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Abstract 

We present a novel situational task that inte-

grates collaborative problem solving behavior 

with testing in a science domain. Participants 

engage in discourse, which is used to evaluate 

their collaborative skills. We present initial ex-

periments for automatic classification of such 

discourse, using a novel classification schema. 

Considerable accuracy is achieved with just 

lexical features. A speech-act classifier, trained 

on out-of-domain data, can also be helpful. 

1 Introduction 

Collaborative problem solving (CPS) is a com-

plex activity that involves an interplay between cog-

nitive processes, such as content understanding, 

knowledge acquisition, action planning and execu-

tion (Greiff, 2012; von Davier and Halpin, 2013), 

non-cognitive processes, such as adaptability, en-

gagement, social regulation, and affect states, such 

as boredom, confusion, and frustration (Baker et al., 

2010; Graesser et al., 2010). Collaborative learning 

techniques are used extensively in educational prac-

tices, from pre-school to higher education. Collabo-

rative activity in learning environments may take 

place in face-to-face interactions or via online dis-

tance-learning platforms (Prata et al., 2009). 

Within the domain of educational assessment, 

there has been a strong recent interest in the evalua-

tion of CPS as a social skill (Griffin et al., 2012; Liu 

et al., 2015; von Davier and Halpin, 2013). Such in-

terest is informed by analysis of group interactions, 

which often integrate context, experience, and ac-

tive engagement of learners (Hatano & Inagaki, 

1991; Hmelo-Silver, Nagarajan, & Day, 2000). For 

example, Damon and Phelps (1989) pointed out that 

collaborative discussion provides a rich environ-

ment for mutual discovery, reciprocal feedback, and 

frequent sharing of ideas. Duschl and Osborne 

(2002) noted that peer collaboration provides op-

portunities for scientific argumentation – proposing, 

supporting, criticizing, evaluating, and refining 

ideas. 

To include discursive collaboration in large-scale 

educational assessments, it is essential to automate 

the scoring and annotation process of discursive in-

teractions. In our study, we explore an application 

of natural language processing techniques for anno-

tating group discourses using a novel CPS classifi-

cation framework. 

The rest of this paper is structured as follows. 

Section 2 presents the experimental task that is used 

for eliciting collaborative behavior in a controlled 

setting. Section 3 describes the collected data. Sec-

tion 4 presents the CPS classification framework 

and the manual annotation of data according to this 

framework. Machine learning experiments for auto-

mated annotation of collaborative interactions are 

presented in section 5. 

2 Task Description 

We have designed a research study to explore the 

relationship between CPS skills and collaboration 

outcomes (Hao et al., 2015). We focus on measuring 

collaboration skills within the domain of science. 

The task was structured as a computer-based simu-

lation, in an interactive game-like environment. 

Such setting can provide students with opportunities 

to demonstrate proficiencies in complex interactive 

environments that traditional assessment formats 

cannot afford (Klopfer et al., 2009). The simulation 
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task was modified from an existing simulation, Vol-

cano Trialogue (Zapata-Rivera et al., 2014), and de-

livered over a web-based collaborative platform 

(see Figure 1). Task participants took the roles of 

assistants in a virtual seismic measurement labora-

tory, measuring and monitoring seismic events re-

lated to various aspects of (simulated) volcanic ac-

tivity. They were given various assignments (by a 

script-controlled virtual scientist agent), and their 

performance was measured based on their responses 

to the assignments in the simulation task. In this 

task, two participants work together via text chat to 

complete the specific subtasks. All of the turn-by-

turn conversations and responses to the questions 

were recorded in an activity log with time stamps. 

The conversations were used to measure CPS skills, 

while responses to the in-simulation test items were 

used to measure science inquiry skills. 

 

 

Figure 1. Sample screenshot from the Volcano task. 
 

