
Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, pages 105–111,
San Diego, California, June 16, 2016. c©2016 Association for Computational Linguistics

UW-Stanford System Description for AESW 2016 Shared Task on
Grammatical Error Detection

Dan Flickinger
Stanford University

Michael Goodman
University of Washington

Woodley Packard
University of Washington

Abstract

This is a report on the methods used and re-
sults obtained by the UW-Stanford team for
the Automated Evaluation of Scientific Writ-
ing (AESW) Shared Task 2016 on gram-
matical error detection. This team devel-
oped a symbolic grammar-based system aug-
mented with manually defined mal-rules to
accommodate and identify instances of high-
frequency grammatical errors. System results
were entered both for the probabilistic estima-
tion track, where we ranked second, and for
the Boolean decision track, where we ranked
fourth.

1 Introduction

Over the past several years, a series of shared tasks
have been organized to foster research on the auto-
matic detection of grammatical errors in composi-
tions from a variety of genres. In this year’s task,
the organizers invited participants to “analyze the
linguistic characteristics of scientific writing to pro-
mote the development of automated writing evalua-
tion tools that can assist authors in writing scientific
papers. The task is to predict whether a given sen-
tence requires editing to ensure its ’fit’ within the
scientific writing genre.” This Automated Evalua-
tion of Scientific Writing (AESW) Shared Task 2016
is described in more detail, along with descriptions
of the seven teams and their system results, in Dau-
daravicius et al. (2016).

This paper provides a description of the system
adapted for this task by a team of collaborators
from the University of Washington and from Stan-

ford University, The system is based on a sym-
bolic grammar augmented with a set of manually
constructed mal-rules (Schneider and McCoy, 1998;
Bender et al., 2004) designed to license and iden-
tify ungrammatical or stylistically deprecated sen-
tence properties in running text. We used an effi-
cient parser to analyze the training and development
sets repeatedly with successively refined versions of
augmented grammar, producing for each sentence
a derivation which recorded any use of mal-rules,
thus triggering the “needs editing” flag relevant for
the shared task. In the end, we applied the best-
performing of these grammar versions to the test
data in order to produce the results submitted for
scoring.

2 Resources and methods

Our basic approach to this task has much in com-
mon with the one used in the Stanford system
participating in the 2013 CoNLL Shared Task on
Grammatical Error Correction (Flickinger and Yu,
2013), again employing a current version of the En-
glish Resource Grammar (ERG: Flickinger (2000),
Flickinger (2011)) and a task-specific inventory
of mal-rules, but this time using a more efficient
parser (ACE: moin.delph-in.net/AceTop).
As with the earlier task, we used the most likely
derivation licensed by the grammar and produced by
the parser for each sentence, to identify any use of
one or more of these mal-rules in the analysis.

For the Boolean decision track, we predicted an
error if the top-ranked analysis has an error or does
not exist, if the probability of using a mal-rule was
at least 1%, or if this sentence was the most likely

105

sentence in the paragraph to require a mal-rule. For
the probabilistic track, our estimator also included
several parameters hand-tuned on the training data.

2.1 Existing resources
Most of the components used in the UW-Stanford
system were drawn from the inventory of re-
sources developed and maintained by members
of the DELPH-IN (Deep Linguistic Processing
with HPSG) consortium (www.delph-in.net).
These components include the ACE parser, the
ERG, the Redwoods treebank (Oepen et al.,
2004), and a set of Python libraries for the
processing of DELPH-IN components’ data
(github.com/delph-in/pydelphin).

For the grammar, we used a modified version of
the “1214” release of the ERG, with substantially
the same core linguistic coverage, but with the im-
portant addition of a separate set of rules and lexi-
cal entries dubbed mal-rules, to explicitly character-
ize frequently occurring ill-formed phrasal construc-
tions and words observed in the data for this shared
task. This extended grammar enabled full analyses
of roughly 92% of the sentences in each of the train-
ing and development data sets provided for the task.
Of the 8% of the sentences not covered by this gram-
mar, nearly half failed to parse due to reaching ex-
ternally imposed (though generous) resource limits
before yielding any analysis. Lacking any guidance
from the grammar, all of these unparsable sentences
were tagged by the system as in need of editing, for
the purposes of scoring.

