most likely intended re-
sponse (King and Dickinson, 2014).

Once the responses had been collected, the NNS
responses were annotated for correctness, with re-
spect to the content of the picture. The lead author
marked spelling and meaning errors which prevent a
complete mapping to correct information (see King
and Dickinson, 2013). On the one hand, minor mis-
spellings are counted as incorrect (e.g., The artiest
is drawing a portret), while, on the other hand, the
annotation does not require distinguishing between
between spelling and meaning errors. In the future,
we plan on fine-tuning the annotation criteria.

4 Generalizing the Methods

The previous work assumed that the assessment of
NNS responses involves determining whether the
gold standard (GS) contains the same semantic triple
that the NNS produced, i.e., whether a triple is cov-
ered or non-covered. In such a situation the GS need
only be comprised of types of semantic triples. But
the GS is comprised of the small set of NS responses
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and is thus incomplete—meaning that exact match-
ing is going to miss many cases, and indeed in King
and Dickinson (2013), we note that GS coverage is
only at 50.8%. Additionally, relying on matching
of triples limits the utility of the method to specific
semantic requirements, namely transitive sentences.
By moving to bags of dependencies and tallying the
counts of (NS) responses in the GS, we can move
into a gradable, or ranking, approach to NNS re-
sponses.

We want to emphasize the degree to which a re-
sponse conveys the same meaning as the GS, neces-
sitating an approach which can automatically deter-
mine the importance of a piece of information in the
GS. We break this down into how we represent the
information (section 4.1) and then how we compare
NNS information to GS information (section 4.2),
allowing us to rank responses from least to most
similar to the GS.2 We also discuss the handling of
various other system parameters (section 4.3).

4.1 Representation

To overcome the limitations of an incomplete GS,
we represent each response as a list of terms taken
from the dependency parse (de Marneffe et al.,
2006), the terms referring to individual dependen-
cies (i.e., relations between words). This eliminates
the complications of extracting semantic triples from
dependency parses, which could only handle a very
restricted set of grammatical forms and resulted in
errors in 7–8% of cases (King and Dickinson, 2013).
Operating directly on individual dependencies from
the overall tree also means the system can allow
for “partial credit”; it distributes the matching over
smaller, overlapping pieces of information rather
than a single, highly specific triple.

Specifically, representations take one of five
forms. We first tokenize and lemmatize the response
to a list of lemmas that represents the response. The
five term representations are then variations on de-
pendencies. The full form concatenates the label,
head and dependent, as in subj#boy#kick. We
call this ldh (label, dependent, head). The remain-
ing four forms abstract over either the label, head
and/or dependent, as in X#boy#kick. We refer to

2Although rankings often go from highest to lowest, we pri-
oritize identifying problematic cases, so we rank accordingly.

these forms as xdh, lxh, ldx, and xdx. The xdx
model is on a par with treating the sentence as a bag
of lemmas, except that some function words not re-
ceiving parses (e.g., prepositions) are not included
(see King and Dickinson, 2013). In our current ex-
periments, we test each of these term representations
separately, but we expect to ultimately make use of
some weighted combination. Future representations
may also incorporate WordNet relations or semantic
role labeler output.

4.2 Scoring Responses

Taking the term representations from the previous
section, the next task is to combine them in a way
which ranks responses from least to most appro-
priate. Responses are scored with one of four ap-
proaches, using one of two methods to weight re-
sponse terms combined with one of two methods to
compare the weighted NNS terms with the GS.

For weighting, we use either a simple frequency
measure (F) or one based on tf-idf (T) (Manning
et al., 2008, ch. 6). We explore tf-idf as a mea-
sure of a term’s importance with the hope that it is
able to reduce the impact of semantically unimpor-
tant terms—e.g., determiners like the, frequent in
the GS, but unimportant for evaluating the semantic
contents of NNS responses—and to upweight terms
which may be salient but infrequent, e.g., only used
in a handful of GS sentences. For example, for an
item depicting a man shooting a bird (see Table 1
and Figure 1), of 14 GS responses, 12 described the
subject as man, one as he and one as hunter. Since
hunter is infrequent in English, even one instance
in the GS should get upweighted via tf-idf, and in-
deed it does. This is valuable, as numerous NNS
responses use hunter.