 

Figure 2. Binned distribution of turn counts per session 
 

A session in this simulation task consists of mul-

tiple items/subtasks in various formats, such as mul-

tiple choice, constructed response, and conversa-

tions with virtual agents. There were also action 

items, such as placing seismometers on a virtual 

volcano map and making notes of collected seismic 

data. Pre-designed prompts were displayed in the 

system prompt area to guide participants through 

the sequence of subtasks in a session. To capture the 

evidence for the outcomes of collaboration in the 

simulation, a three-step response procedure was 

used for each item. First, each participant was 

prompted to respond the item individually. Next, 

each participant was prompted to discuss the item 

with the partner. Individual response could be re-

vised at this stage and a team-response could be ne-

gotiated. Finally, a team-representative was ran-

domly chosen to submit a team answer. The changes 

in the test-responses before and after the collabora-

tion may indicate how effective the team collabora-

tion was. In a separate paper, we describe how such 

changes provide insights on which CPS skills are 

important for better collaboration outcomes (Hao et 

al., submitted). In the present paper, we focus on de-

veloping automated methodologies to classify the 

conversations in the sessions. 

3 The CPS chat data 

Data was collected through the Amazon Mechan-

ical Turk crowdsourcing data-collection platform. 

We recruited 1,000 participants with at least one 

year of college education. Participants were teamed 

randomly into pairs to take the collaborative science 

simulation task. After removing sessions with in-

complete data, we had complete responses from 482 

teams. Figure 2 presents a binned histogram for the 

amounts of turns taken in the 482 sessions, indicat-

ing the amount of dialogue that has occurred. A 

‘turn’ consists of whatever text a participant types 

before pressing ‘Send’. About 80% of the sessions 

had 35-100 turns. The chattiest session had 300 

turns. Sample chat excerpts are presented in Table 

2. Overall, there are 38,703 turns in our corpus. The 

total number of tokens is 189K (213K with punctu-

ation). Average token-count per turn is 4.9 tokens 

(5.5 with punctuation). 
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4 CPS classification 

By analyzing discourse, researchers can make 

sense of how students collaboratively solve prob-

lems. Observable features from the collaborative in-

teraction, such as turn taking, sharing resources and 

ideas, negotiating, posing and answering questions, 

etc., may be used for measuring CPS skills. 

There are many different ways to annotate inter-

actions, for different purposes. Dialogue acts (DA) 

are sentence-level units that represent states of a di-

alogue, such as questions, statements, hesitations, 

etc. However, classification of dialogue acts differs 

from CPS classification (Erkens and Janssen, 2008). 

Whereas dialogue act coding is based on the prag-

matic, linguistic features, close to utterance form, 

the coding of collaborative activities is based on the 

theoretical interpretation of the content of the utter-

ances – the aim and function of the utterances in the 

collaboration process. For example, from the DA 

perspective, “Look at the map” and “Wait for me” 

are simply directives. From CPS perspective, the 

former may be considered “Sharing of ideas/re-

sources”, the latter – a “Regulating” expression.  

Research in the field of collaboration analysis has 

not settled yet on a single CPS annotation scheme. 

Hmelo-Silver and Barrows (2008) provide a schema 

for characterizing collaborative knowledge building 

for medical students working with an expert facili-

tator, thus focusing on facilitation aspects. Higgins 

et al. (2012) present a coding scheme that is focused 

on the types of interactions between participants 

(negotiation, elaboration, independence, etc.). 

Asterhan and Schwarz (2009) describe dual CPS 

coding of discussion protocols. Kersey et al. (2009) 

focus on knowledge co-construction in peer interac-

tions. Mercier et al. (2014) describe a coding 

scheme that focuses on leadership skills in CPS. Lu 

et al. (2011) describe a coding scheme of discourse 

moves in online discussions. Weinberger and 

Fischer (2006) provide a multi-dimensional coding 

scheme for argumentative knowledge construction 

in computer-supported collaborative learning. 

4.1 The CPS Framework 

The CPS classification schema used in the pre-

sent work was developed based on review of com-

puter-supported collaborative learning (CSCL) re-

search findings (Barron, 2003; Dillenbourg and 

Traum, 2006; Griffin et al., 2012; von Davier and 

Halpin, 2013) and the PISA 2015 Collaborative 

Problem Solving Framework (OECD, 2013). Our 

schema (Liu et al., 2015) is comprised of 33 CPS 

skills grouped into four major dimensions. The full 

listing is presented in Table 1. The four dimensions 

are: sharing ideas, negotiating, regulating problem-

solving activities, and maintaining communication. 