ACE is a modern unification-based chart parser,
using an agenda-driven variant of the CKY algo-
rithm. Efficiency is enhanced by aggressive ambi-
guity packing (Oepen and Carroll, 2000) and selec-
tive unpacking (Carroll and Oepen, 2005), and dis-
ambiguation is performed using a maximum entropy
ranker trained on the Redwoods treebank. ACE’s
integrated preprocessing and support for clustered
computing made it easy to use for parsing the large
bodies of text in the training and development data.

Since for this task we only wanted the most likely
analysis for each sentence, we used the best avail-
able statistical parse selection model for the ERG,
one trained using the Redwoods treebank, a man-
ually annotated corpus of some 1.4 million words
of text across multiple genres. Crucially, and to the

disadvantage of our use for this task, the treebank
does not contain any analyses using the mal-rules
which of course figure prominently in the deriva-
tions of many of the sentences in the AESW corpus.
We hypothesize that the system could have been im-
proved in both precision and recall if the parse se-
lection model had contained information about the
relative likelihoods of these mal-rules, but a method-
ical test of this hypothesis will have to await further
study.

2.2 Error Discovery

In order to focus our efforts we performed a series
of basic searches over the training corpus. Table 1
shows the number of deletes (not followed by in-
serts), inserts (not preceded by deletes), and sub-
stitutions (delete followed by insert) in the corpus.
With the training set consisting of about 1.2 million
sentences, roughly one of every three sentences con-
tains one or more error corrections.

Error Type Count % Sentences
del-only 124,919 9.03%
ins-only 267,465 17.89%
del-ins 341,108 28.68%
total 733,492 39.24%

Table 1: Basic error types: unique counts and percentage of

sentences affected

Table 2 shows the ten most frequent token-specific
insertions, deletions, and substitutions made by the
editors in the training corpus. Changes to commas,
hyphens, and colons together comprise more than
half of all of the edits in the corpus in each of the
three types of changes, and the frequency of these is
reflected in the choices of phrasal and lexical mal-
rules added to the grammar for this task. Changes
to the English articles the and a, while much less
frequent than punctuation edits, are the next most
significant category. The substitution of section to
Section is the most frequent instance of a class of
capitalization edits which collectively account for
roughly 5.91% of substitutions. Edits in this cat-
egory are highly dependent on their context (e.g.,
the initial capital is generally preferred in Section
REF, but not in this section).

106

, 40.09% <ins>,</ins> 52.94% <ins>-</ins> 13.03%
the 9.19% <ins>the </ins> 12.66% -<ins> </ins> 5.10%
: 8.96% <ins>.</ins> 4.78% ,<ins>;</ins> 1.92%
- 3.14% <ins>a </ins> 4.03% .<ins>,</ins> 0.74%
. 1.94% <ins>:</ins> 2.87% section<ins>Section</ins> 0.66%
’s 1.84% <ins>that </ins> 2.14% :<ins>.</ins> 0.60%
that 1.49% <ins>and </ins> 1.92% the<ins>a</ins> 0.59%
a 1.45% <ins>an </ins> 0.78% a<ins>the</ins> 0.56%
’ 1.29% <ins>is </ins> 0.63% which<ins>that</ins> 0.54%
" 0.91% <ins>of </ins> 0.63% is<ins>are</ins> 0.54%

Table 2: Top ten deletions, insertions, and substitutions

2.3 Symbolic methods

The system relies on the analyses licensed by the
grammar to identify sentences containing an error,
by finding, in the most likely analysis of an ill-
formed sentence, one or more occurrences of mal-
rules that permit specific types of ungrammatical
constituents. For example, in (1) we show the
analysis produced for the sentence “Another im-
portant point to note is the problem of unknown
SNR situation.” where the rule used to admit
the phrase unknown SNR situation is a mal-rule
(hdn_bnp_c_rbst) recording the omission of an
obligatory article for the noun phrase.
(1) Sample derivation tree with mal-rule

