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Introduction

We are excited to be holding the 11th edition of the BEA workshop. Since starting in 1997, the
BEA workshop, now one of the largest workshops at NAACL/ACL, has become one of the leading
venues for publishing innovative work that uses NLP to develop educational applications. The
consistent interest and growth of the workshop has clear ties to challenges in education, especially
with regard to supporting literacy. The research presented at the workshop illustrates advances in the
technology, and the maturity of the NLP/education field that are responses to those challenges with
capabilities that support instructor practices and learner needs. NLP capabilities now support an array
of learning domains, including writing, speaking, reading, and mathematics. In the writing and speech
domains, automated writing evaluation (AWE) and speech assessment applications, respectively, are
commercially deployed in high-stakes assessment and instructional settings, including Massive Open
Online Courses (MOOCs). We also see widely-used commercial applications for plagiarism detection
and peer review. There has been a renewed interest in spoken dialog and multi-modal systems for
instruction and assessment as well as feedback. We are also seeing explosive growth of mobile
applications for game-based applications for instruction and assessment. The current educational and
assessment landscape, especially in the United States, continues to foster a strong interest and high
demand that pushes the state-of-the-art in AWE capabilities to expand the analysis of written responses
to writing genres other than those traditionally found in standardized assessments, especially writing
tasks requiring use of sources and argumentative discourse.

The use of NLP in educational applications has gained visibility outside of the NLP community. First,
the Hewlett Foundation reached out to public and private sectors and sponsored two competitions: one
for automated essay scoring, and another for scoring of short answer, subject-matter-based response
items. The motivation driving these competitions was to engage the larger scientific community in
this enterprise. MOOCs are now beginning to incorporate AWE systems to manage the thousands
of constructed-response assignments collected during a single MOOC course. Learning@Scale is
another venue that discusses NLP research in education. The Speech and Language Technology in
Education (SLaTE), now in its seventh year, promotes the use of speech and language technology for
educational purposes. Another breakthrough for educational applications within the CL community
is the presence of a number of shared-task competitions over the last three years. There have been
four shared tasks on grammatical error correction with the last two held at CoNLL (2013 and
2014). In 2014 alone, there were four shared tasks for NLP and Education-related areas. We are
pleased to announce a unique shared task at BEA this year: Automated Evaluation of Scientific Writing.

As a community, we continue to improve existing capabilities, and to identify and generate innovative
ways to use NLP in applications for writing, reading, speaking, critical thinking, curriculum
development, and assessment. Steady growth in the development of NLP-based applications for
education has prompted an increased number of workshops, typically focusing on one specific subfield.
In this workshop, we present papers from the following subfields: tools for automated scoring of text
and speech, automated test-item generation, curriculum development, collaborative problem solving,
content evaluation in text, dialogue and intelligent tutoring, evaluation of genres beyond essays,
feedback studies, and grammatical error detection.
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This year we received a record 46 submissions, and accepted 8 papers as oral presentations and 20 as
poster presentation and/or demos, for an overall acceptance rate of 61%. Each paper was reviewed by
three members of the Program Committee who were believed to be most appropriate for each paper.
We continue to have a very strong policy to deal with conflicts of interest. First, we made a concerted
effort to not assign papers to reviewers to evaluate if the paper had an author from their institution.
Second, with respect to the organizing committee, authors of papers for which there was a conflict of
interest recused themselves from the discussions.

While the field is growing, we do recognize that there is a core group of institutions and researchers
who work in this area. With a higher acceptance rate, we were able to include papers from a wider
variety of topics and institutions. The papers accepted were selected on the basis of several factors,
including the relevance to a core educational problem space, the novelty of the approach or domain,
and the strength of the research. The accepted papers were highly diverse – an indicator of the growing
variety of foci in this field. We continue to believe that the workshop framework designed to introduce
work in progress and new ideas needs to be revived, and we hope that we have achieved this with the
breadth and variety of research accepted for this workshop, a brief description of which is presented
below:

For automated writing evaluation, Meyer & Koch investigate how users of intelligent writing assistance
tools deal with correct, incorrect, and incomplete feedback; Rei & Cummins investigate the task of
assessing sentence-level prompt relevance in learner essays; Cummins et al focus on determining the
topical relevance of L2 essays to the prompt; Loukina & Cahill investigate how well systems developed
for automated evaluation of written responses perform when applied to spoken responses; Beigman
Klebanov et al address the problem of quantifying the overall extent to which a test-taker’s essay deals
with the topic it is assigned; King & Dickinson investigate questions of how to reason about learner
meaning in cases where the set of correct meanings is never entirely complete, specifically for the case
of picture description tasks; Madnani et al present preliminary work on automatically scoring tests of
proficiency in music instruction; Rahimi & Litman automatically extract and investigate the usefulness
of topical components for scoring the Evidence dimension of an analytical writing in response to text
assessment; Ledbetter & Dickinson describe the development of a morphological analyzer for learner
Hungarian, outlining extensions to a resource-light system that can be developed by different types of
experts.

For short-answer scoring, Horbach & Palmer explore the suitability of active learning for automatic
short-answer assessment on the ASAP corpus; Banjade et al present a corpus that contains student
answers annotated for their correctness in context, in addition to a baseline for predicting the
correctness label; and Rudzewitz explores the practical usefulness of the combination of features from
three different fields – short answer scoring, authorship attribution, and plagiarism detection – for two
tasks: semantic learner language classification, and plagiarism detection for evaluating short answers.

For grammar and spelling error detection, Madnani et al discuss a classifier approach that yields higher
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precision and a language modeling approach that provides better recall; Beinborn et al discuss a model
that can predict spelling difficulty with a high accuracy, and provide a thorough error analysis that takes
the L1 into account and provides insights into cross-lingual transfer effects; Napoles et al estimate the
deterioration of NLP processing given an estimate of the amount and nature of grammatical errors in
a text; and, Yuan et al develop a supervised ranking model to re-rank candidates generated from an
SMT-based grammatical error correction system.

For text difficulty and curriculum development, Xia et al address the task of readability assessment
for texts aimed at L2 learners; Reynolds investigates Russian second language readability assessment
using a machine-learning approach with a range of lexical, morphological, syntactic, and discourse
features; Chen & Meurers study the frequency of a word in common language use, and systematically
explore how such a word-level feature is best used to characterize the reading levels of texts; Yoon
et al present an automated method for estimating the difficulty of spoken texts for use in generating
items that assess non-native learners’ listening proficiency; Milli & Hearst explore the automated
augmentation of a popular online learning resource – Khan Academy video modules – with relevant
reference chapters from open access textbooks; and Chinkina & Meurers present an IR system for
text selection that identifies the grammatical constructions spelled out in the official English language
curriculum of schools in Baden-Württemberg (Germany) and re-ranks the search results based on the
selected (de)prioritization of grammatical forms.

For item generation, Hill & Simha propose a method to automatically generate multiple-choice
fill-in-the-blank exercises from existing text passages that challenge a reader’s comprehension skills
and contextual awareness; Wojatzki et al present the concept of bundled gap filling, along with an
efficient computational model for automatically generating unambiguous gap bundle exercises, and
a disambiguation measure for guiding the construction of the exercises and validating their level of
ambiguity; and Pilán explores the factors influencing the dependence of single sentences on their larger
textual context in order to automatically identify candidate sentences for language learning exercises
from corpora which are presentable in isolation.

For collaborative problem solving, Flor et al present a novel situational task that integrates collaborative
problem solving behavior with testing in a science domain.

For accessibility, Martinez-Santiago et al discuss computer-designed tools in order to help people with
Autism Spectrum Disorder to palliate or overcome such verbal limitations.

As noted earlier, this year we are excited to host the first Shared Task in Automated Evaluation of
Scientific Writing (http://textmining.lt/aesw/index.html). The task involves automatically predicting
whether sentences found in scientific language are in need of editing. Six teams competed and their
system description papers are found in these proceedings and are presented as posters in conjunction
with the BEA11 poster session. A summary report of the shared task (Daudaravicius et al) is also
found in the proceedings and will be presented orally.
We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
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contributions, the members of the Program Committee for their thoughtful reviews, and everyone
who attended this workshop. We would especially like to thank our sponsors; at the Gold Level:
American Institutes for Research (AIR), Cambridge Assessment, Educational Testing Service,
Grammarly, Pacific Metrics and Turnitin / Lightside, and at the Silver Level: Cognii and iLexIR. Their
contributions allow us to subsidize students at the workshop dinner, and make workshop t-shirts! We
would like to thank Joya Tetreault for creating the t-shirt design (again!).

Joel Tetreault, Yahoo
Jill Burstein, Educational Testing Service
Claudia Leacock, Grammarly
Helen Yannakoudakis, University of Cambridge
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Abstract

In this work, we estimate the deterioration
of NLP processing given an estimate of the
amount and nature of grammatical errors in
a text. From a corpus of essays written
by English-language learners, we extract un-
grammatical sentences, controlling the num-
ber and types of errors in each sentence. We
focus on six categories of errors that are com-
monly made by English-language learners,
and consider sentences containing one or more
of these errors. To evaluate the effect of gram-
matical errors, we measure the deterioration of
ungrammatical dependency parses using the
labeled F-score, an adaptation of the labeled
attachment score. We find notable differences
between the influence of individual error types
on the dependency parse, as well as interac-
tions between multiple errors.

1 Introduction

With the large number of English-language learn-
ers and the prevalence of informal web text, noisy
text containing grammatical errors is widespread.
However, the majority of NLP tools are developed
and trained over clean, grammatical text and the
performance of these tools may be negatively af-
fected when processing errorful text. One possi-
ble workaround is to adapt tools for noisy text, e.g.
(Foster et al., 2008; Cahill et al., 2014). However, it
is often preferable to use tools trained on clean text,
mainly because of the resources necessary for train-
ing and the limited availability of large-scale anno-
tated corpora, but also because tools should work
correctly in the presence of well-formed text.

Our goal is to measure the performance degrada-
tion of an automatic NLP task based on an estimate
of grammatical errors in a text. For example, if we
are processing student responses within an NLP ap-
plication, and the responses contain a mix of native
and non-native texts, it would be useful to be able
to estimate the difference in performance (if any) of
the NLP application on both types of texts.

We choose dependency parsing as our prototypic
task because it is often one of the first complex
downstream tasks in NLP pipelines. We will con-
sider six common grammatical errors made by non-
native speakers of English and systematically con-
trol the number and types of errors present in a sen-
tence. As errors are introduced to a sentence, the
degradation of the dependency parse is measured by
the decrease in the F-score over dependency rela-
tions.

In this work, we will show that

• increasing the number of errors in a sentence
decreases the accuracy of the dependency parse
(Section 4.1);
• the distance between errors does not affect the

accuracy (Section 4.2);
• some types of grammatical errors have a greater

impact, alone or in combination with other er-
rors (Section 4.3).

While these findings may seem self-evident, they
have not previously been quantified on a large cor-
pus of naturally occurring errors. Our analysis will
serve as the first step to understanding what happens
to a NLP pipeline when confronted with grammati-
cal errors.
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2 Data

Previous research concerning grammatical errors
has artificially generated errors over clean text, such
as Foster et al. (2008) and Felice and Yuan (2014),
among others. While this is one approach for build-
ing a large-scale corpus of grammatical and ungram-
matical sentence pairs, we use text with naturally oc-
curring errors so that our analysis covers the types of
errors typically seen in non-native writing.

As the source of our data, we use the training sec-
tion of the NUS Corpus of Learner English (NU-
CLE),1 which is a large corpus of essays written
by non-native English speakers (Dahlmeier et al.,
2013). The NUCLE corpus has been annotated with
corrections to the grammatical errors, and each error
has been labeled with one of 28 error categories.

We will only consider the following common er-
rors types, which constitute more than 50% of the 44
thousand corrections in NUCLE:

• Article or determiner [Det]
• Mechanical (punctuation, capitalization, and

spelling) [Mec]
• Noun number [Noun]
• Preposition [Prep]
• Word form [Wform]
• Verb tense and verb form [Verb]

While other error coding schemes specify the na-
ture of the error (whether the text is unnecessary,
missing, or needs to be replaced) in addition to the
word class (Nicholls, 2004), the NUCLE error cat-
egories do not make that distinction. Therefore we
automatically labeled each error with an additional
tag for the operation of the correction, depending on
whether it was missing a token, had an unnecessary
token, or needed to replace a token. We labeled all
noun, verb, and word form errors as replacements,
and automatically detected the label of article, me-
chanical, and preposition errors by comparing the
tokens in the original and corrected spans of text. If
the correction had fewer unique tokens than the orig-
inal text, it was labeled unnecessary. If the correc-
tion had more unique tokens, it was labeled missing.
Otherwise the operation was labeled a replacement.
To verify the validity of this algorithm, we reviewed
the 100 most frequent error–correction pairs labeled

1Version 3.2

Det Mec Noun Prep Verb Wform
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Figure 1: The number of corrections by error type
and operation that we used in this study.

with each operation, which encompasses 69% of the
errors in the corpus.2

To compile our corpus of sentences, we selected
all of the corrections from NUCLE addressing one
of the six error types above. We skipped corrections
that spanned multiple sentences or the entire length
of a sentence, as well as corrections that addressed
punctuation spacing, since those errors would likely
be addressed during tokenization.3

We identified 14,531 NUCLE sentences contain-
ing errors subject to these criteria. We applied the
corrections of all other types of errors and, in the
rest of our analysis, we will use the term errors to
refer only to errors of the types outlined above. On
average, each of these sentence has 26.4 tokens and
1.5 errors, with each error spanning 1.2 tokens and
the correction 1.5 tokens. In total, there are 22,123
errors, and Figure 1 shows the total number of cor-
rections by error type and operation. Because of the
small number of naturally occurring sentences with
exactly 1, 2, 3, or 4 errors (Table 1), we chose to gen-
erate new sentences with varying numbers of errors
from the original ungrammatical sentences.

For each of the NUCLE sentences, we generated
ungrammatical sentences with n errors by system-
atically selecting n corrections to ignore, applying
all of the other corrections. We generated sentences

2Many error–correction pairs are very frequent: for exam-
ple, inserting or deleting the accounts for 3,851 of the errors
and inserting or deleting a plural s 2,804.

3NLTK was used for sentence and token segmentation
(http://nltk.org).
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NUCLE Generated Exactly
# errors sentences sentences n errors

1 14,531 22,123 9,474
2 5,030 11,561 3,341
3 572 5,085 0
4 570 3,577 362

Table 1: The number of NUCLE sentences contain-
ing at least n errors, the number of sentences with n
errors that were generated from them, and the num-
ber of NUCLE sentences with exactly n errors.

with n = 1 to 4 errors, when there were at least
n corrections to the original sentence. For exam-
ple, a NUCLE sentence with 6 annotated corrections
would yield the following number of ungrammatical
sentences: 6 sentences with one error,

(
6
2

)
= 15

sentences with two errors,
(

6
3

)
= 20 sentences with

three errors, and so on. The number of original NU-
CLE sentences and generated sentences with each
number of errors is shown in Table 1. We also gen-
erated a grammatical sentence with all of the correc-
tions applied for comparison.

We parsed each sentence with the ZPar con-
stituent parser (Zhang and Clark, 2011) and gen-
erated dependency parses from the ZPar output us-
ing the Stanford Dependency Parser4 and the univer-
sal dependencies representation (De Marneffe et al.,
2014). We make the over-confident assumption that
the automatic analyses in our pipeline (tokenization,
parsing, and error-type labeling) are all correct.

Our analysis also depends on the quality of the
NUCLE annotations. When correcting ungrammat-
ical text, annotators are faced with the decisions
of whether a text needs to be corrected and, if so,
how to edit it. Previous work has found low inter-
annotator agreement for the basic task of judging
whether a sentence is grammatical (0.16 ≤ κ ≤
0.40) (Rozovskaya and Roth, 2010). The NUCLE
corpus is no different, with the three NUCLE anno-
tators having moderate agreement on how to correct
a span of text (κ = 0.48) and only fair agreement
for identifying what span of text needs to be cor-
rected (κ = 0.39) (Dahlmeier et al., 2013). Low
inter-annotator agreement is not necessarily an indi-
cation of the quality of the annotations, since it could

4Using the EnglishGrammaticalStructure class with the
flags -nonCollapsed -keepPunct.

also be attributed to the diversity of appropriate cor-
rections that have been made. We assume that the
annotations are correct and complete, meaning that
the spans and labels of annotations are correct and
that all of the grammatical errors are annotated. We
further assume that the annotations only fix gram-
matical errors, instead of providing a stylistic alter-
natives to grammatical text.

3 Metric: Labeled F-score

To measure the effect of grammatical errors on the
performance of the dependency parser, we compare
the dependencies identified in the corrected sentence
to those from the ungrammatical sentence.

The labeled attachment score (LAS) is a com-
monly used method for evaluating dependency
parsers (Nivre et al., 2004). The LAS calculates the
accuracy of the dependency triples from the candi-
date dependency graph with respect to those of the
gold standard, where each triple represents one re-
lation, consisting of the head, dependent, and type
of relation. The LAS assumes that the surface forms
of the sentences are identical but only the relations
have changed. In this work, we require a method
that accommodates unaligned tokens, which occur
when an error involves deleting or inserting tokens
and unequal surface forms (replacement errors).

There are some metrics that compare the parses
of unequal sentences, including SParseval (Roark et
al., 2006) and TEDeval (Tsarfaty et al., 2011), how-
ever neither of these metrics operate over dependen-
cies. We chose to evaluate dependencies because
dependency-based evaluation has been shown to be
more closely related to the linguistic intuition of
good parses compared to two other tree-based eval-
uations (Rehbein and van Genabith, 2007).

Since we cannot calculate the LAS over sentences
of unequal lengths, we instead measure the F1-score
of the dependency relations. So that substitutions
(such as morphological changes) are not severely pe-
nalized, we represent tokens with their index instead
of the surface form. First, we align the tokens in the
grammatical and ungrammatical sentences and as-
sign an index to each token such that the aligned to-
kens in each sentence share the same index. Because
reordering is uncommon in the NUCLE corrections,
we use dynamic programming to find the lowest-
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cost alignment between a sentence pair, where the
cost for insertions and deletions is 1, and substitu-
tions receive a cost proportionate to the Levenshtein
edit distance between the tokens (to award “partial
credit” for inflections).

We calculate the Labeled F-score (LF) over de-
pendency relations of the form <head index, de-
pendent index, relation>. This evaluation metric
can be used for comparing the dependency parses of
aligned sentences with unequal lengths or tokens.5

A variant of the LAS, the Unlabeled Attachment
Score, is calculated over pairs of heads and depen-
dents without the relation. We considered the corre-
sponding unlabeled F-score and, since there was no
meaningful difference between that and the labeled
F-score, we chose to use labeled relations for greater
specificity.

In the subsequent analysis, we will focus on the
difference in LF before and after an error is intro-
duced to a sentence. We will refer to the LF of a
sentence with n errors as LFn. The LF of a sen-
tence identical to the correct sentence is 100, there-
fore LF0 is always 100. The decrease in LF of an
ungrammatical sentence with n errors from the cor-
rect parse is LF0−LFn = 100−LFn, where a higher
value indicates a larger divergence from the correct
dependency parse.

4 Analysis

Our analysis will be broken down by different char-
acteristics of ungrammatical sentences and quanti-
fying their effect on the LF. Specifically, we will ex-
amine increasing numbers of errors in a sentence,
the distance between errors, individual error types,
and adding more errors to an already ungrammatical
sentence.

4.1 Number of errors

The first step of our analysis is to verify our hy-
pothesis that the absolute LF decrease (LF0 − LFn)
increases as the number of errors in a sentence in-
creases from n = 1 to n = 4. Pearson’s correlation
reveals a weak correlation between the LF decrease
and number of errors (Figure 2). Since this analysis
will be considering sentences generated with only a

5Available for download at https://github.com/
cnap/ungrammatical-dependencies.
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Figure 2: Mean absolute decrease in LF by the num-
ber of errors in a sentence (100− LFn).
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Figure 3: The distribution of error types in sen-
tences with one error. The distribution is virtually
identical (±2 percentage points) in sentences with
2–4 errors.

subset of errors from the original sentence, we will
verify the validity of this data by comparing the LF
decrease of the generated sentences to the LF de-
crease of sentences that originally had exactly n er-
rors. Since the LF decreases of the generated and
original sentences are very similar, we presume that
the generated sentences exhibit similar properties as
the original sentences with the same number of er-
rors. We further compared the distribution of sen-
tences with each error type as the number of errors
per sentence changes, and find that the distribution
is fairly constant. The distribution of sentences with
one error is shown in Figure 3. We will next inves-
tigate whether the LF decrease is due to interaction
between errors or if there is an additive effect.
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Figure 4: Distance between two errors and the de-
crease in LF.

4.2 Distance between errors

To determine whether the distance between errors is
a factor in dependency performance, we took sen-
tences with only two errors and counted the num-
ber of tokens between the errors (Figure 4). Sur-
prisingly, there is no relationship between the dis-
tance separating errors and the dependency parse ac-
curacy. We hypothesized that errors near each other
would either interact and cause the parser to misin-
terpret more of the sentence, or conversely that they
would disrupt the interpretation of only one clause
and not greatly effect the LF. However, neither of
these were evident based on the very weak negative
correlation. For sentences with more than two er-
rors, we calculated the mean, minimum, and maxi-
mum distances between all errors in each sentence,
and found a weak to very weak negative correla-
tion between those measures and the LF decrease
(−0.15 ≤ r ≤ −0.04).

4.3 Error type and operation

Next, we considered specific error types and their
operation—whether they were missing, unneces-
sary, or needed replacement. To isolate the impact
of individual error types on the LF, we calculated
the mean LF decrease (100−LF1) by error and oper-
ation over sentences with only one error (Figure 5).

The mean values by error type are shown in Figure 6,
column 1.

Two trends are immediately visible: there is a
clear difference between error types and, except for
determiner errors, missing and unnecessary errors
have a greater impact on the dependency parse than
replacements. Nouns and prepositions needing re-
placement have the lowest impact on the LF, with
100− LF1 < 4. This could be because the part
of speech tag for these substitutions does not of-
ten change (or only change NN to NNS in the case
of nouns), which would therefore not greatly af-
fect a dependency parser’s interpretation of the sen-
tence, but this hypothesis needs to be verified in fu-
ture work. A prepositional phrase and noun phrase
would likely still be found headed by that word.
Verb replacements exhibit more than twice the de-
crease in LF than nouns and prepositions. Unlike
noun and preposition replacements, replacing a verb
tends to elicit greater structural changes, since some
verbs can be interpreted as nouns or past partici-
ples and gerunds could be interpreted as modifying
nouns, etc. (Lee and Seneff, 2008).

Determiner errors also have a low impact on LF
and there is practically no difference by the oper-
ation of the correction. This can be explained be-
cause determiners occur at the beginning of noun
phrases, and so deleting, inserting, or replacing a
determiner would typically affect one child of the
noun phrase and not the overall structure. How-
ever, mechanical errors and missing or unnecessary
prepositions have a great impact on the LF, with LF1

at least 10% lower than LF0. Inserting or deleting
these types of words could greatly alter the struc-
ture of a sentence. For example, inserting a miss-
ing preposition would introduce a new prepositional
phrase and the subsequent noun phrase would attach
to that phrase. Regarding Mec errors, inserting com-
mas can drastically change the structure by breaking
apart constituents, and removing commas can cause
constituents to become siblings.

4.4 Adding errors to ungrammatical sentences

We have seen the mean LF decrease in sentences
with one error, over different error types. Next,
we examine what happens to the dependency parse
when an error is added to a sentence that is al-
ready ungrammatical. We calculated the LF of sen-
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Figure 5: The mean decrease in LF (100−LF1) for
sentences with one error, by error type.

tences with one error (LF1), introduced a second er-
ror into that sentence, and calculated the decrease in
LF (LF1−LF2). We controlled for the types of errors
both present in the original sentence and introduced
to the sentence, not differentiating the operation of
the error for ease of interpretation. The mean differ-
ences by error types are in Figure 6.

Each column indicates what type of error was
present in the original sentence (or the first er-
ror), with None indicating the original sentence was
grammatically correct and had no errors. Each row
represents the type of error that was added to the sen-
tence (the second error). Note that this does not indi-
cate the left–right order of the errors. This analysis
considers all combinations of errors: for example,
given a sentence with two determiner errors A and
B, we calculate the LF decrease after inserting error
A into the sentence that already had error B and vice
versa.

Generally, with respect to the error type, the rela-
tive magnitude of change caused by adding the sec-
ond error (column 2) is similar to adding that type
of error to a sentence with no errors (column 1).
However, introducing the second error always has
a lower mean LF decrease than introducing the first
error into a sentence, suggesting that each added er-
ror is less disruptive to the dependency parse as the
number of errors increase.

To verify this, we added an error to sentences
with 0 to 3 errors and calculated the LF change

None Det Mec Noun Prep Verb Wform
Error in original sentence

Wform

Verb

Prep

Noun

Mec

Det

In
se

rt
ed

 e
rr

or

6.8 4.8 5.3 5.1 4.5 4.7 6.6

8.0 6.4 5.9 6.6 5.2 5.1 7.3

5.8 4.2 3.8 4.3 3.9 3.0 3.4

3.6 2.8 2.3 2.7 1.9 2.7 2.4

8.9 6.7 4.6 6.8 5.6 6.2 6.0

5.3 4.2 3.5 4.1 4.2 3.7 4.2

3.0 4.5 6.0 7.5

Figure 6: Mean decrease in LF (LF1−LF2) for sen-
tences when introducing an error (row) into a sen-
tence that already has an error of the type in the col-
umn. The None column contains the mean decrease
when introducing a new error to a grammatical sen-
tence (100− LF1).

(LFn − LFn+1) each time a new error was intro-
duced. Figure 7 shows the mean LF decrease after
adding an error of a given type to a sentence that
already had 0, 1, 2, or 3 errors.

Based on Figure 7, it appears that the LF decrease
may converge for some error types, specifically de-
terminer, preposition, verb, and noun errors. How-
ever, the LF decreases at a fairly constant rate for
mechanical and word form errors, suggesting that
ungrammatical sentences become increasingly unin-
terpretable as these types of errors are introduced.
Further research is needed to make definitive claims
about what happens as a sentence gets increasingly
errorful.

5 Qualifying LF decrease

In the previous analysis, the range of LF decreases
are from 1 to around 10, suggesting that approx-
imately 1% to 10% of the dependency parse was
changed due to errors. However, this begs the ques-
tion of what a LF decrease of 1, 5, or 10 actually
means for a pair of sentences. Is the ungrammati-
cal sentence garbled after the LF decrease reaches a
certain level? How different are the dependencies
found in a sentence with a LF decrease of 1 ver-
sus 10? To illustrate these differences, we selected
an example sentence and calculated the LF decrease
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Figure 7: Mean decrease in LF (LFn−LFn+1) when
an error of a given type is added to a sentence that
already has n errors.

and dependency graph as more errors were added
(Table 2, Figure 8, and Figure 9).

Notice that the largest decrease in LF occurs after
the first and second errors are introduced (10 and
13 points, respectively). The introductions of these
errors result in structural changes of the graph, as
does the fourth error, which results in a lesser LF
decrease of 5. In contrast, the third error, a missing
determiner, causes a lesser decrease of about 2, since
the graph structure is not affected by this insertion.

Considering the LF decrease as the percent of a
sentence that is changed, for a sentence with 26 to-
kens (the mean length of sentences in our dataset),
a LF decrease of 5 corresponds to a change in 1.3
of the tokens, while a decrease of 10 corresponds to
a change in 2.6 tokens. Lower LF decreases (< 5
or so) generally indicate the insertion or deletion of
a token that does not affect the graph structure, or
changing the label of a dependency relation. On the
other hand, greater decreases likely reflect a struc-
tural change in the dependency graph of the ungram-
matical sentence, which affects more relations than
those containing the ungrammatical tokens.

6 Related work

There is a modest body of work focused on improv-
ing parser performance of ungrammatical sentences.

Unlike our experiments, most previous work has
used small (around 1,000 sentences) or artificially
generated corpora of ungrammatical/grammatical
sentence pairs.

The most closely related works compared the
structure of constituent parses of ungrammatical to
corrected sentences: with naturally occurring errors,
Foster (2004) and Kaljahi et al. (2015) and evalu-
ate parses of ungrammatical text based on the con-
stituent parse and Geertzen et al. (2013) evaluate
performance over dependencies. Cahill (2015) ex-
amines the parser performance using artificially gen-
erated errors, and Foster (2007) analyzes the parses
of both natural and artificial errors. In Wagner and
Foster (2009), the authors compared the parse prob-
abilities of naturally occurring and artificially gener-
ated ungrammatical sentences to the probabilities of
the corrected sentences. They found that the natural
ungrammatical sentences had a lower reduction in
parse probability than artificial sentences, suggest-
ing that artificial errors are not interchangeable with
spontaneous errors. This analysis suggests the im-
portance of using naturally occurring errors, which
is why we chose to generate sentences from the
spontaneous NUCLE errors.

Several studies have attempted to improve the ac-
curacy of parsing ungrammatical text. Some ap-
proaches include self-training (Foster et al., 2011;
Cahill et al., 2014), retraining (Foster et al., 2008),
and transforming the input and training text to be
more similar (Foster, 2010). Other work with un-
grammatical learner text includes Caines and But-
tery (2014), which identifies the need to improve
parsing of spoken learner English, and Tetreault et
al. (2010), which analyzes the accuracy of preposi-
tional phrase attachment in the presence of preposi-
tion errors.

7 Conclusion and future work

The performance of NLP tools over ungrammatical
text is little understood. Given the expense of anno-
tating a grammatical-error corpus, previous studies
have used either small annotated corpora or gener-
ated artificial grammatical errors in clean text.

This study represents the first large-scale analysis
of the effect of grammatical errors on a NLP task.
We have used a large, annotated corpus of grammat-
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ical errors to generate more than 44,000 sentences
with up to four errors in each sentence. The ungram-
matical sentences contain an increasing number of
naturally occurring errors, facilitating the compari-
son of parser performance as more errors are intro-
duced to a sentence. This is the first step toward a
larger goal of providing a confidence score of parser
accuracy based on an estimate of how ungrammati-
cal a text may be. While many of our findings may
seem obvious, they have previously not been quan-
tified on a large corpus of naturally occurring gram-
matical errors. In the future, these results should be
verified over a selection of manually corrected de-
pendency parses.