Calculating tf-idf relies on both term frequency
(tf ) and inverse document frequency (idf ). Term
frequency is simply the raw count of an item, and
for tf-idf of terms in the GS, we take this as the fre-
quency within the GS. Inverse document frequency
is derived from some reference corpus, and it is
based on the notion that appearing in more docu-
ments makes a term less informative with respect to
distinguishing between documents. The formula is
in (1) for a term t, where N is the number of doc-
uments in the reference corpus, and dft is the num-
ber of documents featuring the term (idft = log N

dft
).
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A term appearing in fewer documents will thus ob-
tain a higher idf weight, and this should readjust fre-
quencies based on semantic importance.

(1) tfidf(t) = tfGS log N
dft

After counting/weighting, the frequencies are
then either averaged to yield a response score (A),
or NNS term weights and GS term weights are
treated as vectors and the response score is the co-
sine distance (C) between them. This yields:

Frequency Average (FA). Within the GS, the fre-
quency of each term is calculated. Each term in the
NNS response is then given a score equal to its fre-
quency in the GS; terms missing from the GS are
scored zero. The response score is the average of
the term scores, with higher scores closer to the GS.

Tf-idf Average (TA). This involves the exact same
averaging as with model FA, but now the terms in the
GS are assigned tf-idf weights before averaging.

Frequency Cosine (FC). The frequency of each
term is calculated within the GS and (separately)
within the NNS response. The term scores are then
treated as vectors, and the response score is the co-
sine distance between them, with lower scores being
closer to the GS.

Tf-idf Cosine (TC). This involves the exact same
distance comparison as with model FC, but now the
terms of both the GS and NNS responses are as-
signed tf-idf weights before comparison.

4.3 System Parameters

In addition to the four approaches, we have term rep-
resentations and two sets of parameters, listed be-
low, to vary, resulting in a total of 60 settings for
processing responses (see also Table 2).

Term form. As discussed in section 4.1, the terms
can take one of five representations: ldh, xdh,
lxh, ldx, or xdx.

Scoring approach. As discussed in section 4.2,
the NNS responses can be compared with the GS
via models FA, TA, FC, or TC.

Reference corpus. The reference corpus for de-
riving tf-idf scores can be either the Brown Corpus

(Kucera and Francis, 1967) or the Wall Street Jour-
nal (WSJ) Corpus (Marcus et al., 1993). These are
abbreviated as B and W in the results below; na in-
dicates the lack of a reference corpus, as this is only
relevant to approaches TA and TC. The corpora are
divided into as many documents as originally dis-
tributed (W: 1640, B: 499). The WSJ is larger, but
Brown has the benefit of containing more balance
in its genres (vs. newstext only). Considering the
narrative nature of PDT responses, a reference cor-
pus of narrative texts would be ideal, but we choose
manually parsed reference corpora as they are more
reliable than automatically parsed data.

NNS source. Each response has an original ver-
sion (NNSO) and the output of a language model
spelling corrector (NNSLM) (see section 3).

4.4 Results

4.4.1 Evaluation metrics

We ran 60 response experiments, each with dif-
ferent system settings (section 4.3). Within each
experiment, we rank the 39 scored NNS responses
from least to most similar to the GS. For assess-
ing these settings themselves, we rely on past anno-
tation, which counted unacceptable responses as er-
rors (see section 3).3 As the lowest rank indicates the
greatest distance from the GS, a good system setting
should ideally position the unacceptable responses
among those with the lowest rankings. Thus, we
assign each error-containing response a score equal
to its rank, or, if necessary, the average rank of re-
sponses sharing the same score.

In Table 1, an excerpt of sentence responses is
shown for one item, ranked from lowest to highest.
To take one example, the third-ranked sentence, the
man is hurting duck, has a score of 0.996, and it is
annotated as an error (1 in the E column). Thus,
the evaluation metric adds a score of 3 to the overall
sum. The sentence ranked 18, by contrast, is not an
error, and so nothing is added. In the case of the top
rank, two responses with errors are tied, covering
rank 1 and 2, so each adds a score of 1.5.