The first dimension – sharing ideas – considers how 

individuals bring divergent ideas into a collabora-

tive conversation. For instance, participants may 

share their individual responses to assessment items 

and/or point out relevant resources that might help 

resolve a problem. The second dimension – negoti-

ating ideas – is to capture evidence of the team’s 

collaborative knowledge building and construction 

through negotiating with each other. The categories 

under this dimension include agreement/disagree-

ment with each other, requesting clarification, elab-

orating/rephrasing other’s ideas, identifying gaps, 

revising one’s own idea. The third dimension – reg-

ulating problem-solving activities – focuses on the 

collaborative regulation aspect of the team dis-

course. This dimension includes such categories as 

identifying goals, evaluating teamwork, and check-

ing understanding. The last dimension – maintain-

ing a positive communication atmosphere – is to 

capture social communications beyond the task-spe-

cific interactions. 

4.2 Human coding of CPS classes 

Two human annotators were trained to annotate the 

chats. Training involved overview of definitions 

and coding examples for each of the 33 categories 

of CPS skills. After training, annotators inde-

pendently coded discourse data from the chat proto-

cols. Seventy seven sessions out of 482 (16%) were 

coded by both annotators, all other sessions were 

coded by the same single annotator (H1). 

The unit of analysis was each turn of a conversa-

tion, i.e. each turn received a label drawn from the 

33 categories. Due to complexity of the collabora-

tive process, one turn of chat may have more than 

one function that can be mapped in the CPS frame-

work. Therefore, an annotator was allowed to assign 

up to two labels to each turn. A primary label re-

flects what the annotator considered as the major 

function in a given turn, and a secondary label re-

flects an additional, less central function.  

Table 2 presents a sample of this annotation. The 

first column marks speaker-ID,  the  second column 
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CPS skills Student performance (categories) 

Sharing ideas 1. Student gives task-relevant information (e.g., individual response) to the teammate. 

2. Student points out a resource to retrieve task-relevant information. 

3. Student responds to the teammate's request for task-relevant information. 

Negotiating ideas 4. Student expresses agreement with the teammates. 

5. Student expresses disagreement with teammates. 

6. Student expresses uncertainty of agree or disagree. 

7. Student asks the teammate to repeat a statement. 

8. Student asks the teammate to clarify a statement. 

9. Student rephrases/complete the teammate's statement. 

10. Student identifies a conflict in his or her own idea and the teammate's idea. 

11. Student uses relevant evidence to point out some gap in the teammate's statement. 

12. Student elaborates on his or her own statement. 

13. Student changes his or her own idea after listening to the teammate's reasoning 

Regulating 

problem solving 

14. Student identifies the goal of the conversation. 

15. Student suggests the next step for the group to take. 

16. Student expresses confusion/frustration or lack of understanding. 

17. Student expresses progress in understanding. 

18. Student reflects on what the group did. 

19. Student expresses what is missing in the teamwork to solve the problem. 

20. Student checks on understanding. 

21. Student evaluates whether certain group contribution is useful or not for the 

problem solving. 

22. Student shows satisfaction with the group performance. 

23. Student points out some gap in a group decision. 

24. Student identifies a problem in problem solving. 

Maintaining 

communication 

25. Student responds to the teammate's question (using texts and text symbols). 

26. Student manages to make the conversation alive (using texts and text symbols, 

using socially appropriate language).  

27. Student waits for the teammate to finish his/her statement before taking turns. 

28. Student uses socially appropriate language (e.g., greeting). 

29. Student offers help. 

30. Student apologizes for unintentional interruption. 

31. Student rejects the teammate's suggestions without an accountable reason. 

32. Student inputs something that does not make sense. 

33. Student shows understanding of the teammate's frustration. 

 
Table 1: CPS Framework coding rubric of collaborative problem solving interactions skills 

 

 

presents the chat text. The fourth column presents 

the primary classification code assigned by annota-

tor H1. The third column indicates the general di-

mension for primary label. The fifth column shows 

the secondary labels given by annotator H1. For ex-

ample, in the last row of the table, note that the re-

sponse of participant s8 is classified as primary=cat-

egory#11 (point out a gap in statement) and second-

ary=category#2 (suggest information resource). 