Future work includes predicting the LF decrease
based on an estimate of the number and types of er-
rors in a sentence. As yet, we have only measured
change by the LF decrease over all dependency rela-
tions. The decrease can also be measured over indi-
vidual dependency relations to get a clearer idea of
which relations are affected by specific error types.
We will also investigate the effect of grammatical
errors on other NLP tasks.

We chose the NUCLE corpus because it is the
largest annotated corpus of learner English (1.2 mil-
lion tokens). However, this analysis is relies on
the idiosyncrasies of this particular corpus, such as
the typical sentence length and complexity. The es-
says were written by students at the National Uni-
versity of Singapore, who do not have a wide vari-
ety of native languages. The types and frequency
of errors differ depending on the native language
of the student (Rozovskaya and Roth, 2010), which
may bias the analysis herein. The available corpora
that contain a broader representation of native lan-
guages are much smaller than the NUCLE corpus:
the Cambridge Learner Corpus–First Certificate in
English has 420 thousand tokens (Yannakoudakis et
al., 2011), and the corpus annotated by (Rozovskaya
and Roth, 2010) contains only 63 thousand words.

One limitation to our method for generating un-
grammatical sentences is that relatively few sen-
tences are the source of ungrammatical sentences
with four errors. Even though we drew sentences
from a large corpus, only 570 sentences had at least
four errors (of the types we were considering), com-
pared to 14,500 sentences with at least one error.
Future work examining the effect of multiple errors

would need to consider a more diverse set of sen-
tences with more instances of at least four errors,
since there could be peculiarities or noise in the orig-
inal annotations, which would be amplified in gen-
erated sentences.
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Num. Inserted LF
errors error type decrease Sentence

0 n/a n/a One of the factors that determines and shapes technological inno-
vation the most is the country ’s economic status .

1 Verb 10.0 One of the factors that determined and shapes technological in-
novation the most is the country ’s economic status .

2 Mec 13.1 One of the factors that determined and shapes technological in-
novation the most is the country economic status .

3 Det 1.9 One of the factors that determined and shapes the technological
innovation the most is the country economic status .

4 Verb 5.0 One of the factors that determined and shaped the technological
innovation the most is the country economic status .

Table 2: An example of a sentence with 4 errors added and the LF decrease (LFn−1 − LFn) after adding
each subsequent error to the previous sentence. Changed text is shown in bold italics.
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Figure 8: Dependency graph of the correct sentence in Table 2.
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Abstract

This paper addresses the task of readability as-
sessment for the texts aimed at second lan-
guage (L2) learners. One of the major chal-
lenges in this task is the lack of significantly
sized level-annotated data. For the present
work, we collected a dataset of CEFR-graded
texts tailored for learners of English as an
L2 and investigated text readability assess-
ment for both native and L2 learners. We ap-
plied a generalization method to adapt mod-
els trained on larger native corpora to estimate
text readability for learners, and explored do-
main adaptation and self-learning techniques
to make use of the native data to improve sys-
tem performance on the limited L2 data. In
our experiments, the best performing model
for readability on learner texts achieves an ac-
curacy of 0.797 and PCC of 0.938.

1 Introduction

Developing reading ability is an essential part of lan-
guage acquisition. However, finding proper read-
ing materials for training language learners at a spe-
cific level of proficiency is a demanding and time-
consuming task for English instructors as well as
the readers themselves. To automate the process
of reading material selection and the assessment of
reading ability for non-native learners, a system that
focuses on text readability analysis for L2 learners
can be developed. Such a system enhances many
pedagogical applications by supporting readers in
their second language education.

Text readability, which has been formally defined
as the sum of all elements in textual material that

affect a reader’s understanding, reading speed, and
level of interest in the material (Dale and Chall,
1949), is influenced by multiple variables. These
may include the style of writing, its format and orga-
nization, reader’s background and interest as well as
various contextual dimensions of the text, such as its
lexical and syntactic complexity, level of conceptual
familiarity, logical sophistication and so on.

The choice of the criteria to measure readability
often depends upon the need and characteristics of
the target readers. Most of the studies so far have
evaluated text difficulty as judged by native speak-
ers, despite the fact that text comprehensibility can
be perceived very differently by L2 learners. In
the case of L2 learners, due to the difference in the
pace of language acquisition, the focus in readability
measures often differs from that for native readers.
For example, the grammatical aspects of readability
usually contribute more to text comprehensibility for
L2 learners than the conceptual cognition difficulty
of the reading material (Heilman et al., 2007). A
system that is tailored towards learner’s perception
of reading difficulty can produce more accurate esti-
mation of text reading difficulty for non-native read-
ers and thus better facilitate language learning.

One of the major challenges for a data-driven ap-
proach to text readability assessment for L2 learners
is that there is not enough significantly sized, prop-
erly annotated data for this task. At the same time,
text readability assessment in general has been pre-
viously studied by many researchers and there are a
number of existing corpora aimed at native speak-
ers that can be used. To address the problem, we
compiled a collection of texts that are tailored for
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L2 learners’ readability and looked at several ap-
proaches to make use of existing native data to es-
timate readability for L2 learners.

In sum, the contribution of our work is threefold.
First, we develop a system that produces state-of-
the-art estimation of text readability, exploit a range
of readability measures and investigate their predic-
tive power. Second, we focus on readability for
L2 learners of English and present a level-graded
dataset for non-native readability analysis. Third,
we explore methods that help to make use of the ex-
isting native corpora to produce better estimation of
readability when there is not enough data aimed at
L2 learners. Specifically, we apply a generalization
method to adapt models trained on native data to es-
timate text readability for learners, and explore do-
main adaptation and self-training techniques to im-
prove system performance on the data aimed at L2
learners. To the best of our knowledge, these ap-
proaches have not been applied in readability exper-
iments before. The best performing model in our
experiments achieves an accuracy (ACC) of 0.797
and Pearson correlation coefficient (PCC) of 0.938.

2 Related Work

2.1 Automated Readability Assessment

Many previous studies on text readability assess-
ment have used machine learning based approaches,
which enable investigation of a broader set of lin-
guistic features. Si and Callan (2001) and Collins-
Thompson and Callan (2004) were among the early
works on statistical readability assessment. They
applied unigram language models and naı̈ve Bayes
classification to estimate the grade level of a given
text. Experiments showed that the language mod-
elling approach yields better results in terms of
accuracy than the traditional readability formulae,
such as the the Flesch-Kincaid score (Kincaid et al.,
1975). Schwarm and Ostendorf (2005) extended this
method to multiple language models. They com-
bined traditional reading metrics with statistical lan-
guage models as well as some basic parse tree fea-
tures and then applied an SVM classifier. Heilman
et al. (2007; 2008) expanded the feature set to in-
clude certain lexical and grammatical features ex-
tracted from parse trees while using a linear regres-
sion model to predict the grade level.

Pitler and Nenkova (2008) and Feng et al. (2010)
were the first to introduce discourse-based features
into the framework. The experiments with discourse
features demonstrated promising results in predict-
ing the readability level of text for both classification
and regression approaches.

Kate et al. (2010) looked at both the effect of
the feature choice and the machine learning frame-
work choice on performance, and found that the im-
provement resulting from changing the framework
is smaller than that from changing the features.

2.2 Readability Assessment for L2 Learners

Most previous work on readability assessment is
directed at predicting reading difficulty for native
readers. Several efforts in developing automated
readability assessment that take L2 learners into
consideration have emerged since 2007. Heilman
et al. (2007) tested the effect of grammatical fea-
tures for both L1 (first language) and L2 readers
and found that grammatical features play a more im-
portant role in L2 readability prediction than in L1
readability prediction. Vajjala and Meurers (2012)
combined measures from Second Language Acqui-
sition research with traditional readability features
and showed that the use of lexical and syntactic
features for measuring language development of L2
learners has a substantial positive impact on read-
ability classification. They observed that lexical fea-
tures perform better than syntactic features, and that
the traditional features have a good predictive power
when used with other features. Shen et al. (2013)
developed a language-independent approach to au-
tomatic text difficulty assessment for L2 learners.
They treated the task of reading level assessment as a
discriminative problem and applied a regression ap-
proach using a set of features that they claim to be
language-independent. However, most of these stud-
ies have used textual data annotated with the read-
ability levels for native speakers of English rather
than L2 learners specifically.

While the majority of work on automated read-
ability assessment are for English, studies on L2
readability in other languages, including French
(François and Fairon, 2012), Portuguese (Branco et
al., 2014), and Swedish (Pilán et al., 2015), are also
emerging. These studies generally use textbook ma-
terials with readability levels assigned by publishers
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Level1 Level2 Level3 Level4 Level5
age group 7-8 8-9 9-10 10-14 14-16
original corpus 629 801 814 1969 3500
modified corpus 529 767 801 1288 845

Table 1: Number of documents in the original and modified

WeeBit corpus

or language instructors.
Overall, study of automatic readability analysis

for L2 learners is still in its early stages, mainly due
to the lack of available well-labelled data annotated
with the readability levels for L2 learners.

3 Data

3.1 Native Data: the WeeBit Corpus
Among the existing publicly available corpora, the
WeeBit corpus created by Vajjala and Meurers
(2012) is one of the largest datasets for readabil-
ity analysis. The WeeBit corpus is composed of
articles targeted at readers of different age groups
from two sources, the Weekly Reader magazine and
the BBC-Bitesize website. Within the dataset, the
Weekly Reader data consists of texts covering age-
appropriate non-fictional content for four grade lev-
els, corresponding to children of ages between 7-8,
8-9, 9-10 and 10-12 years old. The BBC-Bitesize
website data is targeted at two grade levels, for ages
between 11-14 and 14-16. The two datasets are
merged to form the WeeBit corpus, with the targeted
ages used to assign readability levels.

A copy of the original WeeBit corpus was ob-
tained from the authors (Vajjala and Meurers, 2012).
The texts are webpage documents stored in raw
HTML format. We have identified that some texts
contain broken sentences or extraneous content from
the webpages, such as copyright declaration and
links, that correlate with the target labels in a way
which is likely to artificially boost performance on
the task and would not generalize well to other
datasets. To avoid that, we re-extracted texts from
the raw HTML and discarded text documents that do
not contain proper reading passages. Table 1 shows
the distribution of texts in the modified dataset.

3.2 L2 Data: the Cambridge Exams dataset
Most work on readability assessment has been done
on native corpora with age-specific reading levels
(Schwarm and Ostendorf, 2005; Feng et al., 2010).

Exams KET PET FCE CAE CPE
targeted level A2 B1 B2 C1 C2
# of docs 64 60 71 67 69
avg. len. of text 14.75 19.48 38.07 45.76 39.97

Table 2: Statistics for the Cambridge English Exams data

Such texts are aimed not at L2 learners but rather
at native-speaking children of different ages. There-
fore, the level annotation in such texts is arrived at
using criteria different from those that are relevant
for L2 readers. The lack of significantly sized L2
level-annotated data raises a problem for readabil-
ity analysis aimed at L2 readers. To tackle this, we
created a dataset with texts tailored for L2 learners’
readability specifically.

We have collected a dataset composed of reading
passages from the five main suite Cambridge En-
glish Exams (KET, PET, FCE, CAE, CPE).1 These
five exams are targeted at learners at A2–C2 levels
of the Common European Framework of Reference
(CEFR) (Council of Europe, 2001).2 The documents
are harvested from all the tasks in the past reading
papers for each of the exams. The Cambridge En-
glish Exams are designed for L2 learners specifically
and the A2–C2 levels assigned to each reading paper
can be treated as the level of reading difficulty of
the documents for the L2 learners.3 Table 2 shows
the number of documents at each CEFR level across
the dataset. The data is available at http://www.
cl.cam.ac.uk/˜mx223/cedata.html.

Experimenting on the language testing data anno-
tated with the L2 learner readability levels is one
of the contributions of this research. Most previ-
ous work on readability assessment for English have
relied on the data annotated with readability levels
aimed at native speakers. In this work, we use lan-
guage testing data with the levels assigned based on
L2 learner levels, and we believe that this level an-
notation is more appropriate for text readability as-
sessment for L2 learners than using texts with the
level annotation aimed at native speakers.

1http://www.cambridgeenglish.org
2The CEFR determines foreign language proficiency at six

levels in increasing order: A1 and A2, B1 and B2, C1 and C2.
3We are aware that the type of the task may also have an

effect on the reading difficulty of the texts, but this is ignored at
this stage.
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4 Readability Measures

This section describes the range of linguistic fea-
tures explored and the machine learning framework
applied to the WeeBit data that constitute a general
readability assessment system. The set of features
used in our experiments is an extension to those
used in previous work (Feng et al., 2010; Pitler and
Nenkova, 2008; Vajjala and Meurers, 2012; Vaj-
jala and Meurers, 2014), and their predictive power
for reading difficulty assessment is investigated in
our experiments. We have extended the feature set
with the EVP-based features, GR-based complexity
measures and the combination of language model-
ing features that have not been applied to readability
assessment before.

4.1 Features

Traditional Features The traditional features are
easy-to-compute representations of superficial as-
pects of text. The metrics that are considered in-
clude: the number of sentences per text, average and
maximum number of words per sentence, average
number of characters per word, and average number
of syllables per word. Two popular readability for-
mulas are also included: the Flesch-Kincaid score
(Kincaid et al., 1975) and the Coleman-Liau read-
ability formula (Coleman and Liau, 1975).

Lexico-semantic Features Vocabulary knowl-
edge is one of the most important aspects of reading
comprehension (Collins-Thompson, 2014). Lexico-
semantic features provide information about the dif-
ficulty or familiarity of vocabulary in the text.

A widely used lexical measure is the type-token
ratio (TTR), which is the ratio of the number of
unique word tokens (referred to as types) to the total
number of word tokens in a text. However, the con-
ventional TTR is influenced by the length of the text.
Root TTR and Corrected TTR, which take the loga-
rithm and square root of the text length instead of
the direct word count as denominator, can produce
a more unbiased representation and are included in
the experiment.

Part of speech (POS) based lexical variation and
lexical density measures (Lu, 2011) are also ex-
amined. Lexical variation is defined as the type-
token ratio of lexical items such as nouns, adjec-
tives, verbs, adverbs and prepositions. Lexical den-

sity is defined as the proportion of the five classes
of lexical items in all word tokens. The percentage
of content words (nouns, verbs, adjectives and ad-
verbs) and function words (all the remaining POS
types) are two other indicators of lexical density.

Vajjala and Meurers (2012; 2014) reported in their
readability classification experiment that the propor-
tion of words in the text that are found in the Aca-
demic Word List is one of the most predictive mea-
sures among all the lexical features they considered.
The Academic Word List (Coxhead, 2000) is com-
prised of words that frequently occur across all topic
ranges in an academic text corpus. The proportion
of academic vocabulary words in the text can be
viewed as another measure of lexical complexity.

A similar but more refined approach to estimate
lexical complexity is based on the use of the English
Vocabulary Profile (EVP).4 The EVP is an online
vocabulary resource that contains information about
which words and phrases are acquired by learners
at each CEFR level. It is collected from the Cam-
bridge Learner Corpus (CLC), a collection of exam-
ination scripts written by learners from all over the
world (Capel, 2012). It provides a more fine-grained
lexical complexity measure that captures the relative
difficulty of each word by assigning the word diffi-
culty to one of the six CEFR levels. Additionally,
the EVP indicates the word difficulty for L2 learners
rather than native speakers, which makes it more in-
formative in non-native readability analysis. In our
experiments, the proportion of words at each CEFR
level is calculated and added to the feature set.

Parse Tree Syntactic Features A number of syn-
tactic measures based on the RASP parser output
(Briscoe et al., 2006) are used to describe the gram-
matical complexity of text, including average parse
tree depth, and average number of noun, verb, adjec-
tive, adverb, prepositional phrases and clauses per
sentence.

Grammatical relations (GR) between constituents
in a sentence may also affect the judgement of
syntactic difficulty. Yannakoudakis (2013) applied
24 GR-based complexity measures in essay scoring
and showed good results. These complexity mea-
sures capture the grammatical sophistication of the
text through the representation of the distance be-

4http://www.englishprofile.org/
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tween the sentence constituents. For instance, these
measures calculate the longest/average distance in
the GR sets generated by the parser and the aver-
age/maximum number of GRs per sentence. A set
of 24 GR-based measures used by Yannakoudakis
(2013) are generated by RASP for each sentence.
We take the average of these measures across the text
to incorporate the GR-related aspect of its syntactic
difficulty.

Other types of complexity measures that are de-
rived from the parser output include: cost metric,
which is the total number of parsing actions per-
formed for generating the parse tree; ambiguity of
the parse, and so on. A total number of 114 non-
GR based complexity measures are extracted. These
complexity measures are averaged across the text
and used to model finer details of the syntactic diffi-
culty of the text.

Language Modeling Features Statistical lan-
guage modeling (LM) provides information about
distribution of word usage in the text and is in fact
another way to describe the lexical dimension of
readability. To avoid over-fitting to the WeeBit data,
two types of language modeling based features are
extracted using the SRILM toolkit (Stolcke, 2002):
(1) word token n-gram models, with n ranging from
1 to 5, trained on the British National Corpus (BNC),
and (2) POS n-grams, with n ranging from 1 to 5,
trained on the five levels in the WeeBit corpus it-
self. The LMs are used to score the text with log-
likelihood and perplexity.

Discourse-based Features Discourse features
measure the cohesion and coherence of the text.
Three types of discourse-based features are used.

(1) Entity density features
Previous work by Feng et al. (2009; 2010) has

shown that entity density is strongly associated with
text comprehension. An entity set is a union of
named entities and general nouns (including nouns
and proper nouns) contained in a text, with overlap-
ping general nouns removed. Based on this, 9 en-
tity density features, including the total number of
all/unique entities per document, the average num-
ber of all/unique entities per sentence, percentage of
named entities per sentence/document, percentage
of named entities in all entities, percentage of over-
lapping nouns removed, and percentage of unique
named entities in all unique entities, are calculated.

(2) Lexical chain features
Lexical chains model the semantic relations

among entities throughout the text. The lexical
chaining algorithm developed by Galley and McK-
eown (2003) is implemented. The semantically re-
lated words for the nouns in the text, including syn-
onyms, hypernyms, and hyponyms, are extracted
from the WordNet (Miller, 1995). Then for each pair
of the nouns in the text, we check whether they are
semantically related. Finally, lexical chains are built
by linking semantically related nouns in text. A set
of 7 lexical chain-based features are computed, in-
cluding total number of lexical chains per document,
total number of lexical chains normalized with text
length, average/maximum lexical chain length, aver-
age/maximum lexical chain span, and the number of
lexical chains that span more than half of the docu-
ment.5

(3) Entity grid features
Another entity-based approach to measure text

coherence is the entity grid model introduced by
Barzilay and Lapata (2008). They represented each
text by an entity grid, which is a two-dimensional
array that captures the distribution of discourse enti-
ties across text sentences. Each grid cell contains the
grammatical role of a particular entity in the speci-
fied sentence: whether it is a subject (S), object (O),
neither a subject nor an object (X), or absent from
the sentence (-). A local entity transition is defined
as the transition of the grammatical role of an en-
tity from one sentence to the following sentence. In
our experiments, we used the Brown Coreference
Toolkit v1.0 (Eisner and Charniak, 2011) to generate
the entity grid for the documents. The probabilities
of the 16 types of local entity transition patterns are
calculated to represent the coherence of the text.

4.2 Implementation and Evaluation
In our experiments, we cast readability assessment
as a supervised machine learning problem. In par-
ticular, a pairwise ranking approach is adopted and
compared with a classification method. We believe
that the reading difficulty of text is a continuous
rather than discrete variable. Text difficulty within
a level can also vary. Instead of assigning an abso-

5The length of a chain is the number of entities contained
in the chain. The span of a chain is the distance between the
indexes of the first and the last entities in the chain.
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feature set Classification Ranking
ACC PCC pairwise ACC PCC

traditional 0.586 0.770 0.862 0.704
lexical 0.578 0.726 0.863 0.743
syntactic 0.599 0.731 0.824 0.692
LM 0.714 0.848 0.872 0.769
discourse 0.563 0.688 0.848 0.659
all combined 0.803 0.900 0.924 0.848

Table 3: Classification and ranking results on the WeeBit cor-

pus with feature sets grouped by their type

lute level to the text, treating readability assessment
as a ranking problem allows prediction of the rela-
tive difficulty of pairs of documents, which captures
the gradual nature of readability better. Because of
this, we hypothesize that the ranking model can gen-
eralize better to unseen texts and texts with different
level annotation.

Support vector machines (SVM) have been used
in the past for readability assessment by many re-
searchers and have consistently yielded better results
when compared to other statistical models for the
task (Kate et al., 2010). We use the LIBSVM toolkit
(Chang and Lin, 2011) to implement both multi-
class classification and pairwise ranking. Five-fold
cross validation is used for evaluation. We report
two popular performance metrics, accuracy (ACC)
and Pearson correlation coefficient (PCC), and use
pairwise accuracy to evaluate ranking models. Pair-
wise accuracy is defined as the percentage of in-
stance pairs that the model ranked correctly. It
should be noted that accuracy and pairwise accuracy
are not directly comparable. Thus, PCC is intro-
duced to compare the results of the classification and
the ranking models.

4.3 Results

In predicting the text reading difficulty on the
WeeBit data, the best result is achieved with a com-
bination of all features and a classification model,
with ACC=0.803 and PCC=0.900. We performed
ablation tests and found that all feature sets have
contributed to the overall model performance. Al-
though there have been readability assessment stud-
ies on similar datasets, the results obtained in our
experiments are not directly comparable to those.
One of the major reasons is the modifications that
we have made to the corpus (as discussed in Sec-

tion 3.1). Vajjala and Meurers (2012) reported that
a multilayer perceptron classifier using three tradi-
tional metrics alone yielded an accuracy of 70.3% on
their version of the WeeBit corpus. Their final sys-
tem achieved a classification accuracy of 93.3% on
the five-class corpus. Nonetheless, the best system
in our experiments yields results competitive to most
existing studies. For reference, Feng et al. (2010) re-
ported an accuracy of 74.01% using a combination
of discourse, lexical and syntactic features for read-
ability classification on their Weekly Reader Corpus
and an accuracy of 63.18% when using all feature
sets described in Schwarm et al. (2005).

Comparing the classification and the ranking
models, we note that the results of the two models
vary across feature sets and none of the two mod-
els is consistently better than the other. When all
features are combined, the classification model out-
performs the ranking one. It suggests that a ranking
model is not necessarily the best model in predict-
ing readability overall when trained and tested on
the same dataset.

5 Readability Assessment on L2 Data

So far we have studied the effect of various readabil-
ity measures on the task of readability assessment
and built two different types of models to predict
text difficulty. However, the WeeBit corpus consists
of texts aimed at native speakers of different ages
rather than at L2 readers. Although there are cer-
tain similarities concerning reading comprehension
between these two groups, the perceived difficulty
of texts can be very different due to the difference in
the pace and stages of language acquisition. Since
the goal of our research is to automatically detect
readability levels for language learners, it would be
more helpful to work with data that are directly an-
notated with reading difficulty for L2 learners.

Ideally, it would be good to train a model di-
rectly on text annotated with L2 levels and then use
this model to estimate readability for the new texts.
However, the Cambridge Exams data we have com-
piled is relatively small, and the model trained on it
will likely not generalize well. Therefore, we exam-
ined several approaches to make use of the WeeBit
corpus for readability assessment on the L2 data.
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classification ranking

ACC PCC
pairwise

ACC PCC

native data 0.803 0.900 0.924 0.848
L2 data 0.233 0.730 0.913 0.880

Table 4: Generalization results of the classification and ranking

models trained on native data applied to language testing data

Levels 1 2 3 4 5
A2 4 0 55 4 1
B1 0 0 24 6 30
B2 0 1 1 4 65
C1 0 0 0 3 64
C2 0 0 0 0 69

Table 5: Confusion matrix of the classification model on the

language testing data

5.1 Generalization Experiment

First, we tested the generalization ability of the clas-
sification and ranking models trained on the WeeBit
corpus on the Cambridge Exams data to see if it is
possible to directly apply the models trained on na-
tive data to L2 data. Table 4 reports the results.

In the case of the multi-class classification model,
the accuracy dropped greatly when the model is ap-
plied to the L2 dataset, while the correlation re-
mained relatively high. Looking at the confusion
matrix of the classifier’s predictions on the L2 data
(see Table 5), we notice that most of the documents
in the L2 data are classified into the higher levels
of WeeBit by the model. This is because, on av-
erage, the Cambridge Exams texts are more difficult
than the WeeBit corpus ones which are generally tar-
geted at children of young ages. Thus, the mismatch
between the targeted levels has led to poor general-
ization of the classification model.

In contrast, for the ranking model, both evaluation
measures are relatively unharmed when the model is
applied to the L2 data. It shows that, when general-
izing to an unseen dataset, the estimation produced
by the ranking model is able to maintain a high pair-
wise accuracy and correlation with the ground truth.
We believe that this is because the ranking model
does not try to band the documents into one of the
levels on a different basis of difficulty annotation.
Instead, pairwise ranking captures the relative read-
ing difficulty of the documents, and therefore the re-
sulting ranked positions of the documents are closer
to the ground truth compared to the classification
model.

5.2 Mapping Ranking Scores to CEFR Levels

From the generalization experiment we can con-
clude that ranking is more accurate in predicting the
CEFR levels of unseen learner texts than classifica-
tion. Therefore, it is more appropriate to make use
of the more informative ranking scores produced by
the ranking model to learn a function that bands the
scores into CEFR levels.

In learning the mapping function, we adopted a
five-fold cross-validation approach. We split the
Cambridge Exams dataset into five cross validation
folds, with approximately equal number of docu-
ments at each level in each fold. A mapping func-
tion that converts ranking scores into CEFR levels
is learnt from training folds and then tested on the
validation fold in each run. The final results are av-
eraged across the runs.

We compared three groups of methods to learn the
mapping function.

(1) Regression and rounding: A regression func-
tion is learnt from the ranking scores and the ground
truth labels on the training part of the dataset and
then applied to the validation part. The mapped
CEFR prediction is then rounded to its closest inte-
ger and clamped to range [1, 5]. Both linear regres-
sion and polynomial regression models are consid-
ered. The intuition behind using polynomial func-
tions instead of a simple linear function for mapping
is that the correlation of ranking scores and CEFR
levels is not necessarily linear so a non-linear func-
tion might be more suitable for this task.

(2) Learning the cut-off boundary: We learn a
separation boundary that bands the ranking scores
to levels by maximizing the accuracy of such sep-
aration. For instance, we consider the ranked doc-
uments as a list with descending readability, with
their ranking scores following the same order. If
we could find a suitable cut-off boundary between
each two adjacent levels in the list, then every docu-
ment above the boundary would fall into the higher
level, and all documents below the boundary into the
lower level. In this way, the ranked documents are
banded into five levels with four separation bound-
aries learnt.

(3) Classification on the ranking scores: The
task can also be addressed as a classification prob-
lem. The ranking scores can be considered as a sin-
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Mapping functions ACC PCC
linear regression 0.541 0.587
polynomial regression 0.586 0.873
cut-off boundary 0.562 0.872
logistic regression 0.610 0.862
linear SVM 0.622 0.864

Table 6: Results of mapping ranking scores to CEFR levels

gle dimensional feature and CEFR levels as the tar-
get value. Here, two approaches are adopted and
compared, logistic regression and a linear SVM. As
a matter of fact, the SVM approach can be consid-
ered as a variation of learning a separation bound-
ary, as it tries to find an optimal decision boundary
between the classes.

Table 6 shows the results of the three map-
ping methods. Among the three approaches
for mapping ranking scores to CEFR levels
(regression-based, separation boundary-based, and
classification-based), the classification ones showed
better results than the others in terms of accuracy.
Though not as high in accuracy as the SVM, a
polynomial mapping function6 also yielded very
good results in terms of PCC. Compared to the
other two methods, the separation boundary-based
approach performs better than a linear regression
function but fails to match the polynomial regres-
sion and classification-based methods. Nonetheless,
all three approaches considerably outperformed the
naive generalization of the classification model from
the WeeBit corpus to the Cambridge Exams data.
These improvements are statistically significant at
p<0.05 level.7

5.3 Domain Adaptation from Native to L2 Data

Another way to make use of the native data is to treat
the task as a domain adaptation problem, where the
WeeBit corpus is taken as the source domain, and
the L2 data as the target domain. The idea behind
this is to use out-of-domain training data to boost
the performance on limited in-domain data.

EasyAdapt (Daumé III, 2007) is one of the best
performing domain adaptation algorithms. It has
previously been applied to essay scoring and showed

6A 4th order polynomial function is adopted because it
yields better results compared to other orders.

7Throughout this paper, we test significance using t-test for
ACC and Williams’ test (Williams, 1959) for PCC.

pairwise ACC PCC
EasyAdapt 0.933 0.905
native data only 0.913 0.880
L2 data only 0.943 0.913

Table 7: Results of domain adaptation from native to language

testing data

good results (Phandi et al., 2015). In a two domain
case, EasyAdapt expands the input feature space
from RF to R3F , and then applies two mapping
functions ΦS(x) = 〈x, x, 0〉 and ΦT (x) = 〈x, 0, x〉
on source domain data and target domain data input
vectors respectively. Here, 0 = 〈0, ...0〉 ∈ RF is the
zero vector. In this manner, the instance feature vec-
tors from the WeeBit corpus and Cambridge Exams
datases are augmented to three times their original
dimensionality. The augmented feature space cap-
tures both general and domain specific information
and is thus capable of generalizing source domain
knowledge to facilitate estimation on the target do-
main. As there is a mismatch between the levels
on native and L2 data, the pairwise ranking algo-
rithm needs to be adapted to ensure that the prefer-
ence pairs are only created from the same domain. A
five-fold cross-validation is used as in previous ex-
periments.