3The source of the error is also labeled—stemming from
NNS unintelligibility or a system error (from spelling correc-
tion, parsing, or some downstream component)—but we do not
currently use this annotation.
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R S Sentence E V

1
1.000 she is hurting. 1 1.5
1.000 man mull bird 1 1.5

3 0.996 the man is hurting duck. 1 3.0
4 0.990 he is hurting the bird. 1 3.0

11 0.865 the man is trying to hurt a bird 1 11.0
12 0.856 a man hunted a bird. 0 0.0
17 0.775 the bird not shot dead. 1 17.0
18 0.706 he shot at the bird 0 0.0
19 0.669 a bird is shot by a un 1 19.0
20 0.646 the old man shooting the birds 0 0.0
37 0.086 the old man shot a bird. 0 0.0
38 0.084 a old man shot a bird. 0 0.0
39 0.058 a man shot a bird 0 0.0

Total (Raw) 17 169
Average Precision 0.75084

Table 1: Rankings for Item 10 from the best system setting

(TC B NNSLM ldh) based on average precision scores. R:

rank; S: sentence score; E: error; V: rank value.

The sum of these scores is taken as the Raw met-
ric for that experimental setting. In many cases, one
version of a response (NNSO or NNSLM) contains an
error, but the other version does not. Thus, for ex-
ample, an NNSO experiment may result in a higher
error count than the NNSLM equivalent, and in turn a
higher Raw score. In this sense, Raw scores empha-
size error reduction and incorporate item difficulty.

However, it is possible that the NNSO experiment,
even with its higher error count and Raw score, does
a better job ranking the responses in a way that sep-
arates good and erroneous ones. To account for this,
we also use (mean) average precision ((M)AP)
(Manning et al., 2008, ch. 8), which emphasizes dis-
criminatory power.

For average precision (AP), one calculates the
precision of error detection at every point in the
ranking, lowest to highest. In Table 1, for exam-
ple, the precision for the first cut-off (1.000) is 1.0,
as two responses have been identified, and both are
errors (2

2 ). At the 11th- and 12-ranked response,
precision is 1.0 (11

11 ) and 0.917 (=11
12 ), respectively,

precision dropping when the item is not an error.
AP averages over the precisions for all m responses
(m = 39 for our NNS data), as shown in (2), with
each response notated as Rk. Averaging over all 10

items results in the Mean AP (MAP).

(2) AP (item) = 1
m

m∑
k=1

Precision(Rk)

As mentioned, the Raw metric emphasizes error
reduction, as it reflects not just performance on iden-
tifying errors, but also the effect of the overall num-
ber of errors. In this way, it may be useful for
predicting future system performance, an issue we
explore in the evaluation of clustering items (sec-
tion 5.3). MAP, on the other hand, emphasizes find-
ing the optimal separation between errors and non-
errors and is thus more of the focus in the evaluation
of the best system parameters next.

4.4.2 Best system parameters
To start the search for the best system parame-

ters, it may help to continue our single example,
in Table 1. The best setting, as determined by the
Normalized metric, uses the tf-idf cosine (TC) ap-
proach with the Brown Corpus (B), the spelling cor-
rected response (NNSLM), and the full form of the
dependencies (ldh). It ranks highest because er-
rors are well separated from non-errors; the high-
est ranked of 17 total errors is at rank 19. Dig-
ging a bit deeper, we can see in this example how
the verb shoot is common in all the highest-ranked
cases shown (#37–39), but absent from all the low-
est, showing both the effect of the GS (as all NSs
used shoot to describe the action) and the potential
importance of even simple representations like lem-
mas. In this case, the ldh representation is best,
likely because the word shoot is not only important
by itself, but also in terms of which words it relates
to, and how it relates (e.g., dobj#bird#shoot).

Table 3 shows the five best and five worst sys-
tem settings averaged across all 10 PDT items, as
ranked by MAP. Among the trends that pop out is
a favoritism towards NNSLM models (i.e., spelling
correction). This is due to the fact that higher num-
bers of errors inflate the MAP scores, and somewhat
counterintuitively, the spelling correction module in-
troduces more errors than it corrects, meaning there
are more errors present overall in the NNSLM re-
sponses than in the NNSO responses.4

4Note that among the remaining parameter classes, variation
does not effect the number of errors.
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Approach Term Form Ref. Corpus (TA/TC) NNS Source
0.51577 TC xdh 0.51810 Brown 0.51534 NNSLM 0.51937
0.50780 FC ldh 0.51677 WSJ 0.50798 NNSO 0.49699
0.50755 TA lxh 0.51350
0.49464 FA xdx 0.49901

ldx 0.49352
Table 2: Approaches and parameters ranked by mean average precision for all 10 PDT items.