As the annotation focused on marking only the 

most prominent CPS functions, a secondary label 

was used only if the annotator considered that the 

additional function was prominent enough. Our first 

annotator assigned a secondary tag (in addition to a 

primary tag) to 13,404 chat-turns (34% of all cases), 

while the second annotator used a secondary tag in 

only 33 cases. Thus, we disregard the secondary tag 

of  the  second  annotator  and  compute  inter-rater  
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ID Chat text Dimension P S 

s1 hi there i’m george! maintaining  

communication 
28  

s2 good morning,  

I'm j 

maintaining  

communication 
28  

s1 i think the answer 

is b 
sharing ideas 1  

s2 magma approach-

ing crater? 
sharing ideas 1 20 

s1 i remember the 

video saying high 

frequency waves 

resulted from rocks 

cracking 

sharing ideas 2 12 

s2 i just reviewed it 

and you are correct 
negotiating ideas 12 4 

s2 c sharing ideas 1  

s1 i chose c as well sharing ideas 1  

(some turns omitted here) 

s2 ? regulating 16  

s1 we can keep the 

first two notes we 

seemed to have 

similar answers 

regulating 15  

Example from another session: 

s9 I thought it started 

low? 
sharing ideas 1  

s8 nope you can look 

at the volcanic seis-

mic events in the 

bottom left corner 

negotiating ideas 11 2 

Table 2: Sample excerpts from some chat sessions,  

with CPS classifications by annotator H1. P=primary label, 

S-secondary label. Labels are explained in Table 1. 
 

agreement as follows. The 77 sessions that were 

processed by both annotators had 6,079 turns. Over 

those turns, the two annotators agreed in their pri-

mary tags in 3,818 cases (62.8% agreement, Co-

hen’s kappa 0.56). We also considered a different 

criterion, when second annotator’s primary tag 

agreed with either primary or secondary tag given 

by the first annotator. In this approach, agreement is 

72%s and Cohen’s kappa is 0.62. According to Lan-

dis and Koch (1977) scale, those levels of agree-

ment are somewhere between moderate (kappa 

0.41-0.61) and substantial (kappa 0.61-0.80). 

Figure 3 presents the distribution of primary and 

secondary CPS labels assigned by annotator H1 to 

the whole set of 38,703 turns. The distribution is 

very uneven. Two categories were never used (#26 

and #27). 

 

Figure 3. Histogram of primary and secondary CPS labels 

assigned by annotator H1 for the set of 38,703 chat turns. 
 

It is not uncommon to see uneven distribution of 

categories in collaborative discourse (Chin and Os-

borne, 2010; Schellens and Valcke, 2005; Lipponen 

et al. 2003). Given that the task prompted students 

to share individual responses, it is also not surpris-

ing to see categories #1 (give info to partner) and #4 

(expresses agreement) as the most frequent codes. 

Social factors may also be at play. For instance, peo-

ple often tend to be polite and respectful and express 

disagreement indirectly. Instead of saying “no, I dis-

agree”, very likely a person would say “my answer 

is …” or “I think it’s … because”, and such re-

sponses are not coded as expressed disagreement, 

but rather as sharing or negotiating. This may ex-

plain why explicit agreements are five times more 

frequent than explicit disagreements in our data, the 

latter also mostly coded as secondary label. 

5 Automation of CPS classification 

Analysis of protocols and logs of communication is 

an important research technique for investigating 

collaborative processes. Since such analysis is very 
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time consuming, researchers have turned to auto-

mating such analyses by utilizing computational lin-

guistic methods. Discourse Processing is a well-es-

tablished area in computational linguistics, and 

there is much research on automatically recognizing 

and tagging dialogue acts, for spoken or transcribed 

data (Webb & Liu, 2008; Webb et al., 2005; Serafin 

& Di Eugenio, 2004; Stolcke et al., 2000; Samuel et 

al., 1999). De Felice and Deane (2012) describe 

identifying speech acts in e-mails, as part of a scor-

ing system for educational assessment. Similarly, 

researchers have developed computational linguis-

tic approaches in analysis of collaboration proto-

cols. Law et al. (2007) presented a mixed system, 

where manual coding is augmented with automated 

suggestions, derived from keyword and phrase 

matching. Erkens and Janssen (2008) describe a 

rule-based approach for automatic coding of dia-

logue acts in collaboration protocols. Erkens and 

Janssen have also stressed the difference between 

dialogue acts, which are closer to the linguistic form 

of interaction, and classes of collaborative utter-

ances, which are more context specific and depend 

on respective theoretical frameworks of collabora-

tion processes. Rosé et al. (2008) and Dönmez et al. 