(sb-hd_mc_c
(sp-hd_n_c
(another "another")
(hd-cmp_u_c
(aj-hdn_norm_c
(hd_optcmp_c
(j_tough_dlr (important_a2 "important")))
(n_sg_ilr (point_n2 "point")))
(hd-cmp_u_c
(to_c_prop "to")
(hd_xcmp_c
(v_n3s-bse_ilr (note_v1 "note"))))))

(hd-cmp_u_c
(be_id_is "is")
(sp-hd_n_c
(the_1 "the")
(hd-cmp_u_c
(n_sg_ilr (problem_n1 "problem"))
(hd-cmp_u_c
(of_prtcl "of")
(hdn_bnp_c_rbst
(aj-hdn_norm_c
(j_j-un_dlr
(v_j-nb-pas-tr_dlr
(v_pas_odlr (know_v1 "unknown"))))

(np-hdn_cpd_c
(hdn_bnp-pn_c
(n_sg_ilr (generic_proper_ne "SNR")))
(w_period_plr
(n_sg_ilr
(situation_n1 "situation.")))))))))))

In order to identify frequently occurring error
phenomena as candidates to motivate the addition of
mal-rules for this task, we carried out a manual anal-
ysis and classification of the types of insertion and
deletion editing operations annotated in the train-
ing and development corpora. As each good can-
didate emerged, we added a corresponding mal-rule
to the grammar, and evaluated the resulting behav-
ior of the system on sample data sets drawn from
both training and development. Not all of the rules
survived in the final system, either because a partic-
ular rule interacted poorly with the rest of the gram-
mar, or because the annotations in the corpus for
that phenomenon showed more variation than the
rule anticipated. In the final system, the grammar
included thirteen phrasal mal-rules, seventeen lexi-
cal mal-rules, and about 350 robust lexical entries.
Examples of each are given in (2).

(2) Sample mal-rules added to the ERG

a. Syntactic: Comma-spliced sentences

cl-cl_runon-cma_c_rbst

Multi-biometrics may address the problem of
nonuniversality, e.g., in a speaker recognition
system, the individuals who cannot speak can-
not be enrolled.

b. Lexical: Subject-verb agreement mismatch

third_sg_fin_v_rbst

In what follow, this letter investigates mixed
synchronization of fractional-order Lorenz-like
system

c. Lexical entry: Missing obligatory direct object

allow_v1_rbst

The LHC will be a top quark factory, allowing
to study several of its properties in great detail.

107

A large number of the editorial annotations in the
AESW corpora addressed errors in the use of punc-
tuation marks, and thus several of the mal-rules were
added to the grammar to permit ill-formed or stylis-
tically deprecated uses of commas and hyphens. For
example, several of the phrasal coordination rules
were adapted as mal-rules to identify the missing fi-
nal comma in a multi-part conjoined structure, as in
the phrase such as _MATH_, _MATH_ or _MATH_.

The process of refining the choices and definitions
of these mal-rules included a frequently repeated cy-
cle of manual inspection of the corpus annotations,
modifications to the mal-rule inventory, parsing of
three 1000-item samples taken from the training and
development data sets, and examination of the re-
sulting precision and recall performance of the sys-
tem on these sample sets.

2.4 Statistical methods

The ERG nearly always produces multiple candidate
analyses for a given input. Since not all analyses are
equally likely, the ERG supplies a maximum entropy
model which defines a probability distribution over
the set of analyses of any given input:

P (a|I) =
1
Z
e
∑

f∈a λf

Z =
∑

b∈analyses(I)

e
∑

f∈b λf

By virtue of ambiguity packing, the parser is able
to represent vast sets of analyses in a compact form
known as a packed forest. Typically, a user of the
ERG wants a single parse tree out, and to this end
the ACE parser is capable of efficiently selecting the
single tree from the packed forest without enumer-
ating the rest of the analyses (selective unpacking).
For the task at hand, however, we were interested
not in the complete structure of the best tree, but in
whether or not it used any mal-rules. This Boolean
quantity can be evaluated directly on the top-ranked
tree, but its expected value with respect to the prob-
ability distribution defined by the maximum entropy
model can also be evaluated over the entire packed
forest.