Table 7 shows the results of applying EasyAdapt
with the ranking model. For comparison, we also
present the results obtained when we apply the
model trained on the native data to the L2 data di-
rectly, and the results obtained when we train the
ranking model on the L2 data only. We can see
that ranking with EasyAdapt outperforms the naive
generalization approach significantly (p<0.05), but
it does not beat the results obtained when training a
model on L2 data directly.

After applying the ranking model with
EasyAdapt, the ranking scores can be converted to
CEFR levels using the same methods as described
in Section 5.2. The best mapped CEFR estimation is
achieved with a linear SVM classifier on the ranking
score, reaching an ACC of 0.707 and PCC of
0.899. Compared to the naive generalization of
the classification model from native to L2 data,
the mapped estimation is less influenced by the
mismatch between difficulty levels in the two
domains (see Table 8).
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Levels 1 2 3 4 5
A2 11 3 0 0 0
B1 2 9 0 1 0
B2 0 0 13 0 2
C1 0 0 2 9 2
C2 0 0 0 4 10

Table 8: Confusion matrix of the mapped estimation after

EasyAdapt application on one of the cross-validation folds

Type ACC PCC
L2 data only 0.785 0.924
self-training 0.797 0.938
Table 9: Results of self-training

5.4 Using Self-training to Enhance the
Classification Model

In addition to the domain adaptation, we experi-
mented with self-training to boost the performance
on the limited L2 data with the native data. To the
best of our knowledge, neither of the approaches has
been applied to readability assessment before.

Self-training is a commonly used semi-supervised
machine learning algorithm that aims to use the large
amount of unlabelled data to help build a better clas-
sifier on a small amount of labeled data (Zhu, 2005).
When using native data to boost model performance
on L2 data with self-training, the L2 data is regarded
as labeled instances, and the native data as unlabeled
ones. A model is trained on the L2 data and then
used to score the native data. The most confident
K instances as well as their labels are added to the
training set. Then the model is re-trained and the
procedure is repeated. A five-fold cross-validation
is used in evaluation as before.

We have experimented with a grid search on K’s
and the number of iterations, and found out that
whatever the choice of the parameters is, the model
performance degrades with self-training when the
unlabeled instances are added blindly to all levels of
the L2 dataset. Taking into account the mismatch in
the difficulty levels between the native and L2 texts,
we adapted the algorithm to add the unlabeled data
only to the lower three levels of the L2 dataset. The
best result is achieved with K=10 and 9 iterations,
with 270 texts added in total (as shown in Table 9).
It seems reasonable to compare the results of this ap-
proach to those obtained with a model that is trained
directly on the L2 data. Hence, we include the re-
sults of this model in Table 9 for comparison.

The results show that self-training can signifi-
cantly (p<0.05) help estimating readability for L2
texts by including a certain amount of unlabeled data
(in this case, the native data) in training. However,
the range of the reading difficulty covered by the un-
labeled data may influence the model performance.

6 Conclusions and Future Work

We investigated text readability assessment for both
native and L2 learners. We collected a dataset
with text tailored for language learners’ readability
and explored methods to adapt models trained on
larger existing native corpora in estimating text read-
ing difficulty for learners. In particular, we devel-
oped a system that achieves state-of-the-art perfor-
mance in readability estimation, with ACC=0.803
and PCC=0.900 on native data, and ACC=0.785
and PCC=0.924 on L2 data, using a linear SVM.
We compared a ranking model against the classifi-
cation model for the task and showed that although
a ranking model does not necessarily outperform a
classification one in readability assessment on the
same data, it is more accurate when generalizing
to an unseen dataset. Following this, we showed
that, by applying a ranking model and then learn-
ing a mapping function, the model trained on the na-
tive data can be applied to estimate the CEFR levels
of unseen text effectively. This model achieves an
accuracy of 0.622 and PCC of 0.864, and consid-
erably outperforms the naive generalization of the
classification model, which achieves an accuracy of
0.233 and PCC of 0.730.

In addition, we experimented with domain adap-
tation and self-training approaches to make use of
the more plentiful native data to produce better es-
timation of readability when the L2 data is limited.
When treating the native data as a source domain and
L2 data as a target domain, applying the EasyAdapt
algorithm for ranking achieves an accuracy of 0.707
and PCC=0.899. The best result is achieved by
using self-training to include native data as unla-
belled data in training the classification model, with
ACC=0.797 and PCC=0.938.

Future work will focus on the improvement of
readability assessment framework for L2 learners
and the identification of the optimal feature set that
can generalize well to unseen text.
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Abstract

In this paper, we propose a method of au-
tomatically generating multiple-choice fill-in-
the-blank exercises from existing text pas-
sages that challenge a reader’s comprehen-
sion skills and contextual awareness. We use
a unique application of word co-occurrence
likelihoods and the Google n-grams corpus to
select words with strong contextual links to
their surrounding text, and to generate distrac-
tors that make sense only in an isolated nar-
row context and not in the full context of the
passage. Results show that our method is suc-
cessful at generating questions with distrac-
tors that are semantically consistent in a nar-
row context but inconsistent given the full text,
with larger n-grams yielding significantly bet-
ter results.

1 Introduction

According to the American Library Association, ap-
proximately 43% of Americans have reading skills
at or below the most basic level of prose literacy,
defined as the ability to “search, comprehend, and
use information from continuous texts” (Baer et al.,
2009). These underdeveloped literacy skills are in
many cases the result of poor reading comprehen-
sion. Results from a large-scale national survey indi-
cate that most adult learners with low literacy skills
have “difficulty integrating and synthesizing infor-
mation from any but the simplest texts,” likely due to
a number of factors including poor phonemic aware-
ness, vocabulary understanding, and reading fluency
(Krudenier, 2002). It also suggests that adults in ba-
sic education programs are more likely to view read-

ing as simply a decoding task rather than a multi-
faceted skill involving semantic processing, active
memory, and inference.

One method of addressing weak reading skills
is the cloze, or fill-in-the-blank (FITB), exercise.
These exercises involve strategically removing tar-
get words from a text and requiring the reader to
identify the missing word among a list of distrac-
tors. However, while FITB exercises can be valu-
able resources for practicing and improving reading
skills, they are time consuming to create by hand.
The goal of this paper is to suggest a method for
automatically creating such exercises from existing
text passages. Such a method would allow for sig-
nificantly faster and less costly exercise creation on a
larger scale, and would allow for nearly any desired
reading materials to serve as a learning resource.

We propose that, for native English speakers, a
good reading comprehension question challenges
the reader not with syntactic errors or unusual word
senses, but rather with contextual inconsistencies.
Figure 1 gives an example of the type of question
we wish to generate: when looking at a narrow con-
text, all four of the word choices are logical selec-
tions for the blank, but when the meaning implied
by the surrounding text is taken into account, only
one choice is sensible. This type of exercise encour-
ages engagement and focus while reading: as a well-
formed question should not have obvious inconsis-
tencies within a narrow reference frame, a reader
must actively construct meaning as they read in or-
der to identify the correct answer.

In this paper, we propose a method of automati-
cally generating FITB questions from existing text
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(a)
to stay during

open safe quiet active

(b)
Follow these tips to stay
during a hurricane.

open safe quiet active

Figure 1: An example illustrating the premise behind our exer-

cises: (a) In a narrow context, all four word choices are equally

fitting; (b) In the full context, only the target word logically fits

passages that follow this context-specific pattern,
using a unique application of word co-occurrence
likelihoods and the Google Books n-gram corpus
(Michel et al., 2010).

2 Previous Work

Ours is not the first paper to address the task of
generating fill-in-the-blank questions. Many pre-
vious studies focus on automatically creating exer-
cises specifically for language learning and vocab-
ulary assessment. Sakaguchi et al. (2013) describe
a method of generating distractors for assessing an
ESL reader’s ability to distinguish semantic nuances
between vocabulary words. Brown et al. (2005) uti-
lize WordNet word relations and frequencies to gen-
erate distractors for vocabulary words from equally-
challenging terms. Pino and Eskenazi (2009) and
Goto et al. (2010) both explore different meth-
ods of generating distractors of different classes de-
signed to indicate particular deficiencies in phonetic
or morphological vocabulary mastery.

Others focus on generating exercises for quizzing
or knowledge testing purposes. Agarwal and Man-
nem (2011) explore generating gap-fill exercises
from informative sentences in textbooks, while
Karamanis and Mitkov (2006) locate suitable dis-
tractors for medical texts from domain-specific doc-
uments. Both of these methods choose distractors
from other sentences in a constrained set of source
texts rather than relying on external corpora.

A few studies have focused on more
comprehension-specific exercises, generating
distractors that are semantically similar to the target
word. Zesch and Melamud (2014) propose a method
of generating semantically similar distractors to the
target word using context-sensitive lexical inference
rules. The distractors generated using this method

are contextually and semantically similar to the
target word, but not in the context being used in
the sentence. Kumar et al.’s RevUP system (2015)
utilizes a word vector model trained on the desired
text domain to find semantically-similar words and
verifies their similarity using WordNet synsets.
Aldabe et al. (2009) generate semantically-similar
distractors using distributional data obtained from
the British National Corpus, and also, like our study,
utilize the Google n-grams corpus to determine
each generated distractor’s probability of occurring
with its surrounding terms. However, their study
differs from ours in that they utilize the Google
n-grams solely for validating that their chosen
distractors make sense, whereas we use the corpus
for the actual generation of the distractors.

Perhaps the closest cousin to our proposed
method can be found in the DQGen system (Mostow
and Jang, 2012). DQGen generates cloze questions
designed to test different types of comprehension
failure in children, one of which involves creating
“plausible” distractors that create contextually sen-
sible sentences in isolation but do not fit in the con-
text of the rest of the text. Their system also utilizes
the Google n-grams corpus for finding semantically
consistent distractors for these sentences. However,
they do not address the challenge of choosing strate-
gic target words, and their attempt to generate dis-
tractors at the sentence level that are contextually in-
consistent at the passage level returned underwhelm-
ing results, as most target words were found to be
easily distinguishable without needing previous sen-
tences for context. While our paper addresses a
similar task of finding distractors that are plausible
when external context is excluded, we generate dis-
tractors at the narrower phrase level that rely on the
surrounding text for context.

3 Exercise Creation

The process of automatically generating FITB ex-
ercises from an existing text involves three distinct
steps: (1) choosing which target words to blank from
these sentences, (2) choosing distractors for each tar-
get word, and (3) compiling these elements into a
full passage-level exercise.
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3.1 Choosing Target Words

The first step to creating a FITB question from a text
passage is to choose which words to replace with
blanks. We consider a “good” blanked question to
be one in which there are enough context clues in
the surrounding text for the reader to understand the
text’s intended meaning even when the chosen word
is removed. If the reader is able to understand the
sentence’s intended meaning with the target word re-
moved, then the task of replacing the word should be
trivial.

We begin by considering every word in the sen-
tence as a potential word to be blanked. However,
many words would not make good target words in
practice. We discard function words (articles, pro-
nouns, conjunctions, etc.) from the pool due to
their closed nature and frequent appearance across
documents. However, unlike some other stud-
ies (Coniam, 1997) (Shei, 2001), we do not use
global word frequencies to find uncommon words
from which to create blanks. We propose that
even easily-understood target words that success-
fully challenge comprehension of the surrounding
context will implicitly test mastery of the more chal-
lenging words in the passage. However, we do
consider local word frequencies, eliminating words
whose stemmed form appears in the document mul-
tiple times, so that readers cannot identify target
words simply by recognition due to previous en-
counters.

Because our exercises are designed to test under-
standing rather than knowledge, we also do not wish
to “quiz” readers on facts, as is the case in several
other studies (Karamanis et al., 2006). Therefore we
also disregard classes of words that typically present
factual information and could be easily exchanged
for any other word of the same class (see Figure 2).
These include:
• Named entities Specific entities, such as peo-

ple, locations, and organizations
• Numbers Digits and their written forms
After this filtering step, the remaining set of words

serves as our pool of potential blanks.
From this pool, we must then locate the words

which relate most closely to their surrounding text.
We explore several different “scopes” of context sur-
rounding the potential blanks, and utilize word co-

× In fall of 2012, the New York City
government began receiving unusual
complaints.

× By the time California became a
state, it was already an important
place for farming.

Figure 2: Examples of poor target words

occurrence likelihoods to find the potential blanks
that have the strongest contextual links to informa-
tion within that scope. By removing words that have
a meaningful contextual relationship to one or more
other words in the scope, we aim to ensure that there
are enough hints left remaining to enable the reader
to make a reasonable inference about the blanked
word.

3.1.1 Contextual Scope
Though our goal is to generate blanks at the sen-

tence level, individual sentences in a passage are
rarely conceptually independent from one another.
True understanding of a sentence’s meaning often
relies on information that has been gathered from
previous sentences in the passage. Figure 3 gives an
example of a question that relies on previous infor-
mation to answer correctly.

(a)
He the window.

cleaned opened saw closed

(b)
Kahlil could not read. It was
so loud outside! He the
window.

cleaned opened saw closed

Figure 3: An example of contextual scope influencing answer

selection. When the word closed is removed (a), the reader must

rely on the previous sentences to provide the context clues nec-

essary to fill this blank (b).

Shanahan et al. (1984) found that traditional
cloze-style comprehension questions are not good
indicators of “intersentential comprehension,” the
ability to process and apply information across sen-
tence boundaries. We therefore explore several dif-
ferent contextual “scopes” when attempting to find
pairs of words with contextual links. Adjusting the
scope of included information allows the blanks-
selection method to incorporate potentially relevant
or necessary context words that a reader has inter-
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nalized from the sentences they have already read in
order to test their intersentential comprehension.

Three scopes were tested in this paper:
s1: Context words are chosen only from the target

sentence {st}
s2: Context words are chosen from the target sen-

tence and the preceding sentence {st−1, st}
s3: Context words are chosen from the tar-

get sentence and the two preceding sentences
{st−2, st−1, st}

The pool of scope words for each sentence is
filtered less rigorously than the pool of potential
blanks, as many of the word classes that make poor
blanks are poor choices specifically because they
provide important factual information that we wish
to leverage for context. We therefore choose only
to remove function words from the pool, leaving
named entities, numbers, and frequently-occurring
words.

3.1.2 Word Co-occurrences
We assume that words that co-occur together reg-

ularly are likely to have a contextual and/or seman-
tic relationship to one another. We therefore utilize
word co-occurrence likelihoods to select the poten-
tial blanks with the strongest relationship to their
scope-specific context words.

To represent word co-occurrence likelihoods, we
use the word vector space model GloVe (Penning-
ton et al., 2014), trained on 42-billion tokens. The
GloVe model formulates word vectors such that the
dot product of any two word vectors ŵ1 · ŵ2 repre-
sents the logarithm of the words’ probability of co-
occurring together in a document.

Our goal is to find the scope word for each poten-
tial blank with the highest likelihood of co-occurring
with that blanked word. Using the GloVe model, for
each potential blank b ∈ B, we find the closest scope
word c in the set of all scope words S for that blank
such that (b, c) = arg min(b̂ · ŝ) (∀s ∈ S such that
s.stem 6= b.stem). Each of these pairs is added to
the pool of blanks to carry to the task of choosing
distractors.

3.2 Choosing Distractors

To turn a blanked passage into an exercise, each
blank is presented as a multiple choice question.
The reader is given four words to choose from that

could potentially fit the given blank: the target word
and three distractors. For our exercises that specif-
ically target contextual understanding, we specify
that a good distractor should make sense both gram-
matically and logically within a narrow context, but
should not make sense within the broader context of
the surrounding words.

To accomplish this, we explore a unique applica-
tion of the Google Books n-grams Corpus for gen-
erating reasonable distractors for a blanked word.
Google n-grams is a massive corpus containing fre-
quency counts for all unigrams through 5-grams that
occur across all texts in the Google Books corpus.

When you step on the pedals of a
bicycle, it causes the wheels to
spin.

it [causes] the

[causes] the wheels

× bicycle it [causes]

Figure 4: An example of the sentence-level trigrams extracted

from a sentence. Note that an n-gram cannot occur between

two clauses.

We begin by gathering every 2- through 5-gram in
the original sentence that contains the target word.
If the sentence contains multiple clauses, we con-
sider only the clause which contains the target word.
This allows us to avoid selecting n-grams of un-
usual or unintended structure (see Figure 4). We
then use a sliding window to gather all n-grams
(2 ≤ n ≤ 5) within the clause of the form
{w1...wt−1, [wt], wt+1...wn}, where the target word
[wt] occupies each position 1 ≤ t ≤ n. We
then search the Google corpus for n-grams matching
each pattern {w1...wt−1, [wt.pos], wt+1...wn} (1 ≤
t ≤ n), where wt.pos represents the part of speech
of the target word wt (obtained using the Stanford
Part-Of-Speech Tagger (Toutanova et al., 2003)). If
the query returns no results, we attempt to general-
ize the pattern further by replacing proper names and
pronouns with their part of speech (see Figure 5).

We utilize a back-off model when querying for
distractors, using n-grams of size n = {5...2}. For
each n-sized pattern searched, we find the intersec-
tion D of all words at index t (limiting our results to
the top 100 for the sake of performance).

We do not want any of the generated distractors
to fit the blank as well as the target word, so we
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James Brown [VBD] up → ×
NNP [VBD] up → Moses lifted up

Peter stood up

Jill went up

...

Figure 5: When n-gram queries return no results, we generalize

specific terms to increase the likelihood of finding a match

need to remove all words in D that are likely to
make too much sense in context. Because synonyms
can often be used interchangeably in the same sen-
tence, we discard all words that are direct synonyms
of wt (using synsets gathered from WordNet1). We
also remove all words d ∈ D such that (ŵt · d̂) <
(ŵt · ĉ) (where c is the closest scope word in the pair
(wt, c)), because these words have a higher likeli-
hood than the target word does of co-occurring with
their context words.

If the resulting filtered set D contains fewer than
three words (the minimum required to create a mul-
tiple choice question), we back off to the next largest
value of n, continuing this pattern until we have
found three or more distractors for the blank. If
fewer than three distractors are found after n = 2,
the word is discarded from the pool of potential
blanks. From the final set D, we select the three
least-frequently occurring distractors in the Google
corpus.

3.3 Exercise Generation

Once we have found all remaining potential blanks
that have three or more distractors, we must pare
down the list to create the final passage-level exer-
cise. If any one sentence has more than one poten-
tial blank, we choose the blank that has the high-
est co-occurrence likelihood with its paired scope
word and discard the other(s). We also discard any
blanks whose paired scope word was itself made into
a blank (because the context has been removed).

The resulting set of blanks constitutes the set
of “best” questions for the passage. We then can
present the passage-level exercise in its entirety, re-
placing each blanked word with a multiple choice
question consisting of the target word and its three
chosen distractors. Though we choose not to do so,

1Princeton University “About WordNet.” WordNet. Prince-
ton University. 2010. <http://wordnet.princeton.edu>

the number of blanked sentences can also be man-
ually limited by selecting the top x blanks from the
set of all word pairs sorted by descending likelihood.

4 Evaluation

Our corpus of documents was composed of approx-
imately 1000 reading comprehension text passages
obtained from ReadWorks.org2, ranging in reading
level from 100L to 1000L using the Lexile scale.
We randomly selected 120 non-unique passages (i.e.
one passage could be selected more than once) from
which to create questions. For each instance of a se-
lected passage, we generated a single blanked sen-
tence and its top three distractors, to be presented as
a multiple choice question.

The questionnaire was separated into two sec-
tions, both of which asked participants to answer a
set of generated FITB questions. The first section
presented each question at the phrase level (i.e. the
blanked surrounded by a small subset of the words
in the full sentence). The words to include in these
phrases were selected by hand to present the blank in
a representational narrow context. The second sec-
tion presented sentence-level FITB questions, sur-
rounded by the context of the entire passage (or, in
the case of particularly long passages, by relevant
paragraphs from the full text). For both sections,
participants were presented with four word choices
for each blank, and were asked to select all of the
words they believed logically fit the blank.

67 native English-speaking volunteers were asked
to provide their feedback on each generated blank
through an anonymous online questionnaire. Each
participant was given a random subset of questions
from each section to answer: 20 phrase-level ques-
tions, and 10 sentence-level questions. Participants
were not aware that the questions were generated au-
tomatically and were not informed of the research
objectives or what we hoped to obtain from their an-
swers in order to avoid potential feedback bias.

5 Results

Alderson et al. (1995) proposed that multiple choice
questions be evaluated using two metrics: reliabil-
ity and validity. However, because our questions

2http://www.readworks.org/
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were not answered by the target audience (i.e. low-
literacy readers), we cannot compute reliability us-
ing traditional methods (such as Cronbach’s alpha).
We focus instead on evaluating the validity of our
exercises by determining how well they conform to
our proposed method of targeting narrow vs. full
context.

We assess the validity of our questions and the
chosen distractors by examining the proportion of
words that fit each blank in a narrow context to
words that fit the same blank in the broader context
of the surrounding text. In an ideal question, the tar-
get word and all distractors should fit in the narrow
context, and only the target word should fit given
the full context. Thus, for target words, we aim for
100% fit in both contexts; for distractors, we aim for
100% fit in the narrow context and 0% in the full.

Narrow(%) Full(%)
dist target dist target

n = 2 30.9 93.1 3.1 98.0
n = 3 57.7 92.4 7.0 93.8
n = 4 67.1 89.9 21.9 95.5
n = 5 74.1 93.2 13.2 91.3
ALL 58.0 92.1 11.6 94.6

Table 1: The percentage of distractors and target words cho-

sen to fit each blank given the narrow context (left) and the full

passage (right)

As can be seen in Table 1, the proportion of dis-
tractors deemed to fit the blanks in a narrow context
increases substantially as n increases, while the pro-
portion of target words chosen to fit is relatively un-
affected. This pattern also holds true given the full
context, although to a lesser extent.

On average, 58% of all distractors generated were
deemed to fit in their given blanks in a narrow con-
text, although this number is skewed by the poor per-
formance of the bigram model. The 5-gram model
was the best-performing for finding distractors that
fit in the narrow context, achieving an average fit
of approximately 74%. As n increases, more of
the syntactic and semantic features of the phrase are
able to be incorporated into the distractor selection,
increasing the chances of the selected word making
both grammatical and contextual sense with all of
the words in the phrase.

Less than 12% of all distractors on average were
deemed to fit the same blanks when given the full

context, though the 4-gram model had the worst per-
formance with nearly 22% fit. The bigram model
performed best in the full context with approxi-
mately 3% fit; however, its poor performance in the
narrow context suggests that these words are obvi-
ously incorrect and therefore not suitable distractors.

Table 2 compares the proportions of distrac-
tors fitting within each context across both n-gram
model and scope (s1 through s3). The same pattern
of increasing fit with higher values of n can be ob-
served within each scope. However, the scope does
not appear to have a significant affect on the quality
of the distractors generated.

Narrow(%) Full(%)
s1 s2 s3 s1 s2 s3

n = 2 29.5 31.9 27.9 3.2 3.0 3.4
n = 3 53.7 61.2 61.0 4.6 10.2 11.1
n = 4 64.8 66.7 66.1 25.3 18.9 21.5
n = 5 75.7 74.9 75.0 13.6 13.9 20.6
ALL 56.2 59.4 56.9 10.4 11.9 13.5

Table 2: The percentage of distractors fitting each blank given

the narrow (left) and full context (right), for each scope.

6 Limitations and Future Work

The proportion of words deemed to fit in the nar-
row contexts is lower than expected for both target
words and distractors. We suspect that the concept
of words “fitting” in a sentence fragment may not
have been fully understood by some participants.
For example, many respondents said that the word
went was not a suitable fit for the phrase Hidalgo

about this. In this case, some partic-
ipants may have struggled to identify the phrasal
verb “to go about” as being grammatically correct
because it clashed with the other choices (heard,
agreed, said), where they might have chosen it
to fit if it had been presented independently. A fu-
ture study will explore a less subjective method of
evaluating target words within a narrow context.

Perhaps the biggest weakness in our current
method lies in filtering out fitting distractors. As
indicated in the results above, approximately 12%
of all the distractors generated using our algorithm
were deemed to make as much sense in context as
the target word. Upon observation, we note that
the majority of the distractors chosen to fit within
their full contexts are “near-synonyms” of the tar-

28



get word (for example, the words turned and
flushed, which are not obvious synonyms but
are interchangeable given the context of the phrase
her face red.) While we are able to re-
move direct synonyms using WordNet, we will work
to incorporate a more robust synonym-filtering pro-
cess in future work, taking advantage of the already-
utilized corpora.

We also wish to further explore the relationship
between scope and the target words chosen. While
we have seen that adjusting the scope has little effect
on the quality of the distractors generated, it remains
to be seen if the target words themselves are of “bet-
ter” quality for targeting comprehension as the scope
of available context increases.

Alongside improvements to the question genera-
tion algorithm’s performance, we also wish to prove
the efficacy of these types of exercises in target-
ing the reading comprehension skills of low-literacy
users. This process will involve further user evalua-
tion, this time involving the target audience.

7 Conclusions

In this paper we have discussed a method of auto-
matically generating fill-in-the-blank questions de-
signed to target a reader’s comprehension skills and
contextual awareness. We have explored the idea of
using word co-occurrence likelihoods coupled with
scopes of context to find words with strong links to
their surrounding text from which to make blanks.
We have also tested a novel approach to generating
distractors for these words using the Google Books
n-grams corpus to find words that are semantically
and logically appropriate for the given blanks in a
narrow context but which do not make sense given
the intention of the passage.

Results suggest that larger n-grams are signifi-
cantly more effective in creating sensible distrac-
tors that make sense within a narrow context, and
that a large portion of these distractors become no
longer suitable once the full context of the passage
has been introduced. This suggests that our method
is a promising first step towards the generation of
these types of comprehension-challenging exercises.
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Abstract 

We present a novel situational task that inte-

grates collaborative problem solving behavior 

with testing in a science domain. Participants 

engage in discourse, which is used to evaluate 

their collaborative skills. We present initial ex-

periments for automatic classification of such 

discourse, using a novel classification schema. 

Considerable accuracy is achieved with just 

lexical features. A speech-act classifier, trained 

on out-of-domain data, can also be helpful. 

1 Introduction 

Collaborative problem solving (CPS) is a com-

plex activity that involves an interplay between cog-

nitive processes, such as content understanding, 

knowledge acquisition, action planning and execu-

tion (Greiff, 2012; von Davier and Halpin, 2013), 

non-cognitive processes, such as adaptability, en-

gagement, social regulation, and affect states, such 

as boredom, confusion, and frustration (Baker et al., 

2010; Graesser et al., 2010). Collaborative learning 

techniques are used extensively in educational prac-

tices, from pre-school to higher education. Collabo-

rative activity in learning environments may take 

place in face-to-face interactions or via online dis-

tance-learning platforms (Prata et al., 2009). 

Within the domain of educational assessment, 

there has been a strong recent interest in the evalua-

tion of CPS as a social skill (Griffin et al., 2012; Liu 

et al., 2015; von Davier and Halpin, 2013). Such in-

terest is informed by analysis of group interactions, 

which often integrate context, experience, and ac-

tive engagement of learners (Hatano & Inagaki, 

1991; Hmelo-Silver, Nagarajan, & Day, 2000). For 

example, Damon and Phelps (1989) pointed out that 

collaborative discussion provides a rich environ-

ment for mutual discovery, reciprocal feedback, and 

frequent sharing of ideas. Duschl and Osborne 

(2002) noted that peer collaboration provides op-

portunities for scientific argumentation – proposing, 

supporting, criticizing, evaluating, and refining 

ideas. 

To include discursive collaboration in large-scale 

educational assessments, it is essential to automate 

the scoring and annotation process of discursive in-

teractions. In our study, we explore an application 

of natural language processing techniques for anno-

tating group discourses using a novel CPS classifi-

cation framework. 

The rest of this paper is structured as follows. 

Section 2 presents the experimental task that is used 

for eliciting collaborative behavior in a controlled 

setting. Section 3 describes the collected data. Sec-

tion 4 presents the CPS classification framework 

and the manual annotation of data according to this 

framework. Machine learning experiments for auto-

mated annotation of collaborative interactions are 

presented in section 5. 

2 Task Description 

We have designed a research study to explore the 

relationship between CPS skills and collaboration 

outcomes (Hao et al., 2015). We focus on measuring 

collaboration skills within the domain of science. 

The task was structured as a computer-based simu-

lation, in an interactive game-like environment. 

Such setting can provide students with opportunities 

to demonstrate proficiencies in complex interactive 

environments that traditional assessment formats 

cannot afford (Klopfer et al., 2009). The simulation 
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task was modified from an existing simulation, Vol-

cano Trialogue (Zapata-Rivera et al., 2014), and de-

livered over a web-based collaborative platform 

(see Figure 1). Task participants took the roles of 

assistants in a virtual seismic measurement labora-

tory, measuring and monitoring seismic events re-

lated to various aspects of (simulated) volcanic ac-

tivity. They were given various assignments (by a 

script-controlled virtual scientist agent), and their 

performance was measured based on their responses 

to the assignments in the simulation task. In this 

task, two participants work together via text chat to 

complete the specific subtasks. All of the turn-by-

turn conversations and responses to the questions 

were recorded in an activity log with time stamps. 

The conversations were used to measure CPS skills, 

while responses to the in-simulation test items were 

used to measure science inquiry skills. 

 

 

Figure 1. Sample screenshot from the Volcano task. 
 

 

Figure 2. Binned distribution of turn counts per session 
 

A session in this simulation task consists of mul-

tiple items/subtasks in various formats, such as mul-

tiple choice, constructed response, and conversa-

tions with virtual agents. There were also action 

items, such as placing seismometers on a virtual 

volcano map and making notes of collected seismic 

data. Pre-designed prompts were displayed in the 

system prompt area to guide participants through 

the sequence of subtasks in a session. To capture the 

evidence for the outcomes of collaboration in the 

simulation, a three-step response procedure was 

used for each item. First, each participant was 

prompted to respond the item individually. Next, 

each participant was prompted to discuss the item 

with the partner. Individual response could be re-

vised at this stage and a team-response could be ne-

gotiated. Finally, a team-representative was ran-

domly chosen to submit a team answer. The changes 

in the test-responses before and after the collabora-

tion may indicate how effective the team collabora-

tion was. In a separate paper, we describe how such 

changes provide insights on which CPS skills are 

important for better collaboration outcomes (Hao et 

al., submitted). In the present paper, we focus on de-

veloping automated methodologies to classify the 

conversations in the sessions. 