(2005) describe a machine learning approach to 

code collaboration protocols according to the clas-

sification system of Weinberger and Fischer (2006). 

Here we describe machine learning experiments 

towards automated coding of collaboration proto-

cols according to the novel CPS framework. In our 

experiments we attempt to learn directly the 31 cat-

egories of the 33 defined in the framework. We 

chose a multinomial Naive-Bayes and HMM ap-

proaches, as starting points to explore assigning 

CPS tags to chat-turns in our data.  

As a pre-processing step, all texts were automat-

ically spell-corrected using a contextually-aware 

spell checker (Flor, 2012). Slang words and expres-

sions were normalized (e.g. {ya, yea, yeah, yiss, 

yisss, yep, yay, yaaaay, yupp} → yes), using a dic-

tionary of slang terms (this functionality is provided 

in the spell-checker). All texts were then tokenized 

and converted to lower case.  

Following the manual annotation, our goal is to 

provide a single class-label to each chat turn, which 

may consist of one or more sentences. All machine 

learning experiments reported here use five-fold 

cross-validation with 4:1 train:test ratio. For this 

purpose the 482 collaboration sessions (described in 

section 3) were partitioned (once) into five groups: 

two groups of 97 sessions and three groups of 96 

sessions each). This also resulted in unequal (but ap-

proximately similar) amount of turns in each fold 

(7541 turns in the smallest fold, 8032 in the largest).  

Experiment 1. In our first experiment we train a 

Naive-Bayes classifier on just the primary labels 

from human annotator H1. We do not filter features, 

but rather use all available tokens. We use lexical 

features (word and punctuation tokens) in several 

configurations – unigrams, bigrams and trigrams. 

Performance results (micro-averaged across test-

folds) are shown in Table 3. As a baseline, we al-

ways predict the most frequent category (CPS cate-

gory#1), an approach that achieves 24.9% accuracy. 

The best result, 59.2% classification accuracy, is 

achieved by using just unigram features (single 

words and punctuation tokens). It clearly outper-

forms the baseline by a large margin. Bigrams and 

trigrams are not useful, their use actually decreases 

classification accuracy, as compared to using just 

unigrams. 

We also experimented with ignoring the punctu-

ation. A Naïve-Bayes classifier trained on lexical 

unigrams, but without punctuation, achieves accu-

racy of 55.5%. This is lower than the 59.2% 

achieved when punctuation is used. It demonstrates 

that punctuation is clearly useful for classification, 

which is consistent with similar results in a different 

domain (De Felice and Deane, 2012). 

Experiment 2. Since collaborative interactions 

in the Volcano task are clearly dialogic, it is reason-

able to expect that a CPS label for a given chat-turn 

may probabilistically depend on the labels of previ-

ous turns (as is often the case for dialogue-acts, e.g. 

Stolcke et al., 2000). Thus, we explore the use of 

Hidden Markov Model (HMM) classifier in this 

case (following the approach of Stolcke et al., 

2000). We explored a range of parameter settings, 

using n-best labels from 4 to 7 (for a single chat-

turn) and look-back history of one or two turns. 

Looking back is restricted because the dialogue is 

usually localized, just a few turns focusing on the 

specific subtask that participants were working on. 

Results are presented in Table 3. HMM modeling is 

clearly not effective in this task, as its results are 

much lower than those from a Naïve-Bayes classi-

fier. Notably, this result is not without precedent. 

Serafin & Di Eugenio (2004), working on dialogue 
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act modeling, found that using dialogue history 

worsens rather than improves performance. 

A per-CPS-category performance comparison 

was conducted between the Naïve-Bayes unigrams-

based classifier and the HMM classifier (with n-

best=4, lookback=1). The HMM classifier performs 

worse than NB classifier on all categories, except 

CPS category #4 (student expresses agreement with 

the teammates), where HMM is better than NB by 

7.34%. This suggests that selective integration of 

contextual information might be useful. 