To compute this expectation, we defined a root

symbol1 which matches2 all and only trees that in-
clude mal-rules. These are conceptually similar to
unary rules which can only appear at the root of the
derivation tree. The parser computes the normaliza-
tion factor Zr for the set of analyses3 dominated by
each root symbol, using an algorithm similar to the
inside algorithm for PCFGs, but keeping track of
grandparent contexts as required by the maximum
entropy model in a fashion similar to that used by the
selective unpacking algorithm. The expected value
of the mal-rule indicator (i.e. the probability that a
tree drawn according to the maximum entropy dis-
tribution uses mal-rules) is then:

P (mal-rules|I) =
Zmal(I)

Zmal(I) + Zordinary(I)

Thus we have two signals for use in producing the
output value for the shared task: the Boolean indica-
tor for the top-ranked tree:

Btop(I) =
{

1 best tree uses mal-rules
0 best tree does not use mal-rules

and the real-valued expectation of that indicator:

E(B|I) = P (mal-rules|I)

We use both of these signals in both the Boolean
and probabilistic tracks. Specifically, our Boolean
estimator for an input I in a paragraph P is:

outputboolean(I) =

1 no parse was found
1 B(I) = 1
1 E(B|I) > 0.01
1 E(B|I) = maxS∈PE(B|S)
0 otherwise

That is, we predict an error if the top-ranked tree has
an error or does not exist, if the probability of using
a mal-rule was at least 1%, or if this sentence was

1In fact, we have multiple root symbols for mal-rule trees
and multiple root symbols for ordinary trees.

2The fact that a mal-rule has been used is passed up through
the feature structures by the grammar.

3Actually, the factor computed can in some cases include
probabilities for trees which are not fully-consistent with all of
the constraints in the grammar, depending on the aggressiveness
of the ambiguity packing optimizations employed; however, we
hypothesize that this does not have a large effect on the accuracy
of the system.

108

the most likely sentence in the paragraph to require
a mal-rule.

For the probabilistic track, our estimator included
several parameters hand-tuned on the training and
development data. An obvious approach would be
to directly use P (mal-rules|I) as our probabilistic
estimate, but this does not produce very good re-
sults, because the task’s evaluation metric is a kind
of F -score on errors, rather than a balanced mea-
sure over the entire data set. Indeed, we noticed that
results are penalized for ever guessing a probabil-
ity less than 0.5, and indeed always guessing 0.63
yields an F -score that outperforms all but 2 of the
participating teams. This is arguably a deficiency in
the probabilistic track evaluation metric. Instead of
using P (mal-rules|I) directly, we applied a simple
nonlinear transformation:

outputprobabilistic(I) =
0.75 no parse was found

0.72 + 0.1 · (E(B)− 0.5) B = 1
0.70 + 0.12 · E(B)0.2 B=0 and

E(B)>0.01

0.70 otherwise

The various “magic” numbers in these formulae
were determined by manual search on the training
and development data.

3 Results

Roughly one in three sentences in the training cor-
pus was annotated with an error. The probabilistic
track and the Boolean track both used varieties of
F-score over error sentences as the evaluation met-
ric. Our system tended to be somewhat conserva-
tive about identifying errors; as a result, we found
that skewing our outputs towards recall in exchange
for some precision improved F-score, although ac-
curacy suffered substantially.

3.1 Probabilistic track
Our system ranked second of eight entrants in F-
score in the probabilistic track. The probabilistic
F-score was defined as the harmonic mean of two
related quantities, dubbed precision and recall, de-
fined as follows:

Pprob = 1− 1
n

∑
i

πi>0.5

(πi −Gi)2

Rprob = 1− 1
m

∑
i

Gi=1

(πi −Gi)2

F-scores ranged from 0.6925 to 0.8311 on the eval-
uation data, with our system achieving 0.7849. Ta-
ble 3 shows the relative F-score of the entrants on
the official evaluation data, alongside the correlation
coefficient between their outputs and the gold stan-
dard.