Another feature among the best settings is the in-
clusion of heads in the dependency representations.
In fact, the top 17 ranked settings all include heads
(lxh, xdh, ldh); xdx first enters the rankings at
18, and xdx and ldx are common among the worst
performers. This is likely due to the salience of
the verbs in these transitive sentences; they consti-
tute the heads of the subjects and objects, in rela-
tively short sentences with few dependencies. Fur-
thermore, the tf-idf weighted models dominate the
rankings, especially TC. It is also clear that for our
data tf-idf works best with the Brown Corpus (B).

Rank MAP Settings
1 0.5534 TC B NNSLM lxh
2 0.5445 TA B NNSLM lxh
3 0.5435 TC W NNSLM lxh
4 0.5422 TC B NNSLM xdh
5 0.5368 TC B NNSLM ldh

56 0.4816 TA B NNSO xdx
57 0.4796 FA na NNSLM ldx
58 0.4769 FC na NNSO lxh
59 0.4721 TA W NNSO xdx
60 0.4530 FA na NNSO lxh

Table 3: Based on Mean Average Precision, the five best and

five worst settings across all 10 PDT items.

We also summarize the rankings for the individual
parameter classes, presented in Table 2, confirming
the trends in Table 3. For a given parameter, e.g.,
ldh, we averaged the experiment scores from all
settings including ldh across all 10 items. Notably,
TC outperforms the other models, with FC and TA
close behind (and nearly tied). Performance falls
for the simplest model, FA, which was in fact in-
tended as a baseline. With TC>FC and TA>FA, tf-
idf weighting seems preferable to basic frequencies.

Again, the importance of including heads in de-

pendencies is apparent here; the three dependency
representations containing heads constitute the top
three, with a sizable drop in performance for the
remaining two forms (xdx and ldx). Moreover,
given the content and narrative style of the PDT re-
sponses, it is unsurprising that the Brown Corpus
serves as a better reference corpus than the WSJ
Corpus for tf-idf. Finally, the NNSLM source sig-
nificantly outperforms the NNSO source.

Despite the strength of these overall trends, vari-
ability does exist among the best settings for differ-
ent items, a point obscured in the averages. In Ta-
bles 4 and 5, we present the best and worst ranked
settings for two of the least similar items, 1 and 5.
Their dissimilarity can be seen at a glance, simply
from the range of the AP scores (0.05–0.31 for item
1 vs. 0.52–0.81 for item 5), which in itself reflects a
differing number of erroneous responses (2 [NNSO]
or 6 [NNSLM] for item 1 vs. 23 or 24 for item 5).

For item 1, a drawing of a boy kicking a ball, we
see considerable variability in the best approach just
within the top five settings: all four approaches are
in the top five. Contrary to the overall trends, we also
see the ldx form—without any head information—
in the two best settings. Note also that, even though
tf-idf weighting (TA/TC) is among the best settings,
it is consistently the worst setting, too.

For item 5 in Table 5, a drawing of a man rak-
ing leaves, the most noticeable difference is that of
xdx being among three of the top five settings. We
believe that part of the reason for the superior perfor-
mance of xdx (cf. lemmas), is that for this item, all
the NSs use the verb rake, while none of the NNSs
use this word. For item 1 (the boy kicking a ball),
there is lexical variation for both NSs and NNSs.

These types of differences—for these items and
others—lead us to explore the clustering of item pat-
terns, in order to leverage these differences and auto-
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Rank AP Settings
1 0.30997 TC B NNSLM ldx
2 0.30466 TA B NNSLM ldx
3 0.30015 TA B NNSLM xdh
4 0.29704 FC na NNSLM xdh
5 0.29650 FA na NNSLM ldh

56 0.06474 TC B NNSO ldx
57 0.06174 TC W NNSO ldx
58 0.06102 TA W NNSO lxh
59 0.05603 TA W NNSO xdx
60 0.05094 TA W NNSO ldx

Table 4: Based on Average Precision, the five best and five

worst settings for item 1.