 

Method Acc.% Kappa 

Baseline (most frequent class) 24.9 0.01 

Experiment 1 

NB with lexical unigrams 59.2 0.52 

NB with unigrams+bigrams 58.5 0.51 

NB with 1-,2- & 3-grams 58.2 0.51 

NB, unigrams, no punctuation 55.6 0.48 

Experiment 2 

HMM, n-best=4, lookback=1 52.5 0.42 

HMM, n-best=7, lookback=1 48.1 0.36 

HMM, n-best=4, lookback=2 46.4 0.34 

HMM, n-best=7, lookback=2 41.7 0.28 

Experiment 3 

NB on CPS data, with probabilis-

tic dialog-act tagging trained on 

out-of-domain data 

44.6 0.30 

Same as above,  

+lexical unigrams from CPS data 
60.3 0.54 

Table 3: Evaluation results (accuracy and Cohen’s kappa) 

for machine learning classification experiments with 31 CPS 

Framework tag categories. All results were micro-averaged 

from five cross-validation test folds (N=38,703 chat turns). 

NB=Naïve-Bayes, HMM=Hidden Markov Model. 
 

Experiment 3. In this experiment we investi-

gated whether automatic dialogue-act detection, 

trained on out-of-domain data, can be beneficial for 

CPS classification. Webb & Liu (2008) have 

demonstrated that using out-of-domain data can 

contribute to more robust classification of speech 

acts for in-domain data. Here, we extend this idea 

even further – use out-of-domain training data and 

a different classification schema. 

In a separate study, we developed an automated 

speech-act classifier using the ICSI Meeting Re-

corder Dialogue Act (MRDA) corpus (Shriberg et 

al., 2004). The dialogue act of each sentence was 

annotated using MRDA annotation scheme devel-

oped for multiparty natural human-human dialogue. 

It defined a set of primitive communicative actions. 

In total, it includes 50 tags: 11 general tags and 39 

specific tags. General tags include speech act types 

such as statements and yes/no questions and also 

make distinctions among syntactically different 

forms. Specific tags describe the purpose of the ut-

terance, e.g., whether the speaker is making a sug-

gestion or responding positively to a question. 

The automated speech-act classifier was trained 

using a set of linguistic features described in Webb 

and Liu (2008), including sentence length, sentence 

initial and final word/POS n-grams, and pres-

ence/absence of cue phrases. A Maximum Entropy 

model-based classifier was trained on randomly se-

lected 40 meetings and tested on the remained 24 

meetings. The kappa between the system and human 

annotator was 0.71 for general tag and 0.61 for spe-

cific tag. The inter-rater agreement based on the 

subset of data was 0.80 for general tag and 0.71 for 

specific tag. 

Notably, the MRDA data – conversations among 

computer scientists – is different from our CPS data, 

and the tag-set of dialogue acts is different from the 

CPS Framework tag-set. For our experiment, we 

used the out-of-domain-trained speech-act classifier 

to process CPS chat data and recorded the predicted 

probabilities of each speech act. Since CPS data was 

not annotated for speech acts, we do not know how 

accurate that classifier is. We just took the assigned 

speech-act tags and used them as probabilistic fea-

tures in training our Naïve-Bayes CPS classifier, as 

follows. In training a standard Naïve-Bayes text 

classifier, each token (e.g. word) is a feature and its 

basic weight (count) is 1. Thus, the standard ap-

proach is to maximize:  

 
 

iargmaxlog( ( )) log P(w |C)
c i

P C    

We use the predicted speech-act tags as special 

features, and their probabilities as feature weights, 

using the following formula: 

 

 i iargmaxlog( ( )) log P(f ) P(f |C)
c i

P C    

where P(fi) is the probability of speech act fi in the 

current chat-turn and P(fi|C) is the conditional prob-

ability of speech act fi given a specific CPS tag (this 

part is learned in the training). 
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A Naïve-Bayes CPS classifier, trained with prob-

abilistic speech-act features, achieves accuracy of 

44.6% in assigning CPS tags, which is substantially 

better than our baseline of 24.9%. We then trained a 

Naïve-Bayes classifier that integrates both lexical 

features (unigrams) from CPS training data and 

probabilistic speech-act features, using the formula: 

 

 j i iargmaxlog( ( )) log P(w |C)+ log P(f ) P(f |C)
c j i

P C   

where wj are lexical features (tokens). This ap-

proach makes the additional naïve assumption that 

speech acts as features are independent of the 

words. This classifier achieves 60.3% accuracy in 

CPS classification, 1% more than lexical-unigrams 

Naïve-Bayes (significant difference, p<0.000001, 

McNemar’s test for correlated proportions). 