3 The CPS chat data 

Data was collected through the Amazon Mechan-

ical Turk crowdsourcing data-collection platform. 

We recruited 1,000 participants with at least one 

year of college education. Participants were teamed 

randomly into pairs to take the collaborative science 

simulation task. After removing sessions with in-

complete data, we had complete responses from 482 

teams. Figure 2 presents a binned histogram for the 

amounts of turns taken in the 482 sessions, indicat-

ing the amount of dialogue that has occurred. A 

‘turn’ consists of whatever text a participant types 

before pressing ‘Send’. About 80% of the sessions 

had 35-100 turns. The chattiest session had 300 

turns. Sample chat excerpts are presented in Table 

2. Overall, there are 38,703 turns in our corpus. The 

total number of tokens is 189K (213K with punctu-

ation). Average token-count per turn is 4.9 tokens 

(5.5 with punctuation). 
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4 CPS classification 

By analyzing discourse, researchers can make 

sense of how students collaboratively solve prob-

lems. Observable features from the collaborative in-

teraction, such as turn taking, sharing resources and 

ideas, negotiating, posing and answering questions, 

etc., may be used for measuring CPS skills. 

There are many different ways to annotate inter-

actions, for different purposes. Dialogue acts (DA) 

are sentence-level units that represent states of a di-

alogue, such as questions, statements, hesitations, 

etc. However, classification of dialogue acts differs 

from CPS classification (Erkens and Janssen, 2008). 

Whereas dialogue act coding is based on the prag-

matic, linguistic features, close to utterance form, 

the coding of collaborative activities is based on the 

theoretical interpretation of the content of the utter-

ances – the aim and function of the utterances in the 

collaboration process. For example, from the DA 

perspective, “Look at the map” and “Wait for me” 

are simply directives. From CPS perspective, the 

former may be considered “Sharing of ideas/re-

sources”, the latter – a “Regulating” expression.  

Research in the field of collaboration analysis has 

not settled yet on a single CPS annotation scheme. 

Hmelo-Silver and Barrows (2008) provide a schema 

for characterizing collaborative knowledge building 

for medical students working with an expert facili-

tator, thus focusing on facilitation aspects. Higgins 

et al. (2012) present a coding scheme that is focused 

on the types of interactions between participants 

(negotiation, elaboration, independence, etc.). 

Asterhan and Schwarz (2009) describe dual CPS 

coding of discussion protocols. Kersey et al. (2009) 

focus on knowledge co-construction in peer interac-

tions. Mercier et al. (2014) describe a coding 

scheme that focuses on leadership skills in CPS. Lu 

et al. (2011) describe a coding scheme of discourse 

moves in online discussions. Weinberger and 

Fischer (2006) provide a multi-dimensional coding 

scheme for argumentative knowledge construction 

in computer-supported collaborative learning. 

4.1 The CPS Framework 

The CPS classification schema used in the pre-

sent work was developed based on review of com-

puter-supported collaborative learning (CSCL) re-

search findings (Barron, 2003; Dillenbourg and 

Traum, 2006; Griffin et al., 2012; von Davier and 

Halpin, 2013) and the PISA 2015 Collaborative 

Problem Solving Framework (OECD, 2013). Our 

schema (Liu et al., 2015) is comprised of 33 CPS 

skills grouped into four major dimensions. The full 

listing is presented in Table 1. The four dimensions 

are: sharing ideas, negotiating, regulating problem-

solving activities, and maintaining communication. 

The first dimension – sharing ideas – considers how 

individuals bring divergent ideas into a collabora-

tive conversation. For instance, participants may 

share their individual responses to assessment items 

and/or point out relevant resources that might help 

resolve a problem. The second dimension – negoti-

ating ideas – is to capture evidence of the team’s 

collaborative knowledge building and construction 

through negotiating with each other. The categories 

under this dimension include agreement/disagree-

ment with each other, requesting clarification, elab-

orating/rephrasing other’s ideas, identifying gaps, 

revising one’s own idea. The third dimension – reg-

ulating problem-solving activities – focuses on the 

collaborative regulation aspect of the team dis-

course. This dimension includes such categories as 

identifying goals, evaluating teamwork, and check-

ing understanding. The last dimension – maintain-

ing a positive communication atmosphere – is to 

capture social communications beyond the task-spe-

cific interactions. 

4.2 Human coding of CPS classes 

Two human annotators were trained to annotate the 

chats. Training involved overview of definitions 

and coding examples for each of the 33 categories 

of CPS skills. After training, annotators inde-

pendently coded discourse data from the chat proto-

cols. Seventy seven sessions out of 482 (16%) were 

coded by both annotators, all other sessions were 

coded by the same single annotator (H1). 

The unit of analysis was each turn of a conversa-

tion, i.e. each turn received a label drawn from the 

33 categories. Due to complexity of the collabora-

tive process, one turn of chat may have more than 

one function that can be mapped in the CPS frame-

work. Therefore, an annotator was allowed to assign 

up to two labels to each turn. A primary label re-

flects what the annotator considered as the major 

function in a given turn, and a secondary label re-

flects an additional, less central function.  

Table 2 presents a sample of this annotation. The 

first column marks speaker-ID,  the  second column 
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CPS skills Student performance (categories) 

Sharing ideas 1. Student gives task-relevant information (e.g., individual response) to the teammate. 

2. Student points out a resource to retrieve task-relevant information. 

3. Student responds to the teammate's request for task-relevant information. 

Negotiating ideas 4. Student expresses agreement with the teammates. 

5. Student expresses disagreement with teammates. 

6. Student expresses uncertainty of agree or disagree. 

7. Student asks the teammate to repeat a statement. 

8. Student asks the teammate to clarify a statement. 

9. Student rephrases/complete the teammate's statement. 

10. Student identifies a conflict in his or her own idea and the teammate's idea. 

11. Student uses relevant evidence to point out some gap in the teammate's statement. 

12. Student elaborates on his or her own statement. 

13. Student changes his or her own idea after listening to the teammate's reasoning 

Regulating 

problem solving 

14. Student identifies the goal of the conversation. 

15. Student suggests the next step for the group to take. 

16. Student expresses confusion/frustration or lack of understanding. 

17. Student expresses progress in understanding. 

18. Student reflects on what the group did. 

19. Student expresses what is missing in the teamwork to solve the problem. 

20. Student checks on understanding. 

21. Student evaluates whether certain group contribution is useful or not for the 

problem solving. 

22. Student shows satisfaction with the group performance. 

23. Student points out some gap in a group decision. 

24. Student identifies a problem in problem solving. 

Maintaining 

communication 

25. Student responds to the teammate's question (using texts and text symbols). 

26. Student manages to make the conversation alive (using texts and text symbols, 

using socially appropriate language).  

27. Student waits for the teammate to finish his/her statement before taking turns. 

28. Student uses socially appropriate language (e.g., greeting). 

29. Student offers help. 

30. Student apologizes for unintentional interruption. 

31. Student rejects the teammate's suggestions without an accountable reason. 

32. Student inputs something that does not make sense. 

33. Student shows understanding of the teammate's frustration. 

 
Table 1: CPS Framework coding rubric of collaborative problem solving interactions skills 

 

 

presents the chat text. The fourth column presents 

the primary classification code assigned by annota-

tor H1. The third column indicates the general di-

mension for primary label. The fifth column shows 

the secondary labels given by annotator H1. For ex-

ample, in the last row of the table, note that the re-

sponse of participant s8 is classified as primary=cat-

egory#11 (point out a gap in statement) and second-

ary=category#2 (suggest information resource). 

As the annotation focused on marking only the 

most prominent CPS functions, a secondary label 

was used only if the annotator considered that the 

additional function was prominent enough. Our first 

annotator assigned a secondary tag (in addition to a 

primary tag) to 13,404 chat-turns (34% of all cases), 

while the second annotator used a secondary tag in 

only 33 cases. Thus, we disregard the secondary tag 

of  the  second  annotator  and  compute  inter-rater  
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ID Chat text Dimension P S 

s1 hi there i’m george! maintaining  

communication 
28  

s2 good morning,  

I'm j 

maintaining  

communication 
28  

s1 i think the answer 

is b 
sharing ideas 1  

s2 magma approach-

ing crater? 
sharing ideas 1 20 

s1 i remember the 

video saying high 

frequency waves 

resulted from rocks 

cracking 

sharing ideas 2 12 

s2 i just reviewed it 

and you are correct 
negotiating ideas 12 4 

s2 c sharing ideas 1  

s1 i chose c as well sharing ideas 1  

(some turns omitted here) 

s2 ? regulating 16  

s1 we can keep the 

first two notes we 

seemed to have 

similar answers 

regulating 15  

Example from another session: 

s9 I thought it started 

low? 
sharing ideas 1  

s8 nope you can look 

at the volcanic seis-

mic events in the 

bottom left corner 

negotiating ideas 11 2 

Table 2: Sample excerpts from some chat sessions,  

with CPS classifications by annotator H1. P=primary label, 

S-secondary label. Labels are explained in Table 1. 
 

agreement as follows. The 77 sessions that were 

processed by both annotators had 6,079 turns. Over 

those turns, the two annotators agreed in their pri-

mary tags in 3,818 cases (62.8% agreement, Co-

hen’s kappa 0.56). We also considered a different 

criterion, when second annotator’s primary tag 

agreed with either primary or secondary tag given 

by the first annotator. In this approach, agreement is 

72%s and Cohen’s kappa is 0.62. According to Lan-

dis and Koch (1977) scale, those levels of agree-

ment are somewhere between moderate (kappa 

0.41-0.61) and substantial (kappa 0.61-0.80). 

Figure 3 presents the distribution of primary and 

secondary CPS labels assigned by annotator H1 to 

the whole set of 38,703 turns. The distribution is 

very uneven. Two categories were never used (#26 

and #27). 

 

Figure 3. Histogram of primary and secondary CPS labels 

assigned by annotator H1 for the set of 38,703 chat turns. 
 

It is not uncommon to see uneven distribution of 

categories in collaborative discourse (Chin and Os-

borne, 2010; Schellens and Valcke, 2005; Lipponen 

et al. 2003). Given that the task prompted students 

to share individual responses, it is also not surpris-

ing to see categories #1 (give info to partner) and #4 

(expresses agreement) as the most frequent codes. 

Social factors may also be at play. For instance, peo-

ple often tend to be polite and respectful and express 

disagreement indirectly. Instead of saying “no, I dis-

agree”, very likely a person would say “my answer 

is …” or “I think it’s … because”, and such re-

sponses are not coded as expressed disagreement, 

but rather as sharing or negotiating. This may ex-

plain why explicit agreements are five times more 

frequent than explicit disagreements in our data, the 

latter also mostly coded as secondary label. 

5 Automation of CPS classification 

Analysis of protocols and logs of communication is 

an important research technique for investigating 

collaborative processes. Since such analysis is very 
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time consuming, researchers have turned to auto-

mating such analyses by utilizing computational lin-

guistic methods. Discourse Processing is a well-es-

tablished area in computational linguistics, and 

there is much research on automatically recognizing 

and tagging dialogue acts, for spoken or transcribed 

data (Webb & Liu, 2008; Webb et al., 2005; Serafin 

& Di Eugenio, 2004; Stolcke et al., 2000; Samuel et 

al., 1999). De Felice and Deane (2012) describe 

identifying speech acts in e-mails, as part of a scor-

ing system for educational assessment. Similarly, 

researchers have developed computational linguis-

tic approaches in analysis of collaboration proto-

cols. Law et al. (2007) presented a mixed system, 

where manual coding is augmented with automated 

suggestions, derived from keyword and phrase 

matching. Erkens and Janssen (2008) describe a 

rule-based approach for automatic coding of dia-

logue acts in collaboration protocols. Erkens and 

Janssen have also stressed the difference between 

dialogue acts, which are closer to the linguistic form 

of interaction, and classes of collaborative utter-

ances, which are more context specific and depend 

on respective theoretical frameworks of collabora-

tion processes. Rosé et al. (2008) and Dönmez et al. 

(2005) describe a machine learning approach to 

code collaboration protocols according to the clas-

sification system of Weinberger and Fischer (2006). 

Here we describe machine learning experiments 

towards automated coding of collaboration proto-

cols according to the novel CPS framework. In our 

experiments we attempt to learn directly the 31 cat-

egories of the 33 defined in the framework. We 

chose a multinomial Naive-Bayes and HMM ap-

proaches, as starting points to explore assigning 

CPS tags to chat-turns in our data.  

As a pre-processing step, all texts were automat-

ically spell-corrected using a contextually-aware 

spell checker (Flor, 2012). Slang words and expres-

sions were normalized (e.g. {ya, yea, yeah, yiss, 

yisss, yep, yay, yaaaay, yupp} → yes), using a dic-

tionary of slang terms (this functionality is provided 

in the spell-checker). All texts were then tokenized 

and converted to lower case.  

Following the manual annotation, our goal is to 

provide a single class-label to each chat turn, which 

may consist of one or more sentences. All machine 

learning experiments reported here use five-fold 

cross-validation with 4:1 train:test ratio. For this 

purpose the 482 collaboration sessions (described in 

section 3) were partitioned (once) into five groups: 

two groups of 97 sessions and three groups of 96 

sessions each). This also resulted in unequal (but ap-

proximately similar) amount of turns in each fold 

(7541 turns in the smallest fold, 8032 in the largest).  

Experiment 1. In our first experiment we train a 

Naive-Bayes classifier on just the primary labels 

from human annotator H1. We do not filter features, 

but rather use all available tokens. We use lexical 

features (word and punctuation tokens) in several 

configurations – unigrams, bigrams and trigrams. 

Performance results (micro-averaged across test-

folds) are shown in Table 3. As a baseline, we al-

ways predict the most frequent category (CPS cate-

gory#1), an approach that achieves 24.9% accuracy. 

The best result, 59.2% classification accuracy, is 

achieved by using just unigram features (single 

words and punctuation tokens). It clearly outper-

forms the baseline by a large margin. Bigrams and 

trigrams are not useful, their use actually decreases 

classification accuracy, as compared to using just 

unigrams. 

We also experimented with ignoring the punctu-

ation. A Naïve-Bayes classifier trained on lexical 

unigrams, but without punctuation, achieves accu-

racy of 55.5%. This is lower than the 59.2% 

achieved when punctuation is used. It demonstrates 

that punctuation is clearly useful for classification, 

which is consistent with similar results in a different 

domain (De Felice and Deane, 2012). 

Experiment 2. Since collaborative interactions 

in the Volcano task are clearly dialogic, it is reason-

able to expect that a CPS label for a given chat-turn 

may probabilistically depend on the labels of previ-

ous turns (as is often the case for dialogue-acts, e.g. 

Stolcke et al., 2000). Thus, we explore the use of 

Hidden Markov Model (HMM) classifier in this 

case (following the approach of Stolcke et al., 

2000). We explored a range of parameter settings, 

using n-best labels from 4 to 7 (for a single chat-

turn) and look-back history of one or two turns. 

Looking back is restricted because the dialogue is 

usually localized, just a few turns focusing on the 

specific subtask that participants were working on. 

Results are presented in Table 3. HMM modeling is 

clearly not effective in this task, as its results are 

much lower than those from a Naïve-Bayes classi-

fier. Notably, this result is not without precedent. 

Serafin & Di Eugenio (2004), working on dialogue 
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act modeling, found that using dialogue history 

worsens rather than improves performance. 

A per-CPS-category performance comparison 

was conducted between the Naïve-Bayes unigrams-

based classifier and the HMM classifier (with n-

best=4, lookback=1). The HMM classifier performs 

worse than NB classifier on all categories, except 

CPS category #4 (student expresses agreement with 

the teammates), where HMM is better than NB by 

7.34%. This suggests that selective integration of 

contextual information might be useful. 

 

Method Acc.% Kappa 

Baseline (most frequent class) 24.9 0.01 

Experiment 1 

NB with lexical unigrams 59.2 0.52 

NB with unigrams+bigrams 58.5 0.51 

NB with 1-,2- & 3-grams 58.2 0.51 

NB, unigrams, no punctuation 55.6 0.48 

Experiment 2 

HMM, n-best=4, lookback=1 52.5 0.42 

HMM, n-best=7, lookback=1 48.1 0.36 

HMM, n-best=4, lookback=2 46.4 0.34 

HMM, n-best=7, lookback=2 41.7 0.28 

Experiment 3 

NB on CPS data, with probabilis-

tic dialog-act tagging trained on 

out-of-domain data 

44.6 0.30 

Same as above,  

+lexical unigrams from CPS data 
60.3 0.54 

Table 3: Evaluation results (accuracy and Cohen’s kappa) 

for machine learning classification experiments with 31 CPS 

Framework tag categories. All results were micro-averaged 

from five cross-validation test folds (N=38,703 chat turns). 

NB=Naïve-Bayes, HMM=Hidden Markov Model. 
 

Experiment 3. In this experiment we investi-

gated whether automatic dialogue-act detection, 

trained on out-of-domain data, can be beneficial for 

CPS classification. Webb & Liu (2008) have 

demonstrated that using out-of-domain data can 

contribute to more robust classification of speech 

acts for in-domain data. Here, we extend this idea 

even further – use out-of-domain training data and 

a different classification schema. 

In a separate study, we developed an automated 

speech-act classifier using the ICSI Meeting Re-

corder Dialogue Act (MRDA) corpus (Shriberg et 

al., 2004). The dialogue act of each sentence was 

annotated using MRDA annotation scheme devel-

oped for multiparty natural human-human dialogue. 

It defined a set of primitive communicative actions. 

In total, it includes 50 tags: 11 general tags and 39 

specific tags. General tags include speech act types 

such as statements and yes/no questions and also 

make distinctions among syntactically different 

forms. Specific tags describe the purpose of the ut-

terance, e.g., whether the speaker is making a sug-

gestion or responding positively to a question. 

The automated speech-act classifier was trained 

using a set of linguistic features described in Webb 

and Liu (2008), including sentence length, sentence 

initial and final word/POS n-grams, and pres-

ence/absence of cue phrases. A Maximum Entropy 

model-based classifier was trained on randomly se-

lected 40 meetings and tested on the remained 24 

meetings. The kappa between the system and human 

annotator was 0.71 for general tag and 0.61 for spe-

cific tag. The inter-rater agreement based on the 

subset of data was 0.80 for general tag and 0.71 for 

specific tag. 

Notably, the MRDA data – conversations among 

computer scientists – is different from our CPS data, 

and the tag-set of dialogue acts is different from the 

CPS Framework tag-set. For our experiment, we 

used the out-of-domain-trained speech-act classifier 

to process CPS chat data and recorded the predicted 

probabilities of each speech act. Since CPS data was 

not annotated for speech acts, we do not know how 

accurate that classifier is. We just took the assigned 

speech-act tags and used them as probabilistic fea-

tures in training our Naïve-Bayes CPS classifier, as 

follows. In training a standard Naïve-Bayes text 

classifier, each token (e.g. word) is a feature and its 

basic weight (count) is 1. Thus, the standard ap-

proach is to maximize:  

 
 

iargmaxlog( ( )) log P(w |C)
c i

P C    

We use the predicted speech-act tags as special 

features, and their probabilities as feature weights, 

using the following formula: 

 

 i iargmaxlog( ( )) log P(f ) P(f |C)
c i

P C    

where P(fi) is the probability of speech act fi in the 

current chat-turn and P(fi|C) is the conditional prob-

ability of speech act fi given a specific CPS tag (this 

part is learned in the training). 
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A Naïve-Bayes CPS classifier, trained with prob-

abilistic speech-act features, achieves accuracy of 

44.6% in assigning CPS tags, which is substantially 

better than our baseline of 24.9%. We then trained a 

Naïve-Bayes classifier that integrates both lexical 

features (unigrams) from CPS training data and 

probabilistic speech-act features, using the formula: 

 

 j i iargmaxlog( ( )) log P(w |C)+ log P(f ) P(f |C)
c j i

P C   

where wj are lexical features (tokens). This ap-

proach makes the additional naïve assumption that 

speech acts as features are independent of the 

words. This classifier achieves 60.3% accuracy in 

CPS classification, 1% more than lexical-unigrams 

Naïve-Bayes (significant difference, p<0.000001, 

McNemar’s test for correlated proportions). 

We conducted additional investigations, to look 

how the classifiers perform for each individual CPS 

category. Table 4 presents the accuracy of the Na-

ïve-Bayes unigram-based classifier on each CPS 

category. One obvious conclusion is that the larger 

is the count of a given category, the higher is the 

classifier accuracy. In fact, the Pearson correlation 

between tag count and accuracy is 0.701. While this 

might be expected, there are also some examples 

that do not follow this trend. The classifier achieves 

only 9.76% accuracy on label #12 (student elabo-

rates on own statement), although it is a rather fre-

quent category. A possible reason for this might be 

that elaboration statements are highly heterogene-

ous in form and lexical content, their status as ‘elab-

orations’ requires some abstraction and semantic in-

ference. Another example is label #3 (student re-

sponds to the teammate's request for task-relevant 

information), with only 2.31% classification accu-

racy. This looks like one of the cases that could ben-

efit from considering content from previous chat-

turns, although not always from the immediately 

preceding turn. 

Detailed analysis of classifier performance on 

each CPS category provides some interesting find-

ings. In experiment 3 we have found that adding 

probabilistic dialogue act detection as features to a 

lexical Naïve-Bayes classifier improves overall ac-

curacy by just 1%. However, a detailed view reveals 

additional information (see last column in Table 4). 

For some CPS categories, adding dialogue acts con-

siderably improves classifier accuracy: 8% for cat-

egory #20 and 10% for category #22. This is not un-

expected – CPS category #20 (student checks on un-

derstanding) directly corresponds to dialogue-act 

category ‘understanding-Check’. Another case is 

CPS category #17 (student expresses progress in un-

derstanding), which corresponds rather directly to 

dialogue-act “acknowledgement”. For several other 

CPS categories, detection of dialogue-acts was not 

helpful for CPS classification. In future work, we 

will consider how to use dialogue-act detection se-

lectively in CPS classification. 

While the results from our experiments are en-

couraging, higher levels of accuracy are needed for 

 
CPS 

tag 

Total 

Count 

Accuracy 

NB 

Accuracy 

NB DA 
Change 

1 9628 66.99 67.60 0.61 

4 7736 83.85 82.38 -1.47 

28 5119 67.49 66.52 -0.98 

20 4136 59.99 68.01 8.03 

16 1704 44.72 46.19 1.47 

12 1260 9.76 11.43 1.67 

21 1189 44.66 45.33 0.67 

22 1169 49.44 59.54 10.09 

15 1021 44.27 44.47 0.20 

24 768 50.39 51.30 0.91 

3 735 2.31 2.31 0.00 

32 512 60.55 58.98 -1.56 

18 506 29.05 28.46 -0.59 

10 498 6.83 7.43 0.60 

19 435 54.02 54.71 0.69 

13 408 30.39 29.41 -0.98 

9 359 11.98 12.81 0.84 

11 333 16.52 17.12 0.60 

2 261 45.21 42.53 -2.68 

17 252 19.05 25.40 6.35 

25 228 11.84 7.46 -4.39 

6 115 13.91 13.04 -0.87 

5 66 1.52 6.06 4.55 

30 65 16.92 23.08 6.15 

14 57 10.53 7.02 -3.51 

29 46 8.70 4.35 -4.35 

8 41 7.32 0.00 -7.32 

33 26 0.00 0.00 0.00 

23 16 0.00 0.00 0.00 

31 11 0.00 0.00 0.00 

7 3 0.00 0.00 0.00 

Table 4: CPS categories, with counts (primary label by an-

notator H1), and average automated classification accuracy. 

(NB)=Naïve-Bayes with unigram features, (NB DA)= Na-

ïve-Bayes with unigram features and Dialogue Act features.  
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using automated CPS classifiers in operational set-

tings. Beigman-Klebanov and Beigman (2014) and 

Jamison and Gurevych (2015) have suggested that, 

in supervised machine learning, the presence of dif-

ficult items in the training sets is detrimental to 

learning performance and that performance can be 

improved if systems are trained on only easy data. 

They define ‘easy’ as less controversial in human 

annotations. We explore this aspect using the Naïve-

Bayes classifier with unigram lexical features.  

Experiment 4. Our annotator H1 used secondary 

labels when a chat-turn had two prominent func-

tions (rather than just one). Such cases can be con-

sidered ambiguous and more difficult than cases 

that have only one prominent CPS function. In this 

experiment we filtered such cases out (reduction of 

about 34%, to N=25,299), from either training, test-

ing or both. Results are shown in Table 5.  

Experiment 5. Here we consider as ‘easy’ only 

those 3,818 cases where two human annotators 

agreed on the primary label. We train a new set of 

classifiers, using the same five-fold cross-validation 

splits, but filter out from training all cases that lack 

explicit consensus. Micro-averaged performance 

for this type of classifier is compared to the classi-

fier that used unfiltered training data. Results are 

presented in Table 6. 

 

 
  Testing 

 
 

Unfiltered 

data 

Cases without 

secondary tag 

T
ra

in
in

g
 Unfiltered 

data 

59.2% 

k=0.52 

69.0% 

k=0.62 

Cases without 

secondary tag 

57.8% 

k=0.49 

70.9% 

k=0.63 

Table 5: Classifier accuracy when trained and tested 

with/without cases that have secondary CPS labels.  
 

  Testing 

 
 

Unfiltered 

data 

Consensus 

cases 

T
ra

in
in

g
 Unfiltered 

data 

59.2% 

k=0.52 

73.1% 

k=0.67 

Consensus 

cases 

55.3% 

k=0.46 

74.4% 

k=0.68 

Table 6: Classifier accuracy when trained and tested  

with all or just human-rater-consensus cases. 
 

In both experiments 4 and 5 we see that when a 

classifier is trained on ‘easy’ data and tested on all 

data, performance degrades (relative to a classifier 

that was trained on all data), but degradation is very 

moderate. In experiment 4, training data was re-

duced by 30%, but degradation of accuracy was just 

1.4%. In experiment 5 training data was reduced by 

90%, but degradation of accuracy was just 3.9%. On 

the other hand, when tested on only easy data, clas-

sifiers that were trained on easy data outperform the 

classifiers that were trained on unfiltered data, but 

only by a very small margin (1-2%). 

6 Conclusions 

In this paper we presented a novel task that inte-

grates collaborative problem solving behavior with 

testing in a science domain. For integration in edu-

cational assessment, the task would benefit from au-

tomated scoring of CPS discourse. We used a com-

plex CPS coding scheme with four major dimen-

sions and 33 classes. In our initial exploration, we 

sought to obtain a single CPS category-label for 

each turn in chat dialogues. Our results indicate that 

considerable accuracy (59.2%) can be achieved by 

using a simple Naïve-Bayes classifier with unigram 

lexical features. This result approaches human inter-

rater agreement (62.8%).  

For future research we consider pursuing several 

complementary lines of work. One direction is to 

use more sophisticated machine-learning ap-

proaches, such as CRF and SVM, and additional 

features, such as part-of-speech tags and timing of 

chat turns. Another direction is to explore the rea-

sons for disagreement in human annotations. Given 

the complex nature of collaborative discourse, it is 

usual that some discourse turns carry more than one 

function mapped in the CPS framework. Thus, an-

other line of exploration is to train a system to de-

cide in which cases it may suggest more than one 

tag to a given chat turn, i.e. consider multi-label 

classification of CPS data. Finally, it might be fruit-

ful to provide a bridge between the high-level func-

tionally-defined CPS categories and more linguisti-

cally-oriented dialogue acts. We have shown that 

using a Dialogue Acts classifier, trained on out-of-

domain data, can be useful for classifying CPS 

skills. We will explore whether an explicit mapping 

between dialogue acts and CPS categories may con-

tribute to better CPS classifications. 
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Abstract

We investigate how users of intelligent writing
assistance tools deal with correct, incorrect,
and incomplete feedback. To this end, we con-
duct an empirical user study around an L1 text
revision task for German. Our participants
should revise stylistic issues in two given texts
using a novel web-based writing environment
that highlights potential issues and provides
corresponding feedback messages. In com-
parison to a control group, we find that preci-
sion plays a more important role than recall,
which confirms previous findings for other
languages, issue types, user groups, and ex-
perimental setups.

1 Motivation

The importance of well-written texts is striking. Re-
search stalls if scientists cannot understand a paper.
Technical systems are hardly usable if their docu-
mentation is miserable. Job applications may fail
due to the use of inadequate registers in a résumé
or cover letter. News articles seem carelessly re-
searched if they are full of spelling errors. Even for
apparently informal text types, such as microblog
posts, authors have to think about a suitable formu-
lation to convey their message in an adequate way to
the desired target audience.

To improve a text, authors typically rely on man-
ually provided feedback from friends, colleagues, or
professionals as well as on automatically generated
feedback from word processors. Since automatic
feedback is much less time-consuming and repeat-
edly available with practically no waiting time, this
solution is very attractive.

However, the natural language processing meth-
ods generating this kind of feedback are still prone
to many errors. Although human feedback might be
erroneous as well, automatic methods yet perform
significantly worse. The best submission to the 2014
CoNLL shared task on grammatical error correction
(Ng et al., 2014) reaches, for example, only 73 %
of the average human performance (Bryant and Ng,
2015). A particular issue with automatic feedback is
that answers might be embarrassingly wrong (e.g.,
WATSON considering Toronto a U. S. city during the
Jeopardy! challenge).

In this paper, we investigate the effects of giving
noisy (i.e., partly incorrect) and incomplete feed-
back on an L1 text revision task. To this end,
we conduct a pilot user study with German native
speakers, in which we ask them to revise two texts
containing a number of stylistic issues. While one
group receives feedback about the potential issues,
including correct, incorrect, and incomplete feed-
back, the second group serves as a control group,
who revises the texts without any technological help.

Researching how humans deal with the outputs
of language processing tools and specifically with
automatically generated feedback is long overdue.
Though our community achieves much progress in
improving the performance on annotated gold stan-
dards, we still have limited knowledge about the use-
fulness of the underlying methods and techniques in
a practical setting. We expect that our study makes
an important contribution in this direction. From
the results of our and similar studies, we envision
truly intelligent tools that assist writers in their work,
rather than forcing them to click repeatedly on “ig-
nore this issue”.