Rank AP Settings
1 0.80965 FA na NNSLM xdx
2 0.80720 TA B NNSLM lxh
3 0.80473 TC B NNSLM lxh
4 0.79438 TC B NNSLM xdx
5 0.78108 TC W NNSLM xdx

56 0.56495 FC na NNSO xdh
57 0.56414 TC B NNSO lxh
58 0.55890 TC W NNSO lxh
59 0.54506 FC na NNSO lxh
60 0.52013 FA na NNSO lxh

Table 5: Based on Average Precision, the five best and five

worst settings for item 5.

matically choose the optimal settings for new items;
we turn to this next.

5 Clustering

Given the variability of NS and NNS responses, and
the possible correlation with different system param-
eters, we have begun exploring connections by clus-
tering the different items. The clustering uses, for
one set, response features, i.e., features observable
from the responses, and, separately, performance
features, i.e., the performance of different system
settings on the responses. Although the work is very
exploratory, our goal is to get a handle on learner
variability for different items and explore correla-
tions between response and performance clusters.

5.1 Response Clustering

We cluster the 10 PDT items using simple features
taken from the responses themselves. Specifically,
we use various combinations of type counts, token
counts, and type-to-token ratios for each term form
(ldh, xdh, lxh, ldx, xdx), taken from each re-
sponse source (GS, NNSO, NNSLM).

5.2 Performance Clustering

From the system output, we cluster items using per-
item Raw scores for various settings. That is, for
each of the 10 items, we calculate an average er-
ror score for each approach (FA, TA, FC, TC), each
term form (ldh, xdh, lxh, ldx, xdx), each refer-
ence corpus (B, W), and each response source (NNSO,
NNSLM). As mentioned in section 4.4.1, Raw scores
should account for the number of errors produced
by NNSs for each item, which should correlate with
future system performance.

5.3 Results

Although there is noise in some experiments, some
patterns do seem to emerge in many of the cluster-
ings; we present some of the most common patterns
here. Figure 2 shows a clustering based on response
features that shares some characteristics with Fig-
ure 3, a clustering based on performance features.
(Note that clustering heights are not to scale.) In
both examples, items 5 and 9 form a cluster attach-
ing to the root. These are described in the GS as
A man is raking leaves and Two boys are rowing a
boat. These were also the two most difficult items
for NNSs. While other items involved common
verbs like kick, paint and cut, the actions depicted in
these items were more specific and required words
outside the vocabulary of many participants. For ex-
ample, while all 14 NSs used either row or paddle,
only five of 39 NNSs used these verbs; the rest used
verbs like boat, sail, sit, play or ride.

Items 1 and 4 also appear as a cluster in both
cases. In GS examples, these are described as The
boy is kicking a ball and A man is reading a newspa-
per. The images portray actions that language learn-
ers often learn in beginner courses, and in fact, these
were the easiest items for NNSs. The simple ac-
tions and objects mean that both token counts and
type counts are relatively low. With regard to fea-
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Figure 2: PDT items clustered by type and token counts of all

NS, NNSO and NNSLM responses.

5 9 8 3 2 10 1 4 6 7

Figure 3: PDT items clustered by parameter performance.

ture performance, for both items the same param-
eters perform highly (TC/TA, ldx/ldh/xdh), sug-
gesting that a future item which clusters with these
two would benefit from the same processing.

6 Summary and Outlook

We have investigated ways to reason about learner
meaning in cases where the set of correct meanings
is incomplete, namely in the case of picture descrip-
tion tasks (PDTs). Specifically, we have explored
different models of representing and scoring NNS
responses to a picture—different linguistic represen-
tations, term weighting schemes, reference corpora,
and use of spelling correction—in order to automati-
cally determine the relevant parts of an image from a
set of NS responses. In more exploratory work, we
have also examined the variability in both NS and
NNS responses, and how different system parame-
ters correlate with the variability.

Already, the results are providing insight for fu-
ture system development, data collection, and inves-
tigations into learner language. A big next step of
the work is to collect more data, and examining the
variability in the NS/NNS data has provided feed-
back on the types of new data to gather, to better
ensure a wide range of behavior from NNSs. Get-
ting a range of items, with different sentence types
and variability in responses, will help us properly

find our envisioned sweet spot of semantic analy-
sis. In that vein, we plan on exploring more parame-
ters (e.g., semantic role information) and holding out
data to better gauge the impact of clustering a new
item with the existing items and selecting the pro-
cessing parameters on that basis. Beyond that loom
large questions about how to annotate gradability in
learner responses and how to map system processing
to accurate semantic feedback.
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