Team F-Score Correlation
1 0.8311 0.0600
UW-SU 0.7849 0.2471
2 0.7581 0.2690
3 0.7419 0.4043
4 0.7224 0.1298
5 0.7220 0.1666
6 0.6926 0.4173
7 0.6925 0.3516

Table 3: Results for the probabilistic track

It is interesting (and a bit concerning) to note that
the F-score metric defined for the task has a strong
negative correlation (-0.60) with the more intuitively
interpretable correlation coefficient. As mentioned
above, we modified the intuitively more appropri-
ate estimator E(B|I) to fit the F-score metric better.
Table 4 shows the result of this modification, on the
development data (as well as the baseline of always
guessing 0.63):

Estimator F-Score Correlation
P = E(B|I) 0.5644 0.2414
P = outputprobabilistic 0.7902 0.2602
P = 0.63 0.7756 –

Table 4: Comparison of estimators (probabilistic track)

As can be seen, rearranging our results with a sim-
ple nonlinear transformation had almost no effect
on the correlation with gold scores, but improved
our F-score tremendously. We wonder what effect
a similar simple transformation might have for a
team like NTNU-YZU or Knowlet, whose correla-
tion with gold substantially exceeds ours.

3.2 Boolean track
Our Boolean track system ranked number four of
nine entrants. The evaluation metric for the binary

109

track was the F-score for identifying error sentences,
defined in a normal way. The relative performance
of the nine entrants on the official evaluation data is
shown in Table 5.

Team Prec Rec F-score
1 0.5444 0.7413 0.6278
2 0.5025 0.7785 0.6108
3 0.4482 0.7279 0.5548
UW-SU 0.4145 0.8201 0.5507
5 0.3851 0.9241 0.5436
6 0.3765 0.9480 0.5389
7 0.3960 0.6970 0.5051
8 0.6717 0.3805 0.4858
9 0.6241 0.3685 0.4634

Table 5: Results for the Boolean track

This evaluation metric, while somewhat different in
focus from a simple accuracy measure, did not ex-
hibit the disconcerting behaviors observed with the
probabilistic track metric; for instance, the correla-
tion coefficient between F-score and system-to-gold
correlation was 0.31, which is far less alarming than
the -0.60 observed in the probabilistic track.

Again, we found that using the raw grammar out-
put (i.e. the B indicator variable described above)
was less effective in terms of the evaluation metric
than the thresholded and transformed outputboolean,
as demonstrated in Table 6 (computed over the de-
velopment data):

Estimator F-Score Accuracy
B 0.5411 0.6333
outputboolean 0.5854 0.5322
no errors – 0.6111
all errors 0.5600 0.3889

Table 6: Comparison of estimators (Boolean track)

The raw B estimator achieves much higher accu-
racy than the transformed outputboolean, but some-
what lower F-score—lower in fact than the baseline
of guessing that every sentence contains an error.

4 Discussion

We encountered several challenges while developing
and tuning our system for this task, both in the con-
sistency of the error annotations in the corpus, and in

the grammatically lossy method of substituting the
single tokens _MATH_, _MATHDISP_, etc. in place
of formulaic sequences of tokens. It is not surprising
that a corpus of this size would reflect inconsisten-
cies due to the use of multiple “annotators” (editors),
and also some number of overlooked errors due to
the complexity and scale of the editorial task. Yet
for our rule-based approach to error detection, judg-
ing the benefit of a newly added mal-rule was not
easy, since it might perform as intended on the data,
but fail to have a positive impact on the final F-score
because of a substantial number of missing or incon-
sistent error annotations. For example, an error was
often signaled for adjective-noun compounds used
as modifiers if there was no hyphen connecting the
two tokens, as with second order derivatives vs. the
corrected second-order derivatives; however, in the
training set, we find the following frequency counts
for the three different patterns:

“ second order ” 636
“ second <ins>-</ins>order ” 710
“ second-order ” 952

Clearly, the dominant intended pattern is for these
adjective-noun compounds to be hyphenated, but
a significant percentage of occurrences without the
hyphen were left unedited for many such com-
pounds, and this made the calculation of whether or
not to globally impose the regularity via mal-rule a
murky one. We saw similar wide variation in error
annotation for other hyphenation conventions, such
as with the insertion or deletion of hyphen with the
non- prefix as in non-linear.