42



2 State of the Art

There is a vast amount of scientific literature on in-
telligent writing assistance and automatic text cor-
rection methods in natural language processing and
especially computer-assisted language learning. To
evaluate such methods, we can distinguish data-
driven and user-driven approaches discussed below.

2.1 Data-driven Evaluation

The most widely accepted evaluation methodology
in this area is an intrinsic setup to compare a sys-
tem’s output with annotated reference data. For au-
tomatically identifying language-related issues and
generating corresponding corrections, the Helping
Our Own shared tasks (Dale and Kilgarriff, 2010;
2011; Dale et al., 2012) constituted a community
around this type of system evaluation, which has
successfully continued at the CoNLL conferences
(Ng et al., 2013; 2014) and very recently at the BEA
workshop (Daudaravicius, 2015). These initiatives
are completed by numerous independent evaluation
studies, such as the ones by Park and Levy (2011) or
Perin et al. (2012) to name just two examples.

Major challenges to this evaluation methodology
are: achieving a meaningful comparison of multi-
ple systems, properly interpreting the performance
metrics, and ensuring the reliability of the reference
data. Chodorow et al. (2012) discuss the compa-
rability of grammatical error detection systems and
give recommendations for best practices. Bryant
and Ng (2015) pose the highly important question of
what is considered high-quality error detection with
regard to human performance. Obviously, the qual-
ity of the reference data directly affects the evalua-
tion scores. Systems are penalized for detecting an
actual error that remained unseen by the human an-
notators or suggesting a valid correction not covered
by the gold standard. Inter-rater agreement mea-
sures (Artstein and Poesio, 2008) provide a useful
tool to assess the reliability, but as Ng et al. (2014,
p. 12) note, metrics such as the kappa coefficient
do “not take into account the fact that there is often
more than one valid way to correct a sentence”.

We believe that data-driven evaluation of intelli-
gent writing assistance systems is vital, but given
these issues, we suggest that they should be com-
plemented by user-driven evaluation studies.

2.2 User-driven Evaluation

The user-driven evaluation of different types of lan-
guage feedback has been a major research topic in
writing and language learning research, before most
automatic writing assistance systems evolved. Ja-
cobs (1989), Owston et al. (1992), and Jacobs et al.
(1998) are early works in this direction discussing
feedback by teachers and peers, based on different
educational resources, and using different media.

More recently, the effects of giving automatically
generated feedback became an important research
question. Attali (2004) report a large-scale study of
the Criterion system (Burstein et al., 2003). He au-
tomatically scores essays before and after providing
automated feedback and notes an overall improve-
ment of the writing quality when providing feed-
back. The study does, however, not vary the type of
feedback in any way. Andersen et al. (2013) distin-
guish feedback at the text, sentence, and word levels
and evaluate different granularities with a question-
naire. Heift and Rimrott (2008) study different ways
of formulating feedback messages for spelling er-
rors and find solution suggestions yielding improved
results. In a similar line of research, Lavolette et
al. (2015) compare immediate and delayed feedback
and find that students more likely responded to cor-
rect feedback. Madnani et al. (2015) vary the extent
of feedback messages about English preposition er-
rors using a crowdsourcing setup. Regardless of the
extent of the feedback messages, they find a learn-
ing effect in detecting errors over multiple writing
sessions. But only participants who received correct
and detailed feedback were able to fix more errors.
They, however, note limitations of their study setup
due to the unclear distribution of preposition errors
and language proficiency of the crowdsourcing pop-
ulation. None of these works systematically varies
correct, incorrect, and incomplete feedback.

The work by Nagata and Nakatani (2010) is most
closely related to ours. They ask 26 language learn-
ers to write a number of essays and revise them un-
der four experimental conditions: without any tech-
nological assistance, with recall-oriented automatic
feedback, with precision-oriented automatic feed-
back, and with human feedback. They focus on two
types of grammatical errors and find the precision-
oriented feedback to maximize the learning effect of
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the participants. Their work differs from the present
paper in multiple ways: First, we consider a revision
task of an unknown text instead of a self-written es-
say, which allows us to control for the number and
distribution of errors over all participants. With this
setup, we get in a position to compare the users’ re-
visions systematically. Second, we consider Ger-
man native speakers rather than English learners.
Since most previous work is focused on English
learners, we believe that addressing native speakers
and other languages is an important research gap.
Third, we consider stylistic rather than grammatical
issues, which has not been extensively discussed be-
fore. Fourth, we are interested in the usefulness of
intelligent writing assistance systems for improving
the text quality rather than the learning effect of the
users. Still, we are eager to compare our findings
with the previous work and discuss this in section 7.

3 Goals and Hypotheses

The motivation for developing intelligent writing as-
sistance systems is that authors get in a position to
compose texts of higher quality, ideally with less ef-
fort, time, or need for manual feedback. Incomplete
and noisy feedback could, however, severely hamper
this goal and yield lower quality or higher effort.

To operationalize these thoughts, we simulate
an intelligent writing environment that highlights
stylistic issues in a text and provides brief feedback
messages explaining them. We have the following
four hypotheses about the usage of such a system
for a text revision task:

1. If users receive correct feedback about a stylis-
tic issue, they will more likely revise the corre-
sponding part of a text than users, who do not
receive any feedback.

2. If users receive incorrect feedback about a
stylistic issue, they will more likely revise
the corresponding part of a text, although this
would not be necessary.

3. If users receive incomplete feedback about
stylistic issues, they will more likely miss is-
sues, for which they do not receive feedback.

4. The time required for revising the text will not
significantly differ between the users of a sys-
tem with and without technological assistance.

The rationale behind the first hypothesis is that the
highlighted text parts direct a user’s attention to the
stylistic issue. We thus expect a significantly higher
number of revised stylistic issues that have been
highlighted to the users.

The second hypothesis follows the same motiva-
tion as the first one: The users’ attention is directed
to the highlighted text positions. We believe that a
user will more likely revise these highlighted text
parts even if this would not be necessary. This would
mean that users overtrust the system, even if they are
aware of potential errors in the provided feedback.
We therefore expect a significantly higher number of
revised text positions that do not contain a stylistic
issue, but that are highlighted as such.

A different type of overtrust is that users receiving
automated feedback will more likely miss issues of
similar types if they are not highlighted. We thus
believe that the provided feedback causes a shift of
focus from the actual revision task to the processing
of the highlighted text parts. In this case, we would
observe a significantly lower number of unmarked
revised stylistic issues if other parts of the text are
highlighted and associated with feedback messages.

The fourth hypothesis considers the time required
for the revision task. We expect that users receiving
feedback and users not receiving feedback will take
equally long and therefore no significant difference
in the time to complete the task. This would mean
that an intelligent writing assistant neither increases
nor decreases the required revision time.

4 Experimental Design

To test our hypotheses, we conduct an empirical user
study, in which we ask our participants to enhance
the quality of two given texts. We employ a 2×2
mixed factorial design. That is, we divide the par-
ticipants into an experimental and a control group
(between-subject variable) and provide them with
texts of two different text types (within-subject vari-
able). While the control group does not receive any
assistance, the experimental group receives correct,
incorrect, and incomplete feedback about stylistic is-
sues in the texts. Below, we first introduce the tex-
tual data and the types of issues we consider, before
we describe the participants and the overall setup of
the study.
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4.1 Data
For our experiment, we require texts with a prede-
fined set of stylistic issues. Error-annotated learner
texts seem an obvious choice. However, we need
texts with multiple similar issues in order to system-
atically compare how users deal with the different
types of feedback. Therefore, we turn towards ex-
isting high-quality texts and manually introduce a
number of similar stylistic issues instead of using
pre-annotated (learner) texts.

We select two different text types. The first text T1

is an excerpt of the news article “Die Zaubertafel”
(Engl.: “the magical board”) about the presentation
of the first iPad in 2010, published by the major
German newspaper ZEIT online.1 Along the lines
of Christensen et al. (2014), we intentionally use
an old article to minimize side effects caused by
prior knowledge of the participants. As the sec-
ond text T2, we use a part of the encyclopedic ar-
ticle “Eigentliche Pythons” (Engl.: pythons) from
the German Wikipedia.2 Both texts have about 200
words and exhibit a high text quality. At the same
time, both text types also demand for a high qual-
ity. This is relevant to control for the expectations of
the participants, because text types typically show-
ing lower quality (e.g., learner essays, meeting pro-
tocols, personal notes) might not be revised to the
same meticulous degree by all participants.

We manually define eleven positions p ∈ [1, 11]
within the texts as our main subjects of analysis. For
eight of them, we carefully manipulate the original
text to introduce a stylistic issue. The other three
remain unchanged. We restrict our manipulations to
three issue types:

• inappropriate registers (IR), such as using col-
loquial language in an encyclopedic article,

• uncommon collocations (CL), for example
when using “yellow” rather than “blond” in the
context of hair colors, and

• insufficient variation (VA) by repeatedly using
the same lexical and syntactic patterns without
being a rhetorical device.

1http://www.zeit.de/2010/06/01-iPad
(published June 1, 2010; last accessed February 4, 2016)

2https://de.wikipedia.org/w/?oldid=121124960
(published August 2, 2013; last accessed February 4, 2016)

We choose stylistic issues over spelling and gram-
mar errors, since we expect automatic methods to
yield even more false alarms and incorrect sugges-
tions for them than for other issues. We discuss the
manipulated texts with multiple colleagues to ensure
that the introduced issues can, in principal, be recog-
nized and fixed.

In the next step, we simulate the feedback of an
intelligent writing assistance tool. That is, we high-
light the words at a position p with yellow back-
ground color and we generate a message explaining
the issue. Consider for example the IR issue p = 7:

Wie alle Pythonartige sind sie ungiftig und
machen ihrer Beute durch Umschlingen
den Garaus.

The highlighted phrase “machen [. . .] den Garaus”
is considered colloquial speech meaning to mur-
der someone (i.e., to bump someone off). It is our
manipulation of using the verb “töten” (to murder
someone, without any register marking). As indi-
cated by the example, we also allow for discontinu-
ous highlights (i.e., a position p might refer to mul-
tiple non-adjacent words or phrases).

The corresponding feedback message for this is-
sue is the German equivalent of:

The phrase “to bump so. off ” is considered
colloquial speech. Check if this phrase is ap-
propriate in the given context.

To keep the cognitive load as small as possible, we
limit ourselves to brief feedback messages. The
message points out that there might be an issue and
asks the user to check if a reformulation is neces-
sary. The feedback message does not give sugges-
tions of how to resolve the issue, but leaves the final
decision to the user. This is necessary to ensure a
fair comparison with the control group with regard
to our hypotheses (see section 3).

The main motivation for our work is analyzing
how users deal with incomplete and noisy feedback.
This is why, we do not give feedback for all is-
sues. Rather, we distinguish between correctly high-
lighted parts of a text that need revision (TP), incor-
rectly highlighted parts of a text that do not need
revision (FP), and parts of a text that need revision,
but are not highlighted to a user (FN). From a tool
perspective, the text positions of type TP are a cor-
rect system result (i.e., true positives), FP positions
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p Text Issue Manipulated Highlighted Feedback

1 T1 VA X X TP
2 T1 IR X X TP
3 T1 IR X FN
4 T1 CL X X TP
5 T1 VA X FN
6 T1 VA X FP
7 T2 IR X X TP
8 T2 CL X FP
9 T2 IR X FP

10 T2 VA X X TP
11 T2 CL X FN

Table 1: Text positions considered for the user study

are detected by a system but false alarms (false pos-
itives), and FN positions are errors that remain un-
detected by the system (false negatives).

Table 1 gives an overview of the eleven relevant
text positions p. The four TPs, three FPs, and four
FNs are roughly equally distributed over the two
texts and the three issue types considered. The cho-
sen stylistic issue types, their distribution and po-
sition in the text follow practical considerations in-
duced by the underlying texts. That is to say, we
aim at making minimal changes to the texts and keep
their original content and organization intact, which
is necessary to avoid coherence breaks and newly
introduced ambiguity.

4.2 Participants
We record the revision results of 26 participants.
Though finding voluntary users is notoriously dif-
ficult, we aim at reducing the bias caused by a sin-
gle homogeneous user group. This is why, we ask
users from three different contexts: students from
different programs at our university (31 %), PhD-
or Postdoc-level NLP researchers (31 %), and ran-
domly selected volunteers with varying professional
backgrounds (38 %). All participants are German
native speakers, 62 % of them are male, and their
age ranges from 22 to 50 with an average age of
30.2 ± 6.6. Of the 26 responses received, 15 par-
ticipants revised the texts under experimental condi-
tions and 11 were part of the control group.

4.3 Procedure
We randomly assign the participants into the two
groups. Each participant receives a printout with in-

structions, user credentials for the writing environ-
ment, and a usability questionnaire. We first ask the
participants to read the instructions, in which we ex-
plain the text revision task, the two text types, and
our expectations regarding a high text quality. We
ask the users to not change the meaning and organi-
zation of the texts, but to focus on stylistic issues.
Both groups receive the same instruction that the
writing environment might support the revision task
and that this support is not necessarily complete or
correct. No additional help or resources should be
used to complete the task. To avoid any pressure for
the participating students, we made clear that partic-
ipation is on a voluntary basis and does not affect the
grading of any course.

Having read the instructions, the participants ac-
cess our online writing environment described in
section 5 below. The writing environment shows the
two selected texts one after another. We randomly
shuffle their order to avoid effects based on the or-
der of the two texts. Note that hereafter, we always
use the original order (T1 before T2) for our analy-
sis. While participants of the control group can only
use common word processor functions to revise the
texts, participants of the experimental group addi-
tionally see the highlighted text parts and the corre-
sponding feedback messages according to table 1.

For performing the final step of the study, the
participants save their revisions in the online sys-
tem and turn towards the questionnaire printout. We
record some demographic data such as age and gen-
der as well as information about the native tongue
and a self-assessment of German language skills.
The main body of the questionnaire aims at study-
ing the usability of the writing environment in or-
der to control for side effects due to a lack of user-
friendliness. In section 6, we analyze these results.

We finalize the details and the formulations of our
study by conducting a pretest with a student volun-
teer, who is not part of the actual study participants.
Based on this pretest, we clarify the formulations of
the task instructions to avoid misunderstandings.

5 Writing Environment

To conduct our user study, we implement a novel
web-based writing environment as a secondary con-
tribution of this paper. The writing environment
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Figure 1: Screenshot of our writing environment

features common text edit operations and assists its
users by displaying feedback about language-related
issues. Although the highlighted text parts and the
corresponding feedback messages for the stylistic is-
sues considered in this study could also be modeled
as a static webpage, we develop the writing envi-
ronment with a larger goal in mind: to establish an
open research platform for evaluating methods of in-
telligent writing assistance. The tool is available as
open-source software from GitHub.3 Figure 1 shows
a screenshot of the user interface.

The writing environment divides the screen into
two parts: a text editor on the left-hand side and
a panel for displaying feedback on the right-hand
side (about one third of the screen width). The
text editor features common edit operations, such as
cut/copy/paste, cursor navigation, deleting charac-
ters and selections, etc. To draw the user’s attention
to a certain part of the text, the editor may display
words or phrases with a certain background color,

3https://github.com/UKPLab/
naacl-bea2016-writing-study

similar to using a marker pen on paper. Our sys-
tem can properly highlight discontinuous text parts.
For the example “machen [. . .] den Garaus” intro-
duced above, we can highlight the first and the sec-
ond part individually without losing the link to the
same feedback message. This is especially relevant
for German, which is rich in separable verbs (i.e.,
verbs that contain a particle either as a prefix or as
a separate word at the end of the sentence). Upon
clicking on a highlighted text part, the background
color changes to orange, indicating that this issue is
currently in the focus. For discontinuous issues, we
recolor all highlighted parts linked to the issue.

In the feedback panel on the right-hand side of
the screen, the user can choose to view a list of
all feedback messages (tab “Alle Markierungen”)
or only the currently selected ones (tab “Aktuelle
Markierungen”, default setting). Note that in a real
usage scenario, there could be multiple overlapping
issues, which is why the current selection may in-
clude more than a single feedback message. Click-
ing on a feedback message has the same effect as
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clicking on a highlighted text part – the system will
mark both the text part and the feedback message
in orange. When editing a highlighted text part, the
yellow background color will disappear, similar to
the spell-checking functionality of common word
processors. Users may optionally ignore an issue
without editing it. This clears the background color
and moves the feedback message to a separate tab
“Ignorierte Markierungen”, from where it can also
be reactivated in case it was ignored by accident or
saved for later.

A key feature of our writing environment is that
all user–system interactions are recorded and sent to
a server instance, where we can analyze and store
them. Specifically, we can log the keystrokes, the
cursor navigation, and the interaction with the high-
lighted text parts and the feedback messages. Since
each recorded interaction has a timestamp, we get in
a position to determine the time to complete a certain
writing task or phase. The recorded user–system in-
teraction data for the revision task described above
is the data basis for checking our hypotheses.

6 System Usability

To rule out that the measured effects are influenced
by a bad design of the writing environment, we ask
our participants in the experimental group to rate the
system usability.

The System Usability Scale (SUS) introduced by
Brooke (1996) is among the most widely used mea-
sures. The SUS score is based on the user ratings
for ten questions using a five point Likert scale each.
For a given user u, the score is defined as

SUS(u) = 2.5
( ∑
i∈{1,3,5,7,9}

ui +
∑

i∈{2,4,6,8,10}
4− ui

)
where ui = 0 . . . 4 is the user’s rating for question
i. Typically, the individual SUS scores are averaged
over all users.

For our study, we use the German SUS translation
by Lohmann and Schäfer (2013). One user skipped
question 6 (“I thought there was too much inconsis-
tency in this system”) and another user skipped the
questions 6 and 2 (“I found the system unnecessarily
complex”) for which we assume the neutral score 2.

Our system achieves an average SUS score of
76.3. While 100 is the maximum score, 68 is con-
sidered the threshold between poor and acceptable

usability. For scores between 71.4 and 85.5, Bangor
et al. (2009) find the highest correlation with the ad-
jective “good”, which is why we conclude that the
observations made during our study are not affected
by a poor system usability.

7 Results

For checking our four hypotheses, we identify which
participant revised the texts at each of the eleven text
positions p. All native speaker revisions yielded ac-
ceptable texts, which is why we consider a revision
at p on a binary scale. This provides us with a total of
11·26 = 286 data points for our analysis; 165 for the
experimental group and 121 for the control group.
On average, participants of the experimental group
revised xEG = 5.86 (standard error SE = 0.53,
min: 2, max: 10) text positions and participants of
the control group xCG = 3.18 (SE = 0.74, min: 0,
max: 8). Figure 2 (a) shows a notched boxplot of the
total number of revised text positions. In addition to
that, we consider the 26 times (in seconds) to com-
plete the task. To test the hypotheses, we use an un-
paired two sample Student’s t-test and a significance
level of α = 0.05 (i.e., P ≤ 0.05).

7.1 Hypothesis 1: Correct feedback

Our first hypothesis is that participants of the ex-
perimental group will more likely revise text parts
that are highlighted compared to the control group
not receiving any highlights. The corresponding
null hypothesis is that µEG(TP) = µCG(TP), where
µEG(TP) denotes the expected value of the number
of changes at TP positions made by the experimen-
tal group and µCG(TP) the corresponding expected
value for the control group.

The mean number of revisions of TP positions
{1, 2, 4, 7, 10} is xEG(TP) = 4.13 (SE = 0.23)
for the experimental group and xCG(TP) = 1.63
(SE = 0.51) for the control group. All partici-
pants in the experimental group revised at least 2
positions, while there are 4 participants of the con-
trol group who did not revise a single TP position.
Conversely, there are participants of both groups,
who revised all 5 TP positions. Figure 2 (b) shows a
boxplot indicating a higher number of revisions in
the experimental group than in the control group,
whereas the control group shows a higher variance.
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(a) (b) (c) (d) (e)

Figure 2: Notched boxplots (±1.57 IQR√
n

) comparing all revised positions (a), the revisions at TP positions (b), at FP positions (c),

at FN positions (d), and the time to complete the task (e) of the experimental group (EG) and the control group (CG)

The test statistic computes to t1 = 4.85, which is
higher than the critical value 2.06 (P < 0.0001). We
can therefore clearly reject the null hypothesis at the
5 % level in favor of the alternative that highlighting
stylistic issues helps the participants with increasing
the text quality.

7.2 Hypothesis 2: Noisy feedback
Our second hypothesis is that the participants will
more likely revise text positions that are mislabeled
as stylistic issues. In other words, we expect a sig-
nificant difference in the number of times the ex-
perimental group revises the FP positions {6, 8, 9}
compared to the control group. The corresponding
null hypothesis is that µEG(FP) = µCG(FP) where
µEG(FP) denotes the expected value of the number
of changes at FP positions made by the experimen-
tal group and µCG(FP) the corresponding expected
value for the control group.

The mean number of revisions of FP positions
is xEG(FP) = 1 (SE = 0.25) for the experimen-
tal group and xCG(FP) = 0.18 (SE = 0.12 for
the control group. There are participants in both
groups who did not revise any FP position. In the
control group, only two participants revised a single
FP position at all. In the experimental group, four
participants revised a single, another four revised
two, and one participant even revised all three FP
positions, which corroborates our hypothesis. Fig-
ure 2 (c) shows the boxplot for FP positions.

We compute the test statistic t2 = 2.55, which
is higher than the critical value 2.06 (P = 0.017).
We can therefore reject the null hypothesis at the
5 % level and conclude that highlighting false alarms

causes writers to unnecessarily edit their manuscript.
While the results reported so far might be con-

sidered obvious, we note that the group difference
is less clear than expected and much smaller than
the one for the first hypothesis. Since six partici-
pants of the experimental group were able to rec-
ognize and ignore all false alarms, we suggest that
intelligent methods should take the user interaction
into account and control for the internal thresholds
controlling the precision–recall trade-off. That is
to say, users accepting all or most suggestions of
a system, including those with a low confidence,
should receive a higher precision, whereas users
carefully picking out what to revise might be inter-
ested in a higher recall. This goes beyond Nagata
and Nakatani’s (2010) precision-focused suggestion.

7.3 Hypothesis 3: Incomplete feedback
Our third hypothesis is that the participants whose
texts contain highlighted parts will rather not rec-
ognize stylistic issues of a similar type if they are
not highlighted as well. In other words, we ex-
pect a significant difference in the number of times
the participants of either group revise the FN posi-
tions {3, 5, 11}. The corresponding null hypothe-
sis is that µEG(FN) = µCG(FN) where µEG(FN) de-
notes the expected value of the number of changes
at FN positions made by the experimental group and
µCG(FN) the corresponding expected value for the
control group.

The mean number of revisions of FN positions is
xEG(FN) = 0.73 (SE = 0.28) for the experimen-
tal group and xCG(FN) = 1.36 (SE = 0.36) for
the control group. Both groups contain participants,
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who revised either all three FN positions or none of
them. Figure 2 (d) shows the corresponding boxplot.

Although the notches of the boxplot do not over-
lap (indicating a statistical difference), the test statis-
tic is t3 = −1.39, whose absolute value is clearly
lower than the critical value 2.06 (P = 0.17). We
therefore cannot reject the null hypothesis and thus
do not find a significant difference between the two
groups. This means that although we note a ten-
dency for users seeing highlighted text parts to over-
look unmarked issues of the same type, we do not
find a significant difference.

While future studies with a larger number of par-
ticipants may find a significant difference (mind that
we cannot reject the alternative hypothesis based on
our results), we note that false positives seem to be
a more severe problem when giving automatic writ-
ing feedback than false negatives. For the design of
an intelligent writing assistance systems, we there-
fore agree to Nagata and Nakatani (2010) in that
we should particularly focus on precision (i.e., avoid
false alarms) before aiming at an optimized recall.

7.4 Hypothesis 4: Task completion time
Our final hypothesis states that participants of the
experimental group do not take significantly longer
to complete the task than participants of the control
group. We therefore expect that µEG(τ) = µCG(τ)

where µEG(τ) is the expected value of the task com-
pletion time of the experimental group and µCG(τ)

correspondingly of the control group.
The task completion times range from 2 min,

23 sec to 30 min, 59 sec. The majority of partic-
ipants require between 7 and 16 min with a mean
of xEG(τ) = 13 min, 3 sec (SE = 104 sec) for the
experimental group and xCG(τ) = 13 min, 27 sec
(SE = 144 sec) for the control group, which is sur-
prisingly similar. Figure 2 (e) shows again a boxplot.

The test statistic is t4 = −0.14. The absolute
value is clearly lower than the critical value 2.06
(P = 0.89). We therefore cannot reject the null hy-
pothesis and thus do not find a significant difference
between the two groups.

If there is no significant difference in the time that
is required to revise a text with and without auto-
matic feedback, this is good news for building intel-
ligent writing assistance tools, as they do not cause
additional expenditure of time for the writers.

8 Conclusion and Future Work

We conducted an empirical user study to analyze
the effects of assisting writers with incomplete and
noisy feedback when revising a given text. To
this end, we systematically introduced stylistic is-
sues in two texts and asked voluntary participants
to enhance the quality of the texts. An experi-
mental group received technological assistance by
means of highlighted issues and corresponding feed-
back messages. We distinguished between high-
lighted text parts that needed revision (TP), high-
lighted text parts that did not require revision (FP),
and texts parts that required revision without being
highlighted (FN). With this setup, we simulated the
error types of an actual intelligent writing assistance
system. We compared the performance of the ex-
perimental group to a control group, who did not re-
ceive any technological aids.

Our analysis revealed that highlighting stylistic is-
sues helped the participants to improve the quality of
a text. If a text part was highlighted, the participants
more likely revised it, even if the given text was al-
ready correct. In contrast, we found no significant
difference for issues that remained undetected by a
system (i.e., incomplete feedback). We concluded
that the precision of a system plays a more important
role than its recall, as participants tend to overtrust
the system output, even though we made clear that
the given feedback is not necessarily correct.

As a secondary contribution, we describe a novel
writing environment, which we used for our study.
We found a good system usability score for the tool
and did not find a significant difference in the time to
complete the text revision task indicating that neither
the tool nor the feedback hinders the task.

We consider the user-driven evaluation of intel-
ligent writing assistance and automatic text correc-
tion systems as highly important for assessing their
usefulness. Follow-up studies should vary the fre-
quency, order, and distribution of the issues and ex-
periment with different ways of giving feedback.
Based on our study results, we consider adaptive
and interactive methods highly promising for de-
signing and evaluating intelligent writing assistance
tools. Besides writing assistance, future advances
are also relevant for automatic essay scoring tools,
which could allow for a more fine-grained analysis.
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Abstract

The Automated Evaluation of Scientific Writ-
ing, or AESW, is the task of identifying sen-
tences in need of correction to ensure their ap-
propriateness in a scientific prose. The data set
comes from a professional editing company,
VTeX, with two aligned versions of the same
text – before and after editing – and covers a
variety of textual infelicities that proofreaders
have edited. While previous shared tasks fo-
cused solely on grammatical errors (Dale and
Kilgarriff, 2011; Dale et al., 2012; Ng et al.,
2013; Ng et al., 2014), this time edits cover
other types of linguistic misfits as well, in-
cluding those that almost certainly could be
interpreted as style issues and similar “matters
of opinion”. The latter arise because of dif-
ferent language editing traditions, experience,
and the absence of uniform agreement on what
“good” scientific language should look like.
Initiating this task, we expected the participat-
ing teams to help identify the characteristics
of “good” scientific language, and help create
a consensus of which language improvements
are acceptable (or necessary). Six participat-
ing teams took on the challenge.

1 Introduction

The vast number of scientific papers being authored
by non-native English speakers creates an imme-
diate demand for effective computer-based writing
tools to help writers compose scientific articles. Sev-
eral shared tasks have been organized before that in
part addressed this challenge, all with English lan-
guage learners in mind: Helping Our Own, HOO,

with two editions in 2011 and 2012 (Dale and Kil-
garriff, 2011; Dale et al., 2012); and two Grammat-
ical Error Correction Tasks in 2013 and 2014 (Ng
et al., 2013; Ng et al., 2014). The four shared tasks
focused on grammar error detection and correction,
and constituted a major step towards evaluating the
feasibility of building novel grammar error correc-
tion technologies.

An extensive overview of the automated gram-
matical error detection for language learners was
conducted by Leacock et al. (2010). In subse-
quent years two English language learner (ELL)
corpora were made available for research purposes
(Dahlmeier et al., 2013; Yannakoudakis et al., 2011).
While these achievements are critical for language
learners, we also need to develop tools that support
genre-specific writing features. This shared task fo-
cused on the genre of scientific writing.

Most scientific publications are written in English
by non-native speakers of English. Submitted ar-
ticles are often returned to the authors with an en-
couragement to improve the language or have a na-
tive speaker proofread the paper. Pierson (2004) lists
10 top reasons why manuscripts are not accepted for
publication, with poor writing in the 7th place.

In Section 2, we describe the task and its objec-
tives; Section 3 gives an overview of the data set;
Section 4 introduces the participating teams; Section
5 describes the framework used for organizing com-
petitions; Section 6 summarizes the results of the
task; Section 7 provides a detailed analysis and dis-
cussion of the results; and, finally, Section 8 presents
the main conclusions of the Shared Task and our
proposed future actions.
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Institution/Group Abbreviation Contact Person
Harvard University HU Allen Schmaltz
Heidelberg Institute for Theoretical Studies HITS Mohsen Mesgar
ImproveSWDublin ISWD Liliana Mamani Sanchez
Knowlet Knowlet René Witte
National Taiwan Normal University and Yuan Ze University NTNU-YZU Lung-Hao Lee
University of Washington + Stanford University UW-SU Woodley Packard

Table 1: The teams that submitted results.

2 Task Definition

The goal of the Automated Evaluation of Scientific
Writing (AESW) Shared Task was to analyze the
linguistic characteristics of scientific writing to pro-
mote the development of automated writing evalua-
tion tools that can assist authors in writing scientific
papers. More specifically, the task was to predict
whether a given sentence requires editing to ensure
its “fit” within the scientific writing genre.