We conducted additional investigations, to look 

how the classifiers perform for each individual CPS 

category. Table 4 presents the accuracy of the Na-

ïve-Bayes unigram-based classifier on each CPS 

category. One obvious conclusion is that the larger 

is the count of a given category, the higher is the 

classifier accuracy. In fact, the Pearson correlation 

between tag count and accuracy is 0.701. While this 

might be expected, there are also some examples 

that do not follow this trend. The classifier achieves 

only 9.76% accuracy on label #12 (student elabo-

rates on own statement), although it is a rather fre-

quent category. A possible reason for this might be 

that elaboration statements are highly heterogene-

ous in form and lexical content, their status as ‘elab-

orations’ requires some abstraction and semantic in-

ference. Another example is label #3 (student re-

sponds to the teammate's request for task-relevant 

information), with only 2.31% classification accu-

racy. This looks like one of the cases that could ben-

efit from considering content from previous chat-

turns, although not always from the immediately 

preceding turn. 

Detailed analysis of classifier performance on 

each CPS category provides some interesting find-

ings. In experiment 3 we have found that adding 

probabilistic dialogue act detection as features to a 

lexical Naïve-Bayes classifier improves overall ac-

curacy by just 1%. However, a detailed view reveals 

additional information (see last column in Table 4). 

For some CPS categories, adding dialogue acts con-

siderably improves classifier accuracy: 8% for cat-

egory #20 and 10% for category #22. This is not un-

expected – CPS category #20 (student checks on un-

derstanding) directly corresponds to dialogue-act 

category ‘understanding-Check’. Another case is 

CPS category #17 (student expresses progress in un-

derstanding), which corresponds rather directly to 

dialogue-act “acknowledgement”. For several other 

CPS categories, detection of dialogue-acts was not 

helpful for CPS classification. In future work, we 

will consider how to use dialogue-act detection se-

lectively in CPS classification. 

While the results from our experiments are en-

couraging, higher levels of accuracy are needed for 

 
CPS 

tag 

Total 

Count 

Accuracy 

NB 

Accuracy 

NB DA 
Change 

1 9628 66.99 67.60 0.61 

4 7736 83.85 82.38 -1.47 

28 5119 67.49 66.52 -0.98 

20 4136 59.99 68.01 8.03 

16 1704 44.72 46.19 1.47 

12 1260 9.76 11.43 1.67 

21 1189 44.66 45.33 0.67 

22 1169 49.44 59.54 10.09 

15 1021 44.27 44.47 0.20 

24 768 50.39 51.30 0.91 

3 735 2.31 2.31 0.00 

32 512 60.55 58.98 -1.56 

18 506 29.05 28.46 -0.59 

10 498 6.83 7.43 0.60 

19 435 54.02 54.71 0.69 

13 408 30.39 29.41 -0.98 

9 359 11.98 12.81 0.84 

11 333 16.52 17.12 0.60 

2 261 45.21 42.53 -2.68 

17 252 19.05 25.40 6.35 

25 228 11.84 7.46 -4.39 

6 115 13.91 13.04 -0.87 

5 66 1.52 6.06 4.55 

30 65 16.92 23.08 6.15 

14 57 10.53 7.02 -3.51 

29 46 8.70 4.35 -4.35 

8 41 7.32 0.00 -7.32 

33 26 0.00 0.00 0.00 

23 16 0.00 0.00 0.00 

31 11 0.00 0.00 0.00 

7 3 0.00 0.00 0.00 

Table 4: CPS categories, with counts (primary label by an-

notator H1), and average automated classification accuracy. 