A second set of challenges to our grammar-based
method arose from effects of the quite reasonable
and useful decision to replace certain complex ex-
pressions in the text with single placeholder to-
kens, such as _MATH_ for mathematical expres-
sions, or _CITE_ for citations. Because these to-
kens could stand in for a variety of grammatically
distinct phrase types, such as singular or plural noun
phrases, declarative clauses, or numerical adjectives,
the parsing task could quickly become costly when
explicitly representing these ambiguities for each
occurrence of each such placeholder token, partic-
ularly when a sentence included a series of such
terms. A more useful representation might have
been to preserve the original literal string as markup

110

on the token that replaced it.

5 Conclusions

The grammar-based method we adopted for this task
gave us quite fine-grained control over the types of
errors that our system would attend to, but many of
the more linguistically interesting error phenomena
occurred with low enough frequency in the training
and development corpora that their accurate identifi-
cation had little noticeable effect on system scoring,
given the preponderance of punctuation-oriented ed-
its. Overall, we remain optimistic about the utility
of the kind of grammar-based approach we adopted
here, when applied to real-world grammar-checking
where fully consistent execution of a particular set
of editorial principles should be welcomed by the
scientific writer.

References

Emily M. Bender, Dan Flickinger, Stephan Oepen, An-
nemarie Walsh, and Timothy Baldwin. 2004. Arbore-
tum. Using a precision grammar for grammar checking
in CALL. In Proceedings of the InSTIL Symposium on
NLP and Speech Technologies in Advanced Language
Learning Systems, Venice, Italy, June.

John Carroll and Stephan Oepen. 2005. High efficiency
realization for a wide-coverage unification grammar.
In Robert Dale and, editor, Proceedings of the 2nd
International Joint Conference on Natural Language
Processing, Springer Lecture Notes in Computer Sci-
ence. Jeju, Republic of Korea.

Vidas Daudaravicius, Rafael E. Banchs, Elena Volodina,
and Courtney Napoles. 2016. A report on the auto-
matic evaluation of scientific writing shared task. In
Proceedings of the Eleventh Workshop on Innovative
Use of NLP for Building Educational Applications,
San Diego, CA, USA, June. Association for Compu-
tational Linguistics.

Dan Flickinger and Jiye Yu. 2013. Toward more pre-
cision in correction of grammatical errors. In Pro-
ceedings of the 17th Conference on Natural Language
Learning, pages 68–73, Sofia, Bulgaria.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language En-
gineering, 6 (1) (Special Issue on Efficient Processing
with HPSG):15 – 28.

Dan Flickinger. 2011. Accuracy vs. robustness in gram-
mar engineering. In Emily M. Bender and Jennifer E.
Arnold, editors, Language from a Cognitive Perspec-

tive: Grammar, Usage, and Processing, pages 31–50.
Stanford: CSLI Publications.

Stephan Oepen and John Carroll. 2000. Ambiguity pack-
ing in constraint-based parsing – practical results. In
Proceedings of NAACL 2000, pages 162–169, Seattle,
USA.

Stephan Oepen, Daniel Flickinger, Kristina Toutanova,
and Christopher D. Manning. 2004. LinGO Red-
woods. A rich and dynamic treebank for HPSG.
Journal of Research on Language and Computation,
2(4):575 – 596.

David Schneider and Kathleen McCoy. 1998. Recogniz-
ing syntactic errors in the writing of second language
learners. In Proceedings of Coling-ACL 1998, pages
1198 – 1204, Montreal.

111