The main goals of the task were to

– identify sentence-level features that are unique
to scientific writing;

– provide a common ground for development and
comparison of sentence-level automated writ-
ing evaluation systems for scientific writing;

– establish the state-of-the-art performance in the
field.

A few words should be said about the specifics
of the scientific writing data set. Some proportion
of “corrections” in the shared task data are “real er-
ror” corrections – i.e. such that most of us would
agree that they are errors – for example, wrong pro-
nouns and various other grammatical errors. Others
almost certainly represent style issues and similar
“matters of opinion”, and it seems unfair to expect
someone to spot these. This is because of differ-
ent language editing traditions, experience, and the
absence of uniform agreement of what “good” lan-
guage should look like. The task was organized to
create a consensus of which language improvements
are acceptable (or necessary) and to promote the use
of NLP tools to help non-native writers of English to
improve the quality of their scientific writing.

Some interesting uses of sentence-level quality
evaluations are the following:

– automated writing evaluation of submitted sci-
entific articles;

– authoring tools for writing English scientific
texts;

– identifying sentences that need quality im-
provement.

The task is defined as a binary classification of
sentences, with the two categories needs improve-
ment and does not need improvement. Two types of
predictions are evaluated: Binary prediction (False
or True)1 and Probabilistic estimation (between 0
and 1).

The predictions of the test data set should be re-
ported according to the following format:

– For the Binary prediction task:
<sentenceID><tab><True|False><new line>

e.g., 9.12\tTrue\n
– For the Probabilistic estimation task:

<sentenceID><tab><Real number><new line>

e.g., 9.12\t0.75212\n

3 The Data Set

The data set is a collection of text extracts
from 9,919 published journal articles (mainly from
Physics and Mathematics) with data before and af-
ter language editing. The data are from selected pa-
pers published in 2006–2013 by Springer Publish-
ing Company2 and edited at VTeX3 by professional
language editors who were native English speakers
(Daudaravicius, 2015). Each extract is a paragraph
that contains at least one edit made by the language
editor. All paragraphs in the data set were randomly
ordered from the source text for anonymization. Ad-
ditionally, identifying parts of the text were replaced
with placeholders, specifically authors, institutions,
citations, URLs, and mathematical formulas. This

1Also referred to as Boolean prediction.
2http://www.springer.com/gp/
3http://www.vtex.lt
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Domain # of paragraphs # of sentences with no
changes

# of sentences with changes
before editing after editing

Train Dev Test Train Dev Test Train Dev Test Train Dev Test
Mathematics 78,748 9,679 9,522 218,585 27,784 28,347 353,610 44,571 44,530 353,929 44,755 44,512
Physics 55,949 7,517 7,080 169,160 23,290 19,203 291,917 39,031 35,165 291,902 38,994 35,180
Engineering 54,370 6,360 6,785 145,013 17,309 17,722 244,900 28,997 30,398 244,518 28,942 30,347
Computer Sci-
ence

36,387 4,549 4,039 103,368 12,234 11,694 164,460 19,962 18,493 164,472 19,953 18,497

Statistics 14,724 1,755 1,613 42,390 5,283 4,475 70,121 8,607 7,329 70,139 8,604 7,342
Economics and
Management

6,961 794 726 25,677 2,582 2,646 37,661 3,969 4,080 37,718 3,969 4,086

Astrophysics 3,343 389 321 8,492 588 858 16,571 1,392 1,676 16,630 1,384 1,694
Chemistry 2,581 278 315 7,697 831 1,063 13572 1,562 1,838 13,577 1,559 1,832
Human Sciences 1,081 57 70 2,358 205 176 4090 318 295 4,055 318 294
Total 254,144 31,378 30,471 722,740 90,106 86,184 1,196,902 148,409 143,804 1,196,940 148,478 143,784

Table 2: The main statistics of the AESW data-set (version 1.2).

replacement was done automatically and is based on
annotation in primary data sources that were LATEX
files4. This dataset will be made freely available on
the Internet5 for replications and other studies.

Sentences were tokenized automatically, and then
both text versions – before and after editing – were
automatically aligned with a modified diff algo-
rithm. Some sentences have no edits, and some sen-
tences have edits that are marked with <ins> and
<del> tags. The text tagged with <ins> is the
text that was inserted by the language editor, and the
text tagged with <del> is the text deleted by the
language editor. Substitutions are tagged as inser-
tions and deletions because it is not always obvious
which words are substituted with which. Some edits
introduce or eliminate sentence boundaries. In such
cases, a few sentences are combined into one data set
sentence and, therefore, the number of tagged sen-
tences in the data set differs before and after editing
(see Table 2).

The training, development and test data sets com-
prise data from independent sets of articles (see Ta-
ble 2).

– The training data: A fragment of training data
is shown in Table 3 where multiple insertions
and deletions can be seen.

– The development data: The development data
is distributionally similar to the training data
and the test data with regard to the edited and

4We used tex2txt conversion tool (see demo: http:
//textmining.lt:8080/tex2txt.htm)

5More information is available at http://
textmining.lt/aesw/index.html

<sentence sid="9.1"> For example, separate biasing
of the two gates can be used to implement a
<del>capacitor-less</del><ins>capacitorless</ins>
DRAM cell in which information is stored
<del>in</del><ins>at</ins> the
<del>form</del><ins>back-channel</ins>
<del>of</del><ins>surface</ins>
<del>charge</del><ins>near</ins>
<del>in</del><ins>to</ins> the
<del>body region,</del><ins>source</ins>
<del>at</del><ins>in</ins> the
<del>back channel</del><ins>form</ins>
<del>surface</del><ins>of</ins>
<del>near</del><ins>charge</ins>
<del>to</del><ins>in</ins> the
<del>source</del><ins>body region</ins> _CITE_.
</sentence>

Table 3: A fragment of training data.

non-edited sentences, as well as the domain.
– The test data: Test paragraphs retain texts

tagged with <del> tags but the tags are
dropped. Texts between <ins> tags are re-
moved. However, all edits of the test data were
provided to the teams after the final results were
submitted.

3.1 Supplementary Data

To speed up data preparation for training, develop-
ment and testing, the following supplementary data
were accessible to all participants:

Training, development and test data split into text
before editing and text after editing:
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– Tokenized sentences with sentence ID at the be-
ginning of the line.

– POS tags of sentences with sentence ID at the
beginning of the line.

– CFG trees of sentences with sentence ID at the
beginning of the line.

– Dependency trees of sentences with sentence
ID as the first line of each tree.

Texts from Wikipedia articles (the dump of
April 2015):

– Tokens
– POS tags
– CFG trees of sentences
– Dependency trees of sentences

The data were processed with the Stanford parser
with the following parameters:

– model: englishRNN
– type: typedDependencies
– JAVA code for grammatical structure:

GrammaticalStructure gs =
parser.getTLPParams().

getGrammaticalStructure(tree,
Filters.acceptFilter(),
parser.getTLPParams().

typedDependencyHeadFinder());

Shared Task participating teams were allowed to
use other publicly available data with the exclusion
of proprietary data. All additional data should in that
case be specified in the final system reports. The
participants were encouraged to share their supple-
mentary data, where relevant.

4 Participants

By the time of data release, 18 groups were regis-
tered for the task. The data required an agreement
which allows its use under the Creative Commons
CC-BY-NC-SA 4.0 license with a few extra restric-
tions. The six groups that submitted results and pub-
lished system reports are listed in Table 1, with par-
ticipants spanning several continents.

A high-level summary of the approaches used by
each team is provided in Table 5. The most com-
mon methods were deep learning (HU and NTNU-
YZU) and maximum entropy (Knowlet and UW-
SU). The other teams used logistic regression and
support vector machines. The deep learning mod-
els used only tokens and word embeddings as their

features. NTNU-YZU represented sentences as a se-
quence of word embeddings to train a convolutional
neural network (CNN). HU had a more complex ap-
proach, reporting the majority vote of a CNN using
word embeddings and stacked character-based and
word-based Long Short-Term Memory (LSTM) net-
works.

Besides tokens and token n-grams, the most com-
mon features were parse trees (ISWD and UW-SU).
ISWD used tree representations of the sentences as
features for a SVM and UW-SU augmented a gram-
mar with a series of “mal-rules”, which license un-
grammatical properties in sentences, and identified
if the mal-rules occurred in the most likely sentence
parses. HITS implemented 82 specific features for
this task, including counts of word types, patterns
found in words (such as contractions), and probabili-
ties. Knowlet tested the efficacy of existing grammar
tools for this task by train their model using features
extracted from LanguageTool and After the Dead-
line.

5 CodaLab.org

In this section we share our experience of using Co-
daLab6 for the AESW Shared Task. CodaLab is an
open-source platform that provides an ecosystem for
conducting computational research in a more effi-
cient, reproducible, and collaborative manner. On
codalab.org, we used Competitions to bring to-
gether all participants of the AESW Shared Task and
to automate the result submission process. Each par-
ticipant had to register on the codalab.org sys-
tem and apply to the task in order to submit results
and receive evaluation scores. We created four eval-
uation phases to distinguish four evaluation tasks:

– Development. Binary decision.
– Development. Probabilistic estimation.
– Testing. Binary decision.
– Testing. Probabilistic estimation.

The training and development data were released on
December 7, and the test data and CodaLab evalua-
tion opened on February 29. The deadline for sub-
mitting results was March 10.

Participants were allowed to submit results many
times (up to 100 submissions per day), with no more

6http://codalab.org/
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Development Testing
Binary Probabilistic Binary Probabilistic

HITS 11 9 3 8
HU 7 0 6 0
ISWD 0 0 8 7
Knowlet 12 2 5 4
NTNU-YZU 22 20 238 68
UW-SU 1 2 2 1
#Failed 23 10 45 16
#Total 76 43 307 104

Table 4: The number of result submissions for each shared task phase on https://competitions.codalab.org.

than two results for their final submission in each
track. Our experience shows that the time span for
evaluation can take one minute to a few hours. Ta-
ble 4 shows the number of successful submissions
of each participant for each evaluation phase. The
average number of submissions for each evaluation
phase was six times except for one participant. In
principle, the multiple unlimited number of submis-
sions allows a team to tune their system based on
performance against the test set as revealed by the
automated scorer. The number of failed uploads is
around ten percent. Therefore, our advice for future
implementations of similar shared tasks is to limit
the number of uploads to five times in the testing
phase.

The system allows us to upload scorer programs
and reference data to the server such that participants
cannot see the reference data, which guarantees that
the scorer program runs honestly. The scorer pro-
gram was initially built using the Haskell program-
ming language, but we could not manage to run
the executable on the server despite the documen-
tation describing such a possibility. Therefore, the
scorer program was reimplemented in Python. The
scorer program written in Python demonstrated un-
expected behavior at the end of the testing phase:
The codalab.org system did not report any er-
rors if participants submitted a truncated list of pre-
dictions. One team uploaded a truncated list of pre-
dictions that was accepted and scored. The scores
were close to a random prediction score. After dou-
ble checking all submitted results, we discovered
that the system accepted results even if the list size
of predictions was shorter than its expected size.
This happened due to the implementation difference
of the zip function in Haskell and in Python. In

Haskell, the length of both lists should be equal
to apply the zip function, otherwise an error is
thrown. In Python, the zip function merges two
lists while a pair of values can be created, and does
not throw an exception when the lists are of unequal
lengths. One particular team was warned and an ad-
ditional day was given for correcting their system
and re-submitting their results. The lesson learned
is that even if a scoring program produces an out-
put score, double checking the final scores should
be done manually.

6 Results

In this section, we describe the results of both tracks
of the shared task.

First, we define the primary evaluation metric for
both tracks, the F1 score:

F1 =
2P ·R
P +R

For the Binary decision track, precision and recall
are defined as

Pbool =
TP

TP + FP
(1)

Rbool =
TP

TP + FN
(2)

where TP (true positive) indicates the number of
sentences correctly predicted to need improvement;
FP indicates the number of false positives, or the
sentences incorrectly predicted to need improve-
ment); and FN (false negative) is the number of sen-
tences incorrectly predicted to not need improve-
ment. We additionally report Pearson’s correlation
coefficient and the agreement calculated with Co-
hen’s kappa.
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Team Acronym Algorithms Features Tools used Data used
HU CNN, RNN, LSTM Tokens Torch, word2vec AESW 2016, word2vec
HITS HMM,

Logistic Regression
CFG trees, POS n-grams,
token n-grams,
hand-made features

scikit-learn, pyenchant AESW 2016,
American English dic-
tionary, WordNet

ISWD SVM,
SubSet Tree kernel

Constituent tree SVM-Light, SST AESW 2016

Knowlet MaxEnt AtD.rule, AtD.string,
LT.rule, LT.string,
Token.root n-grams,
Token.category n-grams

GATE,
After the Deadline (AtD),
LanguageTool (LT)

AESW 2016

NTNU-YZU CNN Tokens,
Bag Of Words

Theano, word2vec AESW 2016,
word2vec, GloVe

UW-SU MaxEnt Parse trees, mal-rules DELPH-IN, ERG,
ACE parser

AESW 2016

Table 5: The summary of AESW 2016 Shared Task participant systems.

Team Precision Recall F-Score Correlation Kappa Mean rank
HU 0.5444 0.7413 0.6278 (1) 0.3760 (1) 0.3628 (1) 1
NTNU-YZU 0.5025 0.7785 0.6108 (2) 0.3324 (2) 0.3070 (2) 2
ISWD 0.4482 0.7279 0.5548 (3) 0.2168 (5) 0.1957 (5) 4.33
UW-SU 0.4145 0.8201 0.5507 (4) 0.1770 (6) 0.1373 (6) 5.33
HITS 0.3765 0.9480 0.5389 (5) 0.1037 (7) 0.0469 (8) 6.67
ISWD† 0.3960 0.6970 0.5051 (6) 0.0971 (8) 0.0835 (7) 7
NTNU-YZU† 0.6717 0.3805 0.4858 (7) 0.3282 (3) 0.3043 (3) 4.33
Knowlet 0.6241 0.3685 0.4634 (8) 0.2854 (4) 0.2672 (4) 5.33
baseline 0.3607 0.6004 0.4507 (9) 0.0001 (9) 0.0001 (9) 9

Table 6: Binary prediction results.

For the Probabilistic estimation track, rankings
are calculated based on F1 score using the mean
squared error (MSE):

Pprob =1− 1
n

∑
i

(πi −Gi)
2

πi > 0.5

Rprob =1− 1
m

∑
i

(πi −Gi)
2

Gi ∈ improve

For a sentence i, Gi = 1 if the sentence needs im-
provement in the gold standard, otherwise Gi = 0.
πi is the probabilistic estimate that the sentence
needs improvement, n is the number of sentences
predicted to need improvement (πi > 0.5), and m is
the number of sentences that actually need improve-
ment. We also calculated the cross-entropy between
the predictions and gold standards, defined as

H = −
∑

i

Gi log πi

Finally, we represented each probability with its
corresponding boolean value (y′i = True if πi >
0.5 else y′i = False) and calculated the binary-task

F-score (with precision and recall calculated as in
Equations 1 and 2), the correlation, and agreement
statistic.

The results of the Binary decision task are shown
in Table 6. The results for the Probabilistic estima-
tion task are provided in Table 7 and the analysis
over the corresponding boolean values is shown in
Table 8. When a team submitted more than one set
of results, we identify the two submissions as TEAM
and TEAM†.

7 Discussion

All submissions in both tasks have higher F-scores
than a random baseline. In the Binary task, the
deep learning approaches outperformed the other
models, which included support vector machines,
maximum entropy models, and logistic regression.
HU, which uses a combination of CNN and RNNs,
achieves the highest F-score and agreement with
the gold standard (Table 6). The second best sys-
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Team Precision Recall F-Score Correlation Cross-entropy Average STD Dev Mean rank
HITS 0.9333 0.7491 0.8311 (1) 0.0600 (8) 35,992 (5) 0.4986 0.0255 4.67
UW-SU 0.7118 0.8748 0.7849 (2) 0.2471 (5) 22,162 (1) 0.6276 0.0973 2.67
ISWD 0.7062 0.8182 0.7581 (3) 0.2690 (4) 28,385 (2) 0.5444 0.1941 3
NTNU-YZU 0.7678 0.7177 0.7419 (4) 0.4043 (2) 40,716 (6) 0.3948 0.2264 4
ISWD† 0.6576 0.8014 0.7224 (5) 0.1298 (7) 32,979 (4) 0.5743 0.2225 5.33
HITS† 0.6655 0.7889 0.7220 (6) 0.1666 (6) 30,238 (3) 0.5441 0.2031 5
NTNU-YZU† 0.7900 0.6166 0.6926 (7) 0.4173 (1) 54,903 (9) 0.3033 0.2280 5.67
Knowlet 0.7294 0.6591 0.6925 (8) 0.3516 (3) 50,370 (8) 0.3709 0.2942 6.33
Baseline 0.5963 0.7163 0.6508 (9) -0.0028 (9) 44,843 (7) 0.5511 0.2845 8.33
Gold standard 0.3606 0.4802

Table 7: Probabilistic estimation results.

Team Precisionb Recallb F-Scoreb Correlationb Kappab Mean rank
HITS 0.9282 0.0065 0.0129 (9) 0.0594 (7) 0.0079 (7) 7.67
UW-SU 0.3606 1.0000 0.5301 (3) n/a a (9) 0.0000 (8) 6.67
ISWD 0.4482 0.7279 0.5548 (2) 0.2168 (4) 0.1957 (4) 3.33
NTNU-YZU 0.5922 0.5344 0.5618 (1) 0.3350 (1) 0.3340 (1) 1
ISWD† 0.3960 0.6970 0.5051 (6) 0.0971 (6) 0.0835 (6) 6
HITS† 0.4514 0.6070 0.5177 (5) 0.1833 (5) 0.1775 (5) 5
NTNU-YZU† 0.6717 0.3805 0.4858 (7) 0.3282 (2) 0.3043 (2) 3.67
Knowlet 0.5832 0.4778 0.5254 (4) 0.3002 (3) 0.2969 (3) 3.33
Baseline 0.3600 0.6000 0.4500 (8) -0.0017 (8) -0.0015 (9) 8.33

Table 8: Probabilistic estimation results, using the corresponding boolean value.

aUW-SU reported all probabilities πi > 0.5, and therefore σπ = 0 and r is undefined.

tem is NTNU-YZU, which trained a CNN model.
Both of these models used word2vec word embed-
dings, with NTNU-YZU testing both word2vec and
GloVe. The bottom two teams according to the F-
score, NTNU-YZU† and Knowlet, have the third
and fourth strongest agreement with the gold stan-
dard, respectively. Compared to the other submis-
sions, these systems have the highest precision of
0.6717 and 0.6241, respectively, with the precision
of the other systems ranging from 0.38 to 0.54. They
also had the lowest recall (0.3805 and 0.3685) com-
pared to the other teams, with recall between 0.70–
0.95. This suggests the importance of precision in
this task.

For the Probabilistic estimation track, HITS had
the highest precision (0.9333) and F-score (0.8311)
(Table 7). The other teams all had precision >=
0.66 and recall >= 0.62. However, the rankings
found by the F-score and the correlation diverge sig-
nificantly for three systems: HITS, NTNU-YZU†,
and Knowlet. While HITS has the highest F-score,
it also has the weakest correlation with the gold
standard. NTNU-YZU† and Knowlet have the low-
est F-score but the first and third strongest corre-

lation, respectively. The ranking by cross-entropy
is similar to the F-score ranking with the exception
of HITS, which has the fifth highest cross-entropy.
To address this disparity, we calculated additional
rankings of the systems by converting the output
probabilities into the corresponding boolean value
(True if πi > 0.5, and False otherwise) and report-
ing the values of the same metrics we used to eval-
uate the Binary prediction task (Table 8). These
statistics are indicated with a subscript b. In this
analysis, the ranking of HITS declines significantly
from the original Probabilistic evaluation, with the
lowest F-scoreb of all systems. The precisionb of
HITS is nearly perfect (0.9282) but recallb is al-
most 0 (0.0129), which explains why the F-scoreb,
Correlationb, and Kappab statistics are all so low.
Knowlet improves to the fourth-ranked system by
F-scoreb from the last. By the correlation and agree-
ment statistics, NTNU-YZU and NTNU-YZU† are
the best two systems in the converted probabilities
analysis.

As demonstrated, different statistics produce dis-
similar system rankings. The official scores for both
tasks are the F-score, as defined in the workshop
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description, but there is evidence that the evalua-
tion could be improved in future tasks. UW-SU
and HITS pointed out that favoring recall over preci-
sion improves their F-score, which increases the sys-
tem’s ranking but decreases its accuracy. Precision
has been shown to be more effective when providing
feedback on grammatical errors, with less, accurate
feedback better than inaccurate feedback (Nagata
and Nakatani, 2010). For future shared tasks, ad-
ditional evaluation methods should be investigated,
including F0.5, which weights precision more than
recall, and a comparison to human evaluation, such
as is done by the Workshop on Machine Translation
(Bojar et al., 2015).

7.1 The trends of system predictions

The initial impetus to organize this competition was
to gain insight into the specifics of scientific writing
as a genre and, with the help of participants, to make
an estimation of whether it is possible to offer any
robust automatic solutions to support researchers
with non-native English background in writing sci-
entific reports. There are several facts and their im-
plications to be considered:

– The first fact deals with formal requirements of
the genre. Scientific writing has very clear – and
to a certain extent limited – aims, namely to in-
form other researchers in the field of the latest
findings or important issues, usually presented in
the form of articles, reports, grant proposals, the-
ses, etc. Each of these follow roughly the same
structure comprising more or less obligatory parts
(e.g. abstract, data, method). The intended audi-
ence – i.e. other researchers – should be famil-
iar with the standard to be able to skim for ma-
jor findings and conclusions in the document, not
wasting time on irrelevant parts. Scientific lan-
guage is therefore rather rigid to fit this need.

– Another fact we need to consider is that most
of the scientific writing is done by mature users
of English, who in most cases do not make
second-language-learner types of mistakes, at
least not frequently. This fact is reflected in
the type of edits in our data: they are cor-
rections, mostly reflecting linguistic conventions
of the genre. Correct use of punctuation, hy-
phenation, digits, capitalization, abbreviations,

and domain-appropriate lexical choices are the
type of corrections that dominate profession-
ally proofread scientific papers, and are unique
to scientific writing. Among more classical
second-language type of errors, we can see
verb (dis)agreement; (in)appropriate use of ar-
ticles, prepositions and plurals, (mis)spellings,
(in)correct choice of word, etc. However, these
traditional error types are much less represented
in scientific writing.

To see how successfully our task participants have
coped with the challenges of scientific writing, we
have analyzed main trends concerning which error
types were detected by all algorithms (successfully
detected as ‘need improvement’ by all systems) ver-
sus which none were able to capture (i.e. sentences
that were annotated as ‘need improvement’ but no
one could detect these sentences).

There are four cases presented in Table 9:

Prediction of
all systems

Gold annotation Total
Correction

needed
Correct

Correction needed 7,899 2,663 10,563
Correct 32 1,201 1,234

Table 9: Agreement between gold annotations and all systems

on test data, in number of sentences

We can observe 7,899 cases of successful agree-
ment between the proofreaders and all the teams
about sentences that need correction. Most cases
of article misuse, punctuation infelicities, diverting
capitalization, unconventional usage of digits, ab-
breviations and hyphenation were detected by all
teams, including sentences where lexical choices
were not optimal, e.g.:

– For computations we chose _MATH_ and
a spectral interval in the vicinity of the resonance
frequency of the mode with radial number
_MATH_, _MATH_.

– Provided _MATH_ has no zero in its initial
data, the log-logarithmic singularity at _MATH_
causes the left -hand side to blow up at _MATH_,
thereby forcing _MATH_ as _MATH_.

– Given this reasoning we have evaluated the one
one loop and eighteen18 two loop vacuum bubble
graphs contributing to (_REF_).
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– SimilarSimilarly to the previous case, we have a
line of fixed points with positive slope _MATH_ in
(_MATH_, _MATH_) plane as shown in Figure 2.

In 32 cases all the teams have unanimously dis-
agreed with the gold standard on the need of cor-
rection. These cases cover

– context deficit, where on the sentence level it is
impossible to identify the correct need of an arti-
cle or an adverb, e.g.:
– Next, we give thea stability analysis.
– The algorithm then terminates.

– alternative lexical choices, in particular more for-
mal variants or special terminological usages,
e.g. notice versus note, fitted parameter versus
fit parameter;

– a number of notorious matters of opinion, such as
replacing this paper for the paper and vice versa,
e.g.:
– TheThis paper is organized as follows.
– Section 5 concludes thisthe paper.
– First, we derive the following: _MATHDISP_.

– style/tense requirements of the genre, e.g. using
present tense referring to the results in tables:
– The results wereare presented in Figure

_REF_.
– use of punctuation in the following cases:

– Namely, we observe the following.:
– Example:.

– stylistic preferences:
– Since _MATH_ and _MATH_, we can easily

get _MATH_.
– This error is only limited by the instrument

resolution of the instrument.

It can be argued that in most of those 32 cases
corrections are optional.

One conclusion that can be drawn from this task
performance analysis is that scientific writing as a
genre needs standardization. We have encountered
several types of inconsistencies in the data, for ex-
ample in the case of hyphenation (nonlinear for
non-linear; and vice versa); or in the case of expres-
sions like this paper for the paper and vice versa.
Even though it seems that the area could benefit
from standardization, we are well aware that lan-
guage can never be fully standardized. At most,

there are only and can only be guidelines or con-
sensus on what good language should look like.

Another conclusion is that automatic detection of
scientific prose errors as an area of research would
benefit from error-type annotation. More rigorous
analysis of the data in terms of the type of corrected
deviations could give us a better insight into what
the genre of scientific writing is and facilitate more
error-aware approaches to automatic proofreading of
scientific papers.

Yet another conclusion is that stepping outside of
a sentence boundary may facilitate recognition of a
number of other error types that at the moment go
unnoticed due to context deficit, among others in-
consistent use of abbreviations, certain cases of arti-
cle usage, and lacking adverbs, just to name a few.

8 Conclusions

In this work we have reported and described the re-
sults of the AESW Shared Task (Automatic Eval-
uation of Scientific Writing), which focuses on the
problem of identifying sentences in scientific works
that require editing. The main motivation of this task
is to promote the use of NLP tools to help non-native
writers of English to improve the quality of their sci-
entific writing. From the research perspective, on the
other hand, this effort aims at promoting a common
framework and standard data set for developing and
testing automatic evaluation systems for the scien-
tific writing domain.

From a total of 18 groups registered for the
shared task, six of them submitted results and pub-
lished reports describing their implemented sys-
tems. As a consequence, different machine learn-
ing paradigms (including neural networks, support
vector machines, maximum entropy, and logistic re-
gression) have been tested over the two proposed
evaluation modalities (binary and probabilistic esti-
mation). The shared task has helped establish a ref-
erence for the state-of-the-art in the automatic eval-
uation of scientific writing, in which the obtained
results demonstrate that there is still room for im-
provement. The availability of both the data set and
the evaluation tools will facilitate the path for future
research work in this area.

In the future, we plan to improve on current sys-
tem performances by implementing and evaluating
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different system combination strategies. Addition-
ally, as suggested by the observed ranking inconsis-
tencies across the different evaluation metrics in the
probabilistic estimation task, we also need to con-
duct further analysis and take a more detailed look at
these results to determine the best evaluation scheme
to be used for this modality.
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Abstract

In this paper, we address the problem of quan-
tifying the overall extent to which a test-
taker’s essay deals with the topic it is assigned
(prompt). We experiment with a number of
models for word topicality, and a number of
approaches for aggregating word-level indices
into text-level ones. All models are evalu-
ated for their ability to predict the holistic qua-
lity of essays. We show that the best text-
topicality model provides a significant im-
provement in a state-of-art essay scoring sys-
tem. We also show that the findings of the
relative merits of different models generalize
well across three different datasets.

1 Introduction

The instruction to “stay on topic” oft given to deve-
loping writers seems intuitively unproblematic, yet
the question of the best way to measure this pro-
perty of a text is far from settled, and little is known
about the interaction of topicality and other proper-
ties of text, such as length. We develop text topica-
lity indices and evaluate them in the context of auto-
mated scoring of essays. Specifically, we investigate
the relationship between the extent to which the es-
say engages the topic provided in the essay question
(prompt) and the quality of the essay as quantified
by a human-provided holistic score.

In the existing literature, topicality has been ad-
dressed as a control flag to identify off-topic essays
or spoken responses (Yoon and Xie, 2014; Louis and
Higgins, 2010; Higgins et al., 2006) or as an element
in the overall coherence of the essay (Somasundaran

et al., 2014; Higgins et al., 2004; Foltz et al., 1998).
Persing and Ng (2014) annotated essays for prompt-
adherence, and found that achieving inter-rater reli-
ability was very challenging, reporting Pearson r =
0.243 between two raters. We address the relation-
ship between a continuous topicality score and the
holistic quality of an essay.

Generally, one can think of the topicality of a
given word w on a given topic T as the extent
to which w occurs more often in texts address-
ing T than in otherwise comparable texts address-
ing a different topic. We consider three models of
word topicality from the literature: the significance-
test approach as in topic signatures (Lin and Hovy,
2000), the score-product approach as described in
the essay scoring literature (Higgins et al., 2006),
and a simple cutoff-based approach relying on dif-
ference in probabilities.

Given a definition of word topicality, the question
arises how to quantify the topicality of the whole
text. Specifically, is topicality a property of the vo-
cabulary of a text (of word types) or a property of
both the vocabulary and the unfolding discourse (of
word tokens)? Thus, do the sentences “I hate restau-
rants, abhor restaurants, loath restaurants, and love
restaurants” and “I hate restaurants, abhor waiters,
loath menus, and love food” address the topic of
restaurants to the same extent (this would be the pre-
diction of the token-based model), or does the latter
sentence address the topic to a greater extent than
the former (this would be the prediction of the type-
based model)?1 The second sentence seems to en-

1Assuming the 4 verbs in the example are off-topic and
the nouns are on-topic of restaurants, the token-based model
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gage more with the topic because it attends to more
aspects (or details) of the topic.

In this paper, we implement type-based and
token-based approaches to text topicality, using a
number of different models for word topicality. All
models are evaluated for their ability to predict the
holistic quality of an essay.

The contributions of this paper are as follows.
First, assuming a number of common definitions
of word topicality and an application of predicting
holistic quality of essays, we show that text-level
topicality is most effectively modeled (a) as a pro-
perty of word types rather than tokens in the text; (b)
taking essay length into account. Second, we show
that when word topicality is defined using a simple
cutoff-based measure and text-topicality is modeled
as in (a),(b) above, we obtain a predictor of essay
score that yields a statistically significant improve-
ment in a state-of-art essay scoring system. Third,
we show that the characteristics of the best topica-
lity model and its effectiveness in improving essay
scoring generalize across different kinds of essays.

2 Data

We experiment with three datasets. Two are datasets
of essays responding to two different essay tasks
written for a large-scale college-level examination
in the United States. These essays are scored by
professional raters on a 6-point scale. These sets
contain tens of thousands of essays responding to
dozens different prompt questions (82,500 essays,
76 prompts for each dataset). Their sheer sizes and
the variety of topics (prompts) allow for a thorough
evaluation of the proposed measures. However, the
proprietary nature of these data does not allow for
easy replication of the results, or benchmarking; we
therefore use a third, publicly available dataset con-
taining 12,100 essays written for the TOEFL test by
non-native speakers of English seeking college en-
trance in the United States, as well as for other pur-
poses. The dataset was originally built for the task
of native language identification (Blanchard et al.,
2013; Tetreault et al., 2012); however, the distribu-
tion provides coarse-grained holistic scores as well

says that in both sentences, half the content words are topical,
whereas the type-based model says that only 1 out of 5 different
content words is topical in the first sentence, and 4 out of 8 in
the second.

Part. Set 1 Set 2 TOEFL
Dev 76 × 500 76 × 500 8 × 500
Train 51 × 500 51 × 500 8 × 760 (Av)
Test 76 × 250 76 × 250 8 × 253 (Av)

Table 1: Sizes of the data partitions for each dataset. In
the N ×M notation, N = # prompts, M = # essays per
prompt. In TOEFL train and test sets, we show average
numbers of essays per prompt.

Score Set 1 Set 2 Score TOEFL
1 0.015 0.015 low 0.108
2 0.154 0.123 med 0.546
3 0.384 0.412 high 0.346
4 0.327 0.342 —
5 0.104 0.096 —
6 0.016 0.012 —

Av. Len. 395 405 Av. Len. 317
(Std.) (129) (134) (Std.) (77)

Table 2: Distribution of essay scores, and average (std) of essay

length (in words), Train data.

(3-point scale). We describe each of the datasets in
detail below. Table 1 shows the sizes of the parti-
tions of the datasets into Dev (used for building to-
picality models), Train (used for selecting the best
topicality model and for training the essay scoring
system); Test (used for a blind test of the essay sco-
ring system). Table 2 shows score distributions and
mean essay length on Train data.

2.1 Set 1

Dataset 1 is comprised of essays written in 2012 and
2013 as part of a large-scale college-level examina-
tion in the United States, by a mix of native and non-
native speakers of English. The essays respond to
a “criticize an argument” task, where a test-taker is
given a short prompt text of about 150 words that
typically describes a setting where some recommen-
dation is made or a claim is put forward. The task of
the test-taker is then to critically evaluate the argu-
ments presented in support of the claim. An example
prompt is shown in Figure 1.

2.2 Set 2

The second dataset is used for evaluating the gene-
ralization of the text-topicality models to a different
type of essays. Essays in this dataset are written in
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In surveys Mason City residents rank water
sports (swimming, boating and fishing) among
their favorite recreational activities. The Ma-
son River flowing through the city is rarely
used for these pursuits, however, and the city
park department devotes little of its budget to
maintaining riverside recreational facilities. For
years there have been complaints from residents
about the quality of the river’s water and the
river’s smell. In response, the state has recently
announced plans to clean up Mason River. Use
of the river for water sports is therefore sure to
increase. The city government should for that
reason devote more money in this year’s budget
to riverside recreational facilities.
Write a response in which you examine the
stated and/or unstated assumptions of the argu-
ment. Be sure to explain how the argument de-
pends on the assumptions and what the implica-
tions are if the assumptions prove unwarranted.

Figure 1: An example Set 1 prompt.

a more open-ended “support your position on an ar-
gument” genre, where the prompt is typically a sin-
gle sentence that puts forward a general claim, such
as “As people rely more and more on technology
to solve problems, the ability of humans to think
for themselves will surely deteriorate.” This task is
administered on the same test as the one discussed
above, and the general properties, such as scale and
distribution of scores, are similar.

2.3 TOEFL Set

The third dataset will be used to assess gene-
ralization of the findings regarding text-topicality
models to shorter essays written by non-native
speakers of English – a generally less English-
proficient population than writers in Sets 1 and 2.
This dataset is publicly available from the Linguis-
tic Data Consortium (Blanchard et al., 2013).2 This
set contains 12,100 essays written for the Test of En-
glish as a Foreign Language (TOEFL), responding
to the question “Do you agree or disagree with the
following statement?”, a genre similar to that of Set
2. The essays in this set were written in response to

2LDC Catalogue No: LDC2014T06

8 different prompts, such as: “A teacher’s ability to
relate well with students is more important than ex-
cellent knowledge of the subject being taught.” Only
coarse-grained scores are provided, corresponding
to low, medium, and high proficiency, which we
represent as scores 1, 2, and 3, respectively. The
data was partitioned so that 500 essays per prompt
are used in Dev to estimate the topical lists; the re-
maining essays are split 75% (Train) and 25% (Test)
within each prompt.

3 Models of Word Topicality

Let T1 ... Tm be sets of essays responding to m
different prompts t1 ... tm. For a word w and a
prompt tk, we define the following contingency ta-
ble of counts, where ¬w corresponds to any content
word other than w and ¬Tk corresponds to ∪r 6=kTr:

Tk ¬Tk

w A11 A12

¬w A21 A22

We define the following word topicality models.
The first model, LH, due to Lin and Hovy (2000),
quantifies the topicality of a word in a topic as a re-
duction in the entropy of topic distribution achieved
by partitioning on the word w, scaled so that the re-
sulting value is distributed according to χ2. Note
that to avoid division by zero when 1 − p1 = 0, we
only consider words with A12 > 0.

LHw,k = −2log
pA11+A21(1− p)A12+A22

pA11
1 (1− p1)A12pA21

2 (1− p2)A22

(1)
where the proportions p, p1, and p2 are given by:

p =
A11 +A21

A11 +A21 +A12 +A22
(2)

p1 =
A11

A11 +A12
; p2 =

A21

A21 +A22
(3)

From this definition, we derive three word topica-
lity weights – the first using the continuous values
of topicality mapped to the [0, 1] range, the second
– binarized to separate out only words that reach
the 0.001 significance, the third – a binarized model
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with a more permissive threshold for 0.05 signifi-
cance, which would create larger but noisier sets of
topical vocabulary.3

αLH
1 (w, k) =

LH(w, k)
maxv∈Tk

LH(v, k)
(4)

αLH
2 (w, k) =

{
1 if LH(w, k) > 10.83
0 otherwise

(5)

αLH
3 (w, k) =

{
1 if LH(w, k) > 3.84
0 otherwise

(6)

The second model, HBA, due to Higgins et al.
(2006), quantifies topicality of a word as the geo-
metric mean of its probability of occurrence in the
topic and the complement of its probability of occur-
rence overall. Thus, the more topical words tend to
occur more frequently in the current topic and more
rarely in general (this reasoning is similar to tfidf).
According to this model, the weight of a word in a
topic is defined as follows:4

αHBA =
√

A11

A11 +A21
× A21 +A22

A11 +A21 +A12 +A22
(7)

Lastly, we define a simple (S) cutoff-based binary
index, where the word is topical if it is likelier to
occur in the current topic than overall:

αS =

{
1 if A11

A11+A21
> A11+A12

A11+A21+A12+A22

0 otherwise
(8)

4 Models of Text Topicality

For an essay e, let Y be a set of all content word5

types in e and let O be a set of all content word to-
kens.6 Further, let αw be the topicality value of the

3For all indices, we set the value to 0 if p2 ≥ p1, even though
a reduction in entropy due to a partition on w could occur when
the topic is substantially less likely given that w occurred.

4In Higgins et al. (2006), the probability of occurrence in
general is estimated from a different dataset than that used to
estimate prompt-specific probabilities. However, presumably,
the general dataset would contain some number of essays re-
sponding the current prompt, so we believe our approximation
is faithful to the spirit of the original.

5We assume function words are irrelevant for topicality.
6tYpes vs tOkens

word w ∈ e. We then define text topicality as the
proportion of topical words (for binary word topica-
lity indices) or mean topicality per word (for conti-
nuous word topicality indices), for types and tokens,
as follows:

TypeTop(e) =
1
|Y |

∑
w∈Y

αw (9)

TokTop(e) =
1
|O|

∑
w∈O

αw (10)

We observe that all the word topicality models de-
fined above essentially produce a final list of topical
words, based on some estimation set. This intro-
duces a dependence between text length and its to-
picality, especially under the type-based definition:
The longer the text, the less likely it is that the next
new word would be topical – simply because there
are only so many topical words, and their supply
diminishes with every newly chosen word, whereas
the (theoretical) supply of non-topical words is infi-
nite. This reasoning suggests that the longer the text,
the less topical it would be, on average. Note that
we are not implying that longer texts digress more;
it is just that the modeling of topicality that is based
on a finite list of topical words is inherently biased
against longer essays.

Figure 2 shows that this is indeed the case, using a
separate set of 3,000 essays responding to the same
task as Set 1, using the αS word topicality index and
type-based aggregation. The different series corre-
spond to sets of essays within a certain length band,
with color codes ranging from the lightest blue for
the shortest essays (shorter than 2 standard devia-
tions below mean length) to the lightest orange for
the longest ones (more than 1.5 standard deviation
longer than mean length). It is clearly the case that
longer essays tend to be less topical, as moving from
blue to red to orange generally aligns with mov-
ing down the topicality axis. Thus, given that es-
say length is typically strongly positively correlated
with essay scores, we expect that topicality would
be negatively correlated with score. However, sepa-
rating essays by length bands reveals that the rela-
tionship between topicality and score is in fact po-
sitive – when length is held approximately constant,
better essays tend to be more topical.7 These obser-

7Observe the upward slope of each series in Figure 2.
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Figure 2: Illustration of the relationship between essay
score, essay length, and topicality, using αS index in type
aggregation, using an additional sample of 3,000 essays
responding to the task in Set 1. The series correspond to
length bands, with the lightest blue line showing mean
topicality per score level for essays that are more than 2
standard deviations below mean essay length.

vations suggest that the estimated topicality of the
essay needs to be scaled to compensate for “base-
line” topicality differences that are due to length. We
therefore define a length-scaled version of the two
indices as follows:

TypeTopL(e) =
log(|Y |)
|Y |

∑
w∈Y

αw (11)

TokTopL(e) =
log(|O|)
|O|

∑
w∈O

αw (12)

5 Selecting Best Topicality Model(s)

We evaluate each of the 5 word-topicality models
(α) with each of the 4 text-aggregation methods
(types/tokens, scaled/unscaled) – 20 models in total
– for their ability to predict essay score above and
beyond the prediction based on essay length. Essay
length is a well-known confounder for essay scoring
systems (Page, 1966): It is a strong predictor of es-
say score (r=0.65 for Set 1); yet, an automated essay
scoring system needs to capture additional aspects
of essay quality construct beyond the basic English
production fluency captured by essay length. Our
measure of success is therefore partial correlation
rp between the feature and the human-provided es-

say score, excluding the effect of essay length.8 Ta-
ble 3 shows the results.

We make the following observations based on
these results.

First, the relative merits of various topicality
models generalize very well across the three sets.
We calculated rank-order (Spearman) correlations
between the 20 partial correlations for the various
models on the three pairs of datasets. Thus, the rank
order correlation between column rp for Set 1 and
column rp for Set 2 in Table 3 is ρ = 0.92; Set 1 vs
TOEFL ρ = 0.93; Set 2 vs TOEFL ρ = 0.98.

Second, it is clearly the case that the text topicality
indices based on continuous word topicality indices
(LH1, HBA) are less effective, their partial correla-
tions with score excluding length being within 0.15
band around zero (lines 1-8 in Table 3). Although
some overall correlations with score are reasonable
(such as 0.262 in line 4, Set 1; 0.235 in line 2, Set
1), these are mostly accounted for by the even higher
correlation with essay length. This suggests that ac-
counting for the nuances of the extent of the topi-
cality of each word is generally not effective – once
the word is topical enough, it matters not just how
topical it is. Or, at the very least, we have not yet
found a way to devise an effective continuous topi-
cality score for a word.

Let us now consider the more effective cutoff-
based binary indices (LH2, LH3, SIMPLE), and eva-
luate the effects of the two manipulations applied
across the word topicality models: the log scaling
and the use of types vs tokens.

Log Scaling: This manipulation is effective in
every single case (compare odd lines n to even lines
n+1 for n > 8, for each of the datasets, for a total of
18 comparisons).

Type vs Token: Types are better than tokens in
every single case (compare lines n to lines n+2
within each word topicality model, for n > 8, for
each of the datasets, for a total of 18 comparisons).

8Since some of the indices are scaled by log length, we
calculated second-order partial correlations excluding the lin-
ear effects of both length and log-length on Set 1. The result-
ing values were very close to the first-order partial correlation
values that control for length only, and did not change the com-
parative standings of the various models. For simplicity, Table 3
reports first-order partial correlations controlling for length for
all models.
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ID Word Tok/ Log Set 1 Set 2 TOEFL
Model Type Scale? Rs Rl rp Rs Rl rp Rs Rl rp

1 HBA tok no -.014 -.114 .079 -.194 -.217 -.070 -.208 -.216 -.102
2 HBA tok yes .235 .248 .099 .020 .077 -.041 -.041 .040 -.080
3 HBA typ no .114 .152 .020 -.094 -.028 -.101 -.163 -.076 -.146
4 HBA typ yes .262 .358 .042 .055 .169 -.077 -.050 .087 -.125
5 LH1 tok no -.033 -.102 .044 -.138 -.194 -.014 -.124 -.185 -.020
6 LH1 tok yes .092 .076 .056 -.037 -.059 .002 -.037 -.052 -.008
7 LH1 typ no .051 .057 .018 -.096 -.095 -.045 -.117 -.106 -.068
8 LH1 typ yes .148 .190 .033 -.010 .015 -.026 -.044 -.005 -.050
9 LH2 tok no .049 -.103 .154 .019 -.014 .150 -.054 -.141 .035
10 LH2 tok yes .304 .269 .176 .235 .155 .178 .139 .155 .061
11 LH2 typ no -.096 -.317 .152 -.022 -.255 .202 -.072 -.224 .074
12 LH2 typ yes .135 -.024 .199 .197 .006 .257 .146 .060 .137
13 LH3 tok no .070 -.092 .171 .042 -.126 .169 -.016 -.112 .062
14 LH3 tok yes .343 .310 .195 .283 .206 .200 .199 .219 .090
15 LH3 typ no -.052 -.279 .177 .013 -.223 .220 -.016 -.177 .109
16 LH3 typ yes .207 .054 .227 .261 .079 .280 .228 .143 .179
17 SIMPLE tok no .105 -.073 .201 .086 -.098 .202 .078 -.045 .129
18 SIMPLE tok yes .430 .418 .228 .385 .324 .240 .338 .368 .163
19 SIMPLE typ no .016 -.219 .214 .080 -.165 .256 .106 -.070 .181
20 SIMPLE typ yes .349 .227 .272 .396 .237 .328 .399 .334 .267

Table 3: Performance of the different word-topicality models (α), with or without log length scaling, in type or token aggregation,

on the three datasets, in terms of Pearson correlation with essay score (Rs), Pearson correlation with essay length (Rl), and partial

correlation with score controlling for length (rp). Evaluations are performed on Train data in each dataset.

68



Finally, we observe that among the cutoff models,
the more permissive, the better – the model with a
stricter significance threshold for topicality performs
worse than the one with a looser threshold, which
in turn performs worse than a simple cutoff model
with no significance test at all (compare line n to line
n+4, for n > 8, in Table 3). This suggests that richer
but noisier topical lists are generally more effective,
in the essay scoring context.

Following these observations, we select the type-
aggregated log-scaled simple topicality index for
evaluation within an essay scoring system for the
three datasets.

6 Essay Scoring Experiments

In this section, we present an evaluation of the best
topicality index for each of the three datasets as a
feature in a comprehensive, state-of-art essay sco-
ring system. The baseline engine (e-rater R©, de-
scribed in Burstein et al. (2013)) computes more
than 100 micro-features, which are aggregated into
macro-features aligned with specific aspects of the
writing construct. The system incorporates macro-
features measuring grammar, usage, mechanics, or-
ganization, development, etc; Table 4 shows the nine
macro-features, with examples of micro-features. In
addition, we put essay length (number of words) as
the 10th macro-feature into the baseline model, to
ascertain that any gains observed in the experimen-
tal condition are not due to the introduction of length
as part of the scaling in the topicality feature.

In the baseline condition, a scoring model is built
over the ten macro-features using linear regression
on the Train set and evaluated on the Test set, for
each of the datasets. In the experimental condi-
tion, the topicality index is added as the 11th macro-
feature into the linear regression model; the experi-
mental system is also trained on Train set and evalu-
ated on Test set, for each of the datasets. We evaluate
essay scoring performance using Pearson correlation
with human holistic score.

To test statistical significance of the improve-
ments, we use Wilcoxon signed-rank test for
matched pairs. We calculate the baseline and ex-
perimental performance on each prompt separately,
and use the 76 pairs of values (for each of Sets 1
and 2) and 8 pairs of values (for TOEFL) as inputs

Macro- Example
Features Micro-Features
Grammar garbled , run-on,

fragmented sentences
Usage determiner-noun agreement

errors, noun number errors,
missing article

Mechanics spelling, capitalization,
punctuation errors

Organization use of discourse elements, such
as thesis, support, conclusion

Development size of discourse elements
Vocabulary 1 av. word frequency
Vocabulary 2 av. word length
Idiomaticity use of appropriate prepositions,

use of collocational patterns
Sentence use of sentences with various
Variety levels of syntactic complexity
Length number of words in the essay

Table 4: Baseline essay scoring system (9 macro-features from

a state-of-art essay scoring system, and essay length).

for the test. We use VassarStats for performing the
significance tests.9 Table 5 show the results.

We find that the addition of the topicality fea-
ture leads to a statistically significant improvement
over the baseline for each of the three datasets. In
an additional set of experiments, we removed essay
length from both the baseline and the experimen-
tal conditions to check whether the topicality feature
would improve upon a state-of-art essay scoring sys-
tem as-is; we found an improvement in all the three
datasets, at the same significance levels as those re-
ported in Table 5.

7 Related Work

The two approaches that are most closely related to
the current work are those of Higgins et al. (2006)
and Lin and Hovy (2000), who present word topi-
cality models based on a comparison between the
distribution of words in on-topic and off-topic texts.
Indeed, these models were the starting point of our
work, along with a simpler comparison model based
on raw frequencies. Higgins et al. (2006) aggregated
the word-level scores using unscaled token-level ag-

9http://vassarstats.net/
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Data Performance (r) Signif.
Baseline Experimental Level

Set 1 0.762 0.766 0.0001
Set 2 0.800 0.804 0.0001

TOEFL 0.747 0.749 0.05

Table 5: Results of essay scoring experiments. Perfor-
mance is reported in terms of Pearson correlation with
human essay score. 2-tailed p-values for rejecting the null
hypothesis of no improvement are shown in the last col-
umn. The Wilcoxon test statistics are: W= 1486, n = 73
(Set 1); W = 2064, n = 71 (Set 2); W = 25, n = 7 (TOEFL).

gregation; our results suggest that this aggregation
method can be improved upon by log-length sca-
ling and type-based aggregation. We also showed
that Lin and Hovy (2000) topicality models produce
better predictions of essay quality, with appropriate
scaling and aggregation.

Louis and Higgins (2010) and Higgins et al.
(2006) address the task of detecting off-topic essays
without on-topic training materials. Persing and Ng
(2014) reported a study where essays were scored on
an analytic rubric of adherence to the prompt; while
this is a promising way to evaluate text-topicality
models intrinsically, the reliability of the annota-
tions was low (r=0.234). Content scoring was also
studied for essays written in response to an exten-
sive reading or listening prompt – quality of content
is then related to integrating information from the
source materials (Beigman Klebanov et al., 2014;
Kakkonen et al., 2005; Lemaire and Dessus, 2001).

A related direction of research implicitly treats
topicality as a part of a more generalized notion
of “good content,” namely, words that are used by
good writers. The approach to estimating the qua-
lity of content is to compare the content of the cur-
rent text to sets of training texts that represent vari-
ous score points (Attali and Burstein, 2006; Kakko-
nen et al., 2005; Xie et al., 2012). In this approach,
there is no differentiation between content that is
topical and other words that might be used for other
reasons, such as discourse markers used for orga-
nizational purposes or spurious, shell-like elements
(Madnani et al., 2012); an essay that is dissimilar
from high-scoring essays on all or some of these ac-
counts is likely to be viewed as having “bad con-
tent.” An essay rife with misspellings would like-

wise be seen as having “bad content”, because the
model high-scoring essays are generally not prone
to misspellings. In contrast, our topicality lists are
estimated based on a random sample of essays, in-
cluding low scoring essays; this allows introduction
of common misspellings of words frequently used
to address the given topic into the topical lists. For
example, one of the topical lists includes more than
a dozen misspellings of the word contemporaries.

There is a large body of work using topic models
to capture different topics typically addressed in a
corpus of text (Mimno et al., 2011; Newman et al.,
2011; Gruber et al., 2007; Blei et al., 2003). In
this general framework, each text can address a few
different topics and the number and identity of topics
for the corpus is typically unknown. In our setting,
we assume that each essay is on a single topic, and
that topic is known in advance.10 However, many
of these topics are very open-ended, so they might
exhibit non-trivial sub-topical structures. For exam-
ple, a topic about cultural role models might be dealt
with by discussing politicians, musicians, sportsmen
– each of these could yield a specific sub-topic. In
fact, Persing and Ng (2014) used LDA to create sub-
topics in this way, and derived features to predict
prompt-adherence of an essay. The authors found
that in order to make these features more effective,
it was beneficial for humans to go over the topics
and assign relevance estimates for each sub-topic.

8 Conclusion

In this paper, we addressed the problem of quanti-
fying the overall extent to which a test-taker’s essay
deals with the topic it is assigned (prompt). We ex-
perimented with a number of approaches for quan-
tifying the topicality of a word, and with a number
of approaches for aggregating word-level topicality
into text-level topicality. We found that type-based,
log-length scaled aggregation generally works bet-
ter than the token-based and unscaled one, for the
task of predicting the holistic quality of essays. The
findings of the effectiveness of log length scaling
and of type-based accounting when estimating the
topicality of an essay for the purposes of holistic
scoring are novel contributions of this work.

10The high-stakes nature of the examination ensures that
these assumptions are rarely wrong.
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We also showed that incorporation of text-
topicality into essay scoring yields a significant im-
provement for two different writing tasks over a very
strong baseline – a state-of-art essay scoring sys-
tem augmented with an essay length feature. A sig-
nificant improvement is also observed on the pub-
licly available set of TOEFL essays, even though
the set is smaller, there are only a handful of diffe-
rent prompts, the essays are shorter and less pro-
ficiently written, and the scores are given on a
coarser-grained scale than for the other two datasets.
The demonstration of the excellent generalization of
the relative merits of the various topicality models
across three datasets and the effectiveness of the to-
picality feature for improving essay scoring on the
three sets is another novel contribution of this work;
it suggests robustness of our findings regarding the
relationship between topicality, length and quality of
essays.

An interesting direction of future work is an in-
trinsic evaluation of topicality indices against human
judgments of topicality. This is a difficult annotation
task (Persing and Ng, 2014), and, to our knowledge,
no reliable protocol exists for this task.
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Abstract

In many language learning scenarios, it
is important to anticipate spelling errors.
We model the spelling difficulty of words
with new features that capture phonetic
phenomena and are based on psycholin-
guistic findings. To train our model, we
extract more than 140,000 spelling errors
from three learner corpora covering En-
glish, German and Italian essays. The
evaluation shows that our model predicts
spelling difficulty with an accuracy of over
80% and yields a stable quality across cor-
pora and languages. In addition, we pro-
vide a thorough error analysis that takes
the native language of the learners into
account and provides insights into cross-
lingual transfer effects.

1 Introduction

The irregularities of spelling have been subject
to debates for a long time in many languages.
Spelling difficulties can lead to substantial prob-
lems in the literacy acquisition and to severe
cases of dyslexia (Landerl et al., 1997). Learn-
ing orthographic patterns is even harder for for-
eign language learners because the phonetic in-
ventory of their mother tongue might be quite
different. Thus, they have to learn both the
new sounds and their mapping to graphemes.
English is a well-known example for a partic-
ularly inconsistent grapheme-to-phoneme map-
ping. For example, the sequence ough can be
pronounced in six different ways as in though,

through, rough, cough, thought and bough.1

In many language learning scenarios, it is im-
portant to be aware of the spelling difficulty
of a word. In Beinborn et al. (2014), we ana-
lyzed that words with high spelling error prob-
ability lead to more difficult exercises. This in-
dicates, that spelling difficulty should also be
considered in exercise generation. In text sim-
plification tasks (Specia et al., 2012), a quan-
tification of spelling difficulty could lead to
more focused, learner-oriented lexical simplifi-
cation. Spelling problems are often influenced
by cross-lingual transfer because learners apply
patterns from their native language (Ringbom
and Jarvis, 2009). Spelling errors can therefore
be a good predictor for automatic natural lan-
guage identification (Nicolai et al., 2013). Lan-
guage teachers are not always aware of these pro-
cesses because they are often not familiar with
the native language of their learners. Automatic
prediction methods for L1-specific spelling diffi-
culties can lead to a better understanding of
cross-lingual transfer and support the develop-
ment of individualized exercises.

In this paper, we take an empirical approach
and approximate spelling difficulty based on er-
ror frequencies in learner corpora. We extract
more than 140,000 spelling errors by more than
85,000 learners from three learner corpora. Two
corpora cover essays by learners of English and
the third corpus contains learner essays in Ger-
man and Italian. We then train an algorithmic

1IPA pronunciations from https://en.wiktionary.org:
/D o U/, /T ô u/, /ô 2 f/, /k O f/, /T O t/, and /b a U/
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model on this data to predict the spelling diffi-
culty of a word based on common word difficulty
features and newly developed features model-
ing phonetic difficulties. We make the extracted
errors and the code for extraction and predic-
tion publicly available.2 Our evaluation results
show that it is generally possible to predict the
spelling difficulty of words. The performance
remains stable across corpora and across lan-
guages. Common word features such as length
and frequency already provide a reasonable ap-
proximation. However, if we aim at explaining
the processes that cause different spelling errors
depending on the L1 of the learner, phonetic fea-
tures and the cognateness of words need to be
taken into account.

2 Measuring Spelling Difficulty

Analyses of English spelling difficulties have a
long tradition in pedagogical and psycholinguis-
tic literature, but to the best of our knowledge
the task of predicting spelling difficulty has not
yet been tackled. In this section, we operational-
ize the analytical findings on spelling difficulty
into features that can be derived automatically.

In general, three sources of spelling errors can
be distinguished: i) errors caused by physical
factors such as the distance between keys on
the input device or omitted character repeti-
tions, ii) errors caused by look-ahead and look-
behind confusion (e.g. puclic–public, gib–big),
iii) and errors caused by phonetic similarity
of letters (e.g. vowel confusion visable–visible).
Baba and Suzuki (2012) analyze spelling errors
committed by English and Japanese learners us-
ing keystroke logs and find that the first two
types are usually detected and self-corrected by
the learner whereas phonetic problems remain
unnoticed. In the learner corpora that we an-
alyze, the learners were encouraged to review
their essays thoroughly, so we focus on spelling
errors that are usually not detected by learners.

In the following, we describe seven fea-
tures that we implemented for spelling diffi-
culty prediction: two word difficulty features

2https://www.ukp.tu-darmstadt.de/data/spelling-
correction/spelling-difficulty-prediction

(length and frequency) and five phonetic fea-
tures (grapheme-to-phoneme ratio, phonetic
density, character sequence probability, pronun-
ciation difficulty and pronunciation clarity).

2.1 Word Difficulty Features
Many psycholinguistic studies have shown that
frequency effects play an important role in lan-
guage acquisition (Brysbaert and New, 2009).
High-frequency words enable faster lexical ac-
cess and should therefore be easier to memorize
for language learners. For English, the word
length is in principle a good approximation of
word frequency because frequently used words
tend to be rather short compared to more spe-
cific terms. Medero and Ostendorf (2009) and
Culligan (2015) analyze vocabulary difficulty
and find that short length and high frequency
are good indicators for simple words. Both fea-
tures are also highly relevant for spelling diffi-
culty. Put simply, the probability of producing
an error is increased by the number of characters
that need to be typed. For frequent words, the
probability that the learner has been exposed to
this word is increased and therefore the spelling
difficulty should be lower. We determine the
length of a word by the number of characters
and the frequency is represented by the unigram
log-probability of the word in the Web1T corpus
(Brants and Franz, 2006).

2.2 Phonetic Difficulty
In addition to the traditional features mentioned
above, phonetic ambiguity has been intensely
analyzed in the spelling research. Frith (1980)
compares the spelling errors of good and poor
readers and shows that good readers only pro-
duce phonetic misspellings whereas poor readers
(which she called ‘mildly dyslexic’) often pro-
duce non-phonetic misspellings. Cook (1997)
compares English spelling competence for L1
and L2 users. She confirms that the majority
of spelling errors by all three groups (L1 chil-
dren, L1 adults, L2 adults) are due to ambiguous
sound–letter correspondences. Berkling et al.
(2015b) study the interplay between graphemes
and phonotactics in German in detail and de-
veloped a game to teach orthographic patterns
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to children. Peereman et al. (2007) provide a
very good overview of factors influencing word
difficulty and also highlight the importance of
consistent grapheme–phoneme correspondence.
It thus seems justified to focus on the pho-
netic problems. The features described below
try to approximate the relationship between
graphemes and phonemes from various angles.

Orthographic Depth Rosa and Eskenazi
(2011) analyze the influence of word complex-
ity features on the vocabulary acquisition of
L2 learners and show that words which fol-
low a simple one-to-one mapping of graphemes
to phonemes are considered to be easier than
one-to-many or many-to-one mappings as in
knowledge.3 The orthographic depth can be ex-
pressed as the grapheme-to-phoneme ratio (the
word length in characters divided by the num-
ber of phonemes). For English, we calculate
the number of phonemes based on the pho-
netic representation in the Carnegie Mellon Uni-
versity Pronouncing Dictionary.4 For Italian
and German, a comparable pronunciation re-
source is not available. However, as the or-
thography of these two languages is more reg-
ular than for English, the pronunciation of a
word can be approximated by rules. We use the
grapheme-to-phoneme transcription of the text-
to-speech synthesis software MaryTTS version
5.1.1 (Schröder and Trouvain, 2003) to deter-
mine the phonetic transcription for Italian and
German. MaryTTS uses a mixture of resource-
based and rule-based approaches. We will refer
to transcriptions obtained from these resources
as gold transcriptions.

Phonetic Density The phonetic density has
also been proposed as a potential cause for
spelling difficulty, but has not yet been studied
extensively (Joshi and Aaron, 2013). It is calcu-
lated as the ratio of vowels to consonants. Both
extremes—words with high density (e.g. aerie)
and very low density (e.g. strength)—are likely
to cause spelling problems.

3grapheme length: 9, phoneme length: 5
4http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Character Sequence Probability We as-
sume, that the grapheme–phoneme correspon-
dence of a word is less intuitive, if the word
contains a rare sequence of characters (e.g. gar-
dener vs guarantee). To approximate this, we
build a language model of character trigrams
that indicates the probability of a character se-
quence using the framework Berkeleylm version
1.1.2 (Pauls and Klein, 2011). The quality of
a language model is usually measured as the
perplexity, i.e. the ability of the model to deal
with unseen data. The perplexity can often be
improved by using more training data. How-
ever, in this scenario, the model is supposed
to perform worse on unseen data because it
should model human learners. In order to re-
flect the sparse knowledge of a language learner,
the model is trained only on the 800–1000 most
frequent words from each language. We refer to
these words as the Basic Vocabulary.5

Pronunciation Difficulty Furthermore, we
try to capture the assumption that a spelling
error is more likely to occur if the grapheme–
phoneme mapping is rare as in Wednesday. The
sequence ed is more likely to be pronounced as
in simple past verbs or as in Sweden. We ap-
proximate this by building a phonetic model
using Phonetisaurus, a tool that is based on
finite state transducers which map characters
onto phonemes and can predict pronunciations
for unseen words.6 Analogous to the character-
based language model, the phonetic model is
also trained only on words from the Basic Vo-
cabulary in order to reflect the knowledge of a
language learner. Based on this scarce data,
the phonetic model only learns the most fre-
quent character-to-phoneme mappings and as-
signs higher phonetic scores to ambiguous letter
sequences. We use this score as indicator for the
pronunciation difficulty.

Pronunciation Clarity Even if the learner
experiences low pronunciation difficulty, she

5We use the following lists: en: http://ogden.
basic-english.org, de: http://www.languagedaily.com/
learn-german/vocabulary/common-german-words, it: https://
en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Italian1000

6http://code.google.com/p/phonetisaurus
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might still come up with a wrong pronuncia-
tion. For example, many learners are convinced
that recipe should be pronounced /ô I s a I p/.
To model the discrepancy between expected and
true pronunciation, we calculate the Levenshtein
distance between the produced pronunciation by
the phonetic model and the gold transcription as
pronunciation clarity.

3 Spelling Error Extraction

In order to evaluate the described model for pre-
dicting spelling difficulty, we need suitable data.
For this purpose, we extract spelling errors from
corpora of annotated learner essays. The cor-
pora contain annotations for a wide range of er-
rors including spelling, grammar, and style. As
the corpora use different annotation formats, we
implement an extraction pipeline to focus only
on the spelling errors. We apply additional pre-
processsing and compute the spelling error prob-
ability as an indicator for spelling difficulty.

3.1 Corpora
We use learner essays and error annotations
from three corpora: EFC, FCE and Merlin. The
first two contain essays by learners of English
and the Merlin corpus contains essays by learn-
ers of German and Italian.7 We describe them
in more detail below.

EFC The EF-Cambridge Open Language
Database (Geertzen et al., 2012) contains
549,326 short learner essays written by 84,997
learners from 138 nationalities. The essays
have been submitted to Englishtown, the online
school of Education First. 186,416 of these es-
says are annotated with corrections provided by
teachers. We extract 167,713 annotations with
the tag SP for spelling error.8 To our knowl-
edge, this is by far the biggest available corpus
with spelling errors from language learners.

FCE The second corpus is part of the Cam-
bridge Learner Corpus and consists of learner

7It also contains essays by Czech learners, but this
subset is significantly smaller than the ones for the other
two languages and is therefore not used here.

8Some corrections have two different tags; we only
extract those with a single SP tag.

answers for the First Certificate in English
(FCE) exam (Yannakoudakis et al., 2011). It
contains 2,488 essays by 1,244 learners (each
learner had to answer two tasks) from 16 na-
tionalities. The essays have been corrected by
official examiners. We extract 4,074 annotations
with the tag S for spelling error.

Merlin The third corpus has been developed
within the EU-project MERLIN (Boyd et al.,
2014) and contains learner essays graded accord-
ing to the Common European Reference Frame-
work. The 813 Italian and the 1,033 German
samples have been obtained as part of a test for
the European language certificate (TELC). 752
of the German essays and 754 of the Italian es-
says were annotated with target hypotheses and
error annotations by linguistic experts. We ex-
tract 2,525 annotations with the tag O_graph
from the German essays and 2,446 from the Ital-
ian essays. Unfortunately, the correction of the
errors can only be extracted, if the error annota-
tion is properly aligned to the target hypotheses
which is not always the case. We ignore the er-
rors without available correction which reduces
the set to 1,569 German and 1,761 Italian errors.
In the following, we refer to the German subset
as M-DE and the Italian subset as M-IT.

3.2 Error Extraction
As the annotation guidelines differed for the
three corpora, we first need to apply additional
pre-processing steps. In a second step, we aim at
quantifying the spelling difficulty for each word
by calculating the spelling error probability.

Pre-processing We remove all spelling errors
that only mark a change from lowercase to up-
percase (or vice versa) and numeric corrections
(e.g. 1 is corrected to one) as these are rather
related to stylistic conventions than to spelling.
We lowercase all words, trim whitespaces and
only keep words which occur in a word list and
consist of at least three letters (to avoid abbre-
viations like ms, pm, oz).9

9We use the word list package provided by Ubuntu
for spell-checking: http://www.ubuntuupdates.org/package/
core/lucid/main/base/\$PACKAGE, packages: wamerican,
wngerman, wfrench
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EFC FCE M-DE M-IT

Words All 7,388,555 333,323 84,557 57,708
Distinct 23,508 7,129 3,561 3,760

Spelling Errors All 133,028 3,897 1,653 1,904
Distinct 7,957 1,509 719 747

Ratio Errors/Words Distinct .34 .21 .20 .20
Table 1: Extracted words and spelling errors after pre-processing

Spelling Error Probability In this work,
we take an empirical approach for quantifying
spelling difficulty. A spelling error s is repre-
sented by a pair consisting of a misspelling e
and the corresponding correction c. The error
frequency fe of a word w in the dataset D is then
determined by the number of times it occurs as
a correction of a spelling error independent of
the actual misspelling. The number of spelling
errors SD in the dataset is determined by sum-
ming over the error frequencies of all words in
the dataset. To quantify the distinct spelling
errors, we count all words with fe ≥ 1 once.

s = (e, c) (1)

fe(w) =
∑

si ∈D

|w = ci| (2)

SD =
∑

wi ∈D

fe(wi) (3)

The number of extracted words and errors are
summarized in Table 1. It can be seen that the
EFC corpus is significantly bigger than the other
corpora. The spelling errors in the EFC corpus
are spread over many words leading to a higher
ratio of erroneous words over all words.

The pure error frequency of a word can be
misleading, because frequently used words are
more likely to occur as a spelling error indepen-
dent of the spelling difficulty of the word. In-
stead, we calculate the spelling error probability
for each word as the ratio of the error frequency
over all occurrences of the word (including the
erroneous occurrences).

perr(w) =
ferr(w)
f(w)

(4)

Error Probability
Corpus high low

EFC
departmental boy
spelt car
invincible crime

FCE
synthetic weeks
millennium feel
mystery rainbow

M-DE
tschüss damit
nächsten machen
beschäftigt gekauft

M-IT
messagio rossi
lunedí questo
caffè tempo

Table 2: Examples for high and low spelling error prob-
ability

The words are then ranked by their error prob-
ability to quantify spelling difficulty.10 This is
only a rough approximation that ignores other
factors such as repetition errors and learner abil-
ity because detailed learner data was not avail-
able for all corpora. In future work, more elabo-
rate measures of spelling difficulty could be an-
alyzed (see for example Ehara et al. (2012)).

3.3 Training and Test Data
An inspection of the ranked probabilities indi-
cates that the spelling difficulty of a word is a
continuous variable which points to a regression
problem. However, the number of spelling errors
is too small to distinguish between a spelling er-
ror probability of 0.2 and 0.3, for example. In-
stead, we only focus on the extremes of the scale.

10In the case of tied error probability, the word with
the higher error frequency is ranked higher. In the case
of an error frequency of zero for both words, the word
with the lower correct frequency is ranked higher.
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EFC FCE M-DE M-IT

Random Baseline .500** .500** .500** .500**

Orthographic Depth .482** .462** .427** .622**
Phonetic Density .483** .349** .564** .508**

Individual Character Sequence Probability .706** .642** .736 .563**
Features Pronunciation Clarity .635** .677** .722 .683

Pronunciation Difficulty .792** .792** .828 .731
Frequency .634** .742** .778 .728
Length .809 .827 .747 .769

Combined Length + Frequency + Pronunciation Diff. .822 .832 .828 .792
All Features .835 .847 .814 .778

Table 3: Feature analysis for spelling difficulty using 10-fold cross-validation. The prediction results are expressed
as accuracy. Significant differences compared to the result with all features are indicated with **(p<0.01).

The n highest ranked words are considered as
samples for high spelling difficulty and the n
lowest-ranked words form the class of words with
low spelling difficulty. As additional constraint,
the errors should have been committed by at
least three learners in the EFC dataset and by
two learners in the other corpora. For the EFC
dataset, we extract 500 instances for each class,
and for the FCE dataset 300 instances. 200 in-
stances (100 per class) are used for testing in
both cases and the remaining instances are used
for training. We find an overlap of 52 words with
high spelling error probability in both English
corpora. As the Merlin corpus is significantly
smaller, we only extract 100 instances per class
for German and Italian. 140 instances are used
for training and 60 for testing. Table 2 provides
examples for high and low error probabilities.

4 Experiments & Results

The following experiments test whether it is pos-
sible to distinguish between words with high and
low spelling error probability using the features
described in Section 2. The models are trained
with support vector machines as implemented in
Weka (Hall et al., 2009). The features are ex-
tracted using the DKPro TC framework (Dax-
enberger et al., 2014).

4.1 Feature Analysis

In a first step, the predictive power of each fea-
ture is evaluated by performing ten-fold cross-

validation on the training set. The results in
the upper part of Table 3 are quite similar for
the two English corpora. Around 80% of the
test words are classified correctly and the most
predictive features are the word length and the
pronunciation difficulty. It should be noted,
that the two features are correlated (Pearson’s
r: 0.67), but they provide different classifica-
tions for 131 of the 800 EFC instances in the
cross-validation setting. The results for Italian
are slightly worse than for English, but show the
same pattern for the different features. For Ger-
man, the pronunciation difficulty and frequency
features perform slightly better than the length
feature. The two features orthographic depth
and phonetic density are not predictive for the
spelling difficulty and only perform on chance
level for all four datasets. We additionally train
a model build on the three best performing fea-
tures length, frequency, and pronunciation diffi-
culty as well as one using all features. It can be
seen that the results improve slightly compared
to the individual features. Due to the rather
small datasets and the correlation between the
features, the differences between the best per-
forming models are not significant.

In general, the accuracy results are compara-
ble across languages (78–85%) indicating that
it is possible to distinguish between words with
high and low spelling error probability. In the
following, we test whether the models can gen-
eralize to the unseen test data.
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EFC FCE M-DE M-IT

Random .500 .500 .500 .500
Len/Freq/Pron .840 .865 .766 .817
All .840 .870 .800 .815

Table 4: Spelling difficulty prediction on the test set
for both corpora. The prediction results are expressed as
accuracy.

4.2 Prediction Results
After these analyses, the two combined models
are evaluated on the unseen test data. The re-
sults in Table 4 show that the models scale well
to the test set and yield accuracy results that
are slightly better than in the cross-validation
setting. Again, the results of the two combined
models are not found to be significantly differ-
ent. There are two explanations for this. On
the one hand, the test set is quite small (200
instances for English, 60 instances for German
and Italian) which makes it difficult to measure
significant differences. On the other hand, this
result indicates that length, frequency and pro-
nunciation difficulty are very predictive features
for the spelling difficulty and the other features
only have insignificant effects. The finding that
longer words are more likely to produce mis-
spellings is not surprising. For deeper psycholin-
guistic analyses it might be useful to balance the
spelling data with respect to the word length.
In such a scenario, phonetic aspects would pre-
sumably become more important. However, as
we want to model the probability that a learner
makes a spelling error, we need to take the
length effect into account as an important in-
dicator.

4.3 Cross-corpus comparison
The above results have shown that the pre-
diction quality is very similar for the two En-
glish corpora. To analyze the robustness of
the prediction approach, we compare the pre-
diction quality across corpora by training on all
instances of one corpus and testing on the in-
stances of another. We also include the German
and Italian corpora to this cross-corpus com-
parison to evaluate the language-dependence of
spelling difficulty.

Train Corpus Test Corpus
EFC FCE M-DE M-IT

# inst. 200 200 60 60

EFC 800 .840 .772 .703 .634
FCE 600 .764 .870 .767 .766

M-DE 140 .659 .829 .800 .796
M-IT 140 .397 .540 .780 .815

Table 5: Spelling difficulty prediction on the full set
across corpora. The prediction results are expressed as
accuracy. The number of instances is indicated in brack-
ets for each dataset. The two classes are equally dis-
tributed.

The results in Table 5 show that the accu-
racy for cross-corpus prediction generally de-
creases compared to the previous results of in-
corpus prediction (which are listed in the dia-
gonal of the result matrix), but still remains
clearly above chance level for English and Ger-
man. In contrast, training on the Italian cor-
pus leads to bad results for the two English
corpora. It is interesting to note that a model
trained on the German spelling errors performs
better on the FCE words than a model trained
on the English errors from the EFC corpus.
The FCE and the Merlin corpus have been
obtained from standardized language examina-
tions whereas the EFC corpus rather aims at
formative language training. In the second sce-
nario, the learners are probably less prepared
and less focused leading to more heterogeneous
data which could explain the performance differ-
ences across corpora.

5 Error Analysis

For a more detailed analysis, we take a closer
look at the mis-classifications for the EFC
dataset. In a second step, we analyze spelling
errors with respect to the L1 of the learners.

5.1 Misclassifications
The following words were classified as high error
probability, but have a low error probability in
the learner data: references, ordinary, univer-
sal, updates, unrewarding, incentives, cologne,
scarfs, speakers, remained, vocals. It seems sur-
prising that all those words should have a low
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error probability. A possible explanation could
be that the words had been mentioned in the
task description of the essays and are therefore
frequently used and spelled correctly. Unfortu-
nately, the task descriptions are not published
along with the corpus and we cannot take this
factor into account.

The words that were erroneously classified
as words with a low spelling error probabil-
ity are generally shorter: icy, whisky, cried,
curry, spelt, eight, runway, tattoo, daughter,
farmers, discreet, eligible, diseases, typical,
gallery, genre, mystery, arctic, starters, stretch,
rhythm. In several cases, we see phenomena for
which features are available, e.g. a low vowel-
consonant ratio in stretch and rhythm, an infre-
quent grapheme-to-phoneme mapping in genre,
a low character sequence probability in tattoo.
Unfortunately, these features seem to be over-
ruled by the length feature.

In other examples, we observe phenomena
that are specific to English and are not suffi-
ciently covered by our features such as irregular
morphology (icy, spelt, cried). This indicates
that features which model language-specific phe-
nomena might lead to further improvements.

5.2 Influence of the L1
As phonetic features have a strong influence on
spelling difficulty, we assume that the L1 of the
learners plays an important role. For example,
arctic is misspelled as *artic, gallery as *galery
and mystery and typical are spelled with i in-
stead of y. These misspellings correspond to the
correct stem of the respective word in Spanish,
Italian and Portuguese. In the following, we
thus have a closer look at the influence of the
L1.

The EFC corpus comprises essays from a very
heterogeneous group of learners, but 71% of
the annotated essays are written by learners
from five nationalities, namely Brazilian, Chi-
nese, German, Mexican, and Russian. For com-
parative analyses, we also extracted the spelling
errors specific to each of these five nationali-
ties. Table 6 shows anecdotal examples of cross-
lingual influence on spelling difficulties. For the
word attention, it can be seen that the Russian

learners are tempted to use an a as second vowel
instead of an e. For the Brazilian and Mexican
learners, on the other hand, the duplication of
the t is more problematic because doubled plo-
sive consonants do not occur in their L1.

L1-specific errors are often due to the exis-
tence of similar words—so-called cognates—in
the native language of the learner. The word
departmental is particularly difficult for Brazil-
ian and Chinese learners. While most Brazilian
learners erroneously insert an a due to the cog-
nate departamento, none of the Chinese learners
commits this error because a corresponding cog-
nate does not exist. The Brazilian and Mexican
misspellings of hamburger can also be explained
with the cognateness to hamburguesa and ham-
búrguer respectively. A g followed by an e is
pronounced as a fricative /x/ in Spanish and
not as a plosive /g/. This indicates that the
phonetic features should model the differences
between the L1 and the L2 of the learner.

The word engineer provokes a large variety of
misspellings. A common problem is the use of
e as the second vowel, which could be explained
with the spelling of the cognates (br: engen-
heiro, de: Ingenieur, ru: инженер transliterated
as inzhener). However, the misspelling by the
Mexican learners cannot be explained with cog-
nateness because the Spanish spelling would be
ingeniero. The spelling of marmalade with an e
seems to be idiosyncratic to German learners.

The above analyses are only performed on an
anecdotal basis and need to be backed up with
more thorough experimental studies. The ex-
amples support the intuitive assumption that
cognates are particularly prone to spelling er-
rors due to the different orthographic and pho-
netic patterns in the L1 of the learner. The cog-
nateness of words can be determined automat-
ically using string similarity measures (Inkpen
et al., 2005) or character-based machine trans-
lation (Beinborn et al., 2013).

The learners in the EFC corpus also differ
in proficiency (e.g. German learners seem to be
more advanced than Brazilian learners) which
might also have an influence on the spelling er-
ror probability of words. However, it is compli-
cated to disentangle the influence of the L1 and
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Correct Brazilian Mexican Chinese Russian German

attention
atention(27) atention (13) attaention (1) attantion (5) -
attencion (10) attencion(1) atttention (1) atantion (1) -
atencion (3) attentio (1) - atention (1) -

departmental
departament (10) department (1) deparment (2) - -
departamente (1) - deparmental (1) - -
departaments (1) - deprtment (1) - -

hamburger hamburguer (2) hamburguer (2) hamburg - -
hamburguers (2) - hamburgs (1) - -

engineer
engeneer (17) enginner (25) engneer (5) engeneer (14) ingeneur (2)
ingineer (2) engeneer (8) engeneer (4) engeener (3) engeneer (2)
ingener (2) engenier (4) enginner (3) ingener (2) ingeneer (2)

marmalade - - - - marmelade (3)
Table 6: Most frequent misspellings for selected examples

of the L2 proficiency based on the current data
and we leave this analysis to future work.

6 Related work

In section 2, we already discussed psycholinguis-
tic analyses of spelling difficulty. In natural lan-
guage processing, related work in the field of
spelling has focused on error correction (Ng et
al., 2013; Ng et al., 2014). For finding the right
correction, Deorowicz and Ciura (2005) analyze
probable causes for spelling errors. They iden-
tify three types of causes (mistyping, misspelling
and vocabulary incompetence) and model them
using substitution rules. Toutanova and Moore
(2002) use the similarity of pronunciations to
pick the best correction for an error resulting in
an improvement over state-of-the-art spellcheck-
ers. Boyd (2009) build on their work but model
the pronunciation of non-native speakers, lead-
ing to slight improvements in the pronunciation-
based model. Modeling the spelling difficulty
of words could also have a positive effect on
spelling correction because spelling errors would
be easier to anticipate.

Another important line of research is the de-
velopment of spelling exercises. A popular re-
cent example is the game Phontasia (Berkling et
al., 2015a). It has been developed for L1 learners
but could probably also be used for L2 learners.
In this case, the findings on cross-lingual trans-
fer could be integrated to account for the special

phenomena occurring with L2 learners.

7 Conclusions

We have extracted spelling errors from three
different learner corpora and calculated the
spelling error probability for each word. We an-
alyzed the concept of spelling difficulty and im-
plemented common word difficulty features and
new phonetic features to model it. Our predic-
tion experiments reveal that the length and fre-
quency features are a good approximation for
spelling difficulty, but they do not capture pho-
netic phenomena. The newly developed feature
for pronunciation difficulty can close this gap
and complement the word difficulty features for
spelling difficulty prediction.

We conclude that the spelling error probabil-
ity of a word can be predicted to a certain ex-
tent. The prediction results are stable across
corpora and can even be used across languages.
A detailed error analysis indicates that further
improvements could be reached by modeling
language-specific features (e.g. morphology) and
by taking the L1 of the learner into account. We
make the spelling errors and our code publicly
available to enable further research on spelling
phenomena and hope that it will lead to new in-
sights into the processes underlying foreign lan-
guage learning.
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Abstract

Natural language processing (NLP) method-
ologies have been widely adopted for readabil-
ity assessment and greatly enhanced predic-
tive accuracy. In the present study, we study
a well-established feature, the frequency of a
word in common language use, and systemat-
ically explore how such a word-level feature
is best used to characterize the reading lev-
els of texts, a text-level classification problem.
While traditionally such word-level features
are simply averaged for all words of given
text, we show that a richer representation leads
to significantly better predictive models.

A basic approach adding a feature for the
standard deviation already shows clear gains,
and two more complex options systematically
integrating more frequency information are
explored: (i) encoding separate means for
the words of a text according to which fre-
quency band of the language they occur in,
and (ii) encoding the mean of each cluster of
words obtained by agglomerative hierarchical
clustering of the words in the text based on
their frequency. The former organizes fre-
quency around general language characteris-
tics, whereas the latter aims to lose as little
information as possible about the distribution
of word frequencies in a given text. To in-
vestigate the generalizability of the results, we
compare cross-validation experiments within
a corpus with cross-corpus experiments test-
ing on the Common Core State Standards ref-
erence texts. We also contrast two different
frequency norms and compare frequency with
a measure of contextual diversity.

∗Xiaobin Chen is also affiliated with the South China
University of Technology, where he holds a lecturer position.

1 Introduction

Although readability research has gone through a
history of more than one hundred years (DuBay,
2007), the use of Natural Language Processing
(NLP) technology in readability research is a recent
phenomenon. It has greatly improved the predictive
accuracy by enabling a multi-dimensional charac-
terization of a text’s reading level (Benjamin, 2012;
Collins-Thompson, 2014). For example, Vajjala and
Meurers (2012) showed that 46 lexical and syntac-
tic features mostly inspired by complexity measures
Second Language Acquisition research support a
classification accuracy of 91.3% on WeeklyReader,
a collection of texts targeting children in four age
groups commonly used in such readability research
(Petersen and Ostendorf, 2009; Feng et al., 2010).

The readability of a text is determined by the com-
bination of all text aspects that affects the reader’s
understanding, reading speed, and level of interest in
the text (Dale and Chall, 1949). Recent studies ex-
plore lexical, morphological, semantic, psycholin-
guistic, syntactic, and cognitive features for deter-
mining the reading levels of texts (Crossley et al.,
2007; Lu et al., 2014; Hancke et al., 2012; Boston et
al., 2008; vor der Brück et al., 2008; Heilman et al.,
2007; Feng, 2010; McNamara et al., 2014).

Among all these elements, the semantic variable
of word difficulty has traditionally been found to ac-
count for the greatest percentage of readability vari-
ance (Marks et al., 1974). Word difficulty is of-
ten associated with word frequency given that the
amount of exposure of a reader to the word is be-
lieved to be the major predictor of word knowl-
edge (Ryder and Slater, 1988).
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In the present study, we zoom in to the question
how word frequency can best be used to characterize
the readability of a text. We experimented with three
different methods of using frequency as a word-level
feature to inform our predictions of readability at the
text-level.

2 The Frequency Effect

Reading is a coordinated execution of a series of pro-
cesses which involve word encoding, lexical access,
assigning semantic roles, and relating the informa-
tion contained in a sentence to earlier sentences in
the same text and the reader’s prior knowledge (Just
and Carpenter, 1980). Successful comprehension of
texts depends on the readers’ semantic and syntac-
tic encoding abilities (Marks et al., 1974), as well as
their vocabulary knowledge in the language (Laufer
and Ravenhorst-Kalovski, 2010; Nation, 2006). A
general consensus of reading research is that lexical
coverage/vocabulary knowledge are good predictors
of reading comprehension (Bernhardt and Kamil,
1995; Laufer, 1992; Nation, 2001; Nation, 2006;
Qian, 1999; Qian, 2002; Ulijn and Strother, 1990).

A reader’s vocabulary knowledge is largely re-
lated to the amount of exposure they have received
to words—often refered to as frequency effect. It
is argued to be predictive of word difficulty (Ryder
and Slater, 1988) and Leroy and Kauchak (2014)
found that word frequency is strongly associated
with both actual difficulty (how well people can
choose the correct definition of the word) and per-
ceived difficulty (how difficult a word looks). High-
frequency words are usually perceived and pro-
duced more quickly and more efficiently than low-
frequency ones (Balota and Chumbley, 1984; Howes
and Solomon, 1951; Jescheniak and Levelt, 1994;
Monsell et al., 1989; Rayner and Duffy, 1986). Con-
sequently, a text with many high-frequency words is
generally easier to understand than one with a num-
ber of rare words. Frequency of word occurrence
affects not only the ease of reading, but also its ac-
ceptability (Klare, 1968).

The frequency effect is based on a cognitive
model assuming a higher base-level of activation
for frequently-used words, so they require relatively
less additional activation when they are being re-
trieved from the reader’s mental lexicon (Just and

Carpenter, 1980). This idea is supported by the find-
ings that high-frequency words are more easily per-
ceived (Bricker and Chapanis, 1953) and readily re-
trieved by the reader (Haseley, 1957). Going be-
yond this basic effect, in frequency-based accounts
of Second Language Acquisition (Ellis, 2012), the
frequency distribution of the input is a key deter-
minant of acquisition, with regularities emerging
through the learner’s exposure to the distributional
characteristics of the language input.

3 Word Frequency for Readability
Assessment

Figure 1 illustrates how word frequency can be
linked to reading comprehension. Based on a model
such as this one, it is reasonable to assume that lexi-
cal frequencies can inform text-level analyses.

Figure 1: The frequency effect on reading comprehension

Traditional readability formulas used measures
such as number of “zero-index words” (number
of words that are not included in the most fre-
quent words in English), median of index num-
bers (Lively and Pressey, 1923), average word
weighted value (Patty and Painter, 1931), or num-
ber of words from the text that are among the first
1,000 and first 2,000 most frequent words (Ojemann,
1934) for predicting reading levels. These measures
were found to be highly correlated with difficulty
and effective in assessing text readability.

Modern readability assessment systems such as
Lexile (Lexile, 2007), ATOS (Milone and Biemiller,
2014), and CohMetrix (McNamara et al., 2014) also
made wide use of word frequencies to help deter-
mine the reading level of a text, and such systems
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were found to be relatively effective (Nelson et al.,
2012). However, there are several issues concerning
the frequency lists used, the nature of the frequency
measures, and how they are used to account for text
readability that deserve more attention.

The first issue is that the frequency lists adopted
by these studies were mostly drawn from written
corpora. Spoken language was rarely taken into
consideration when frequency lists were being com-
posed. This runs the risk of the frequency values
not being a faithful representation of the reader’s ac-
tual language experience, hence being suboptimal
for predicting the ease of perception and retrieval.
Fortunately, the SUBTLEX frequency lists (Brys-
baert and New, 2009; van Heuven et al., 2014)
have been compiled on the basis of spoken language
data drawn from movie and TV subtitles to obtain
more faithful representations of a language typical
user’s experience with language. The SUBTLEX
frequency lists significantly better predict word pro-
cessing times than earlier norms such as Kučera and
Francis (1967) and Celex (Baayen et al., 1993), or
frequencies norms derived from the huge Google
books corpus (cf. Brysbaert et al., 2011).

The second issue concerns how frequency is mea-
sured. Previous research generally sums up all oc-
currences of a word in the corpus. Yet some words
may be frequent in restricted contexts but are not fre-
quent when considering all contexts of language use.
As argued by Adelman et al. (2006), a better method
may be to count the Contextual Diversity (CD), the
number of contexts in which a word occurs. They
found the CD measure to be a better predictor of
word frequency effects in lexical decision tasks, a
method for probing into the word knowledge in the
speaker’s mental lexicon. However, to the best of
our knowledge, CD measures have never been tested
in text-level readability assessment. To address this
gap, we experimented with both frequency and CD
measures in constructing our readability models.

Finally, as for how to use word frequencies for
building readability prediction models, previous re-
search typically employed mean frequencies or the
percentage of words from the top frequency bands
to characterize text levels. Yet, this loses a lot of in-
formation about the distribution of word frequencies
in the text. Averaging is easily affected by extreme