(NB)=Naïve-Bayes with unigram features, (NB DA)= Na-

ïve-Bayes with unigram features and Dialogue Act features.  
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using automated CPS classifiers in operational set-

tings. Beigman-Klebanov and Beigman (2014) and 

Jamison and Gurevych (2015) have suggested that, 

in supervised machine learning, the presence of dif-

ficult items in the training sets is detrimental to 

learning performance and that performance can be 

improved if systems are trained on only easy data. 

They define ‘easy’ as less controversial in human 

annotations. We explore this aspect using the Naïve-

Bayes classifier with unigram lexical features.  

Experiment 4. Our annotator H1 used secondary 

labels when a chat-turn had two prominent func-

tions (rather than just one). Such cases can be con-

sidered ambiguous and more difficult than cases 

that have only one prominent CPS function. In this 

experiment we filtered such cases out (reduction of 

about 34%, to N=25,299), from either training, test-

ing or both. Results are shown in Table 5.  

Experiment 5. Here we consider as ‘easy’ only 

those 3,818 cases where two human annotators 

agreed on the primary label. We train a new set of 

classifiers, using the same five-fold cross-validation 

splits, but filter out from training all cases that lack 

explicit consensus. Micro-averaged performance 

for this type of classifier is compared to the classi-

fier that used unfiltered training data. Results are 

presented in Table 6. 

 

 
  Testing 

 
 

Unfiltered 

data 

Cases without 

secondary tag 

T
ra

in
in

g
 Unfiltered 

data 

59.2% 

k=0.52 

69.0% 

k=0.62 

Cases without 

secondary tag 

57.8% 

k=0.49 

70.9% 

k=0.63 

Table 5: Classifier accuracy when trained and tested 

with/without cases that have secondary CPS labels.  
 

  Testing 

 
 

Unfiltered 

data 

Consensus 

cases 

T
ra

in
in

g
 Unfiltered 

data 

59.2% 

k=0.52 

73.1% 

k=0.67 

Consensus 

cases 

55.3% 

k=0.46 

74.4% 

k=0.68 

Table 6: Classifier accuracy when trained and tested  

with all or just human-rater-consensus cases. 
 

In both experiments 4 and 5 we see that when a 

classifier is trained on ‘easy’ data and tested on all 

data, performance degrades (relative to a classifier 

that was trained on all data), but degradation is very 

moderate. In experiment 4, training data was re-

duced by 30%, but degradation of accuracy was just 

1.4%. In experiment 5 training data was reduced by 

90%, but degradation of accuracy was just 3.9%. On 

the other hand, when tested on only easy data, clas-

sifiers that were trained on easy data outperform the 

classifiers that were trained on unfiltered data, but 

only by a very small margin (1-2%). 

6 Conclusions 

In this paper we presented a novel task that inte-

grates collaborative problem solving behavior with 

testing in a science domain. For integration in edu-

cational assessment, the task would benefit from au-

tomated scoring of CPS discourse. We used a com-

plex CPS coding scheme with four major dimen-

sions and 33 classes. In our initial exploration, we 

sought to obtain a single CPS category-label for 

each turn in chat dialogues. Our results indicate that 

considerable accuracy (59.2%) can be achieved by 

using a simple Naïve-Bayes classifier with unigram 

lexical features. This result approaches human inter-

rater agreement (62.8%).  

For future research we consider pursuing several 

complementary lines of work. One direction is to 

use more sophisticated machine-learning ap-

proaches, such as CRF and SVM, and additional 

features, such as part-of-speech tags and timing of 

chat turns. Another direction is to explore the rea-

sons for disagreement in human annotations. Given 

the complex nature of collaborative discourse, it is 

usual that some discourse turns carry more than one 

function mapped in the CPS framework. Thus, an-

other line of exploration is to train a system to de-

cide in which cases it may suggest more than one 

tag to a given chat turn, i.e. consider multi-label 

classification of CPS data. Finally, it might be fruit-

ful to provide a bridge between the high-level func-

tionally-defined CPS categories and more linguisti-

cally-oriented dialogue acts. We have shown that 

using a Dialogue Acts classifier, trained on out-of-

domain data, can be useful for classifying CPS 

skills. We will explore whether an explicit mapping 

between dialogue acts and CPS categories may con-

tribute to better CPS classifications. 
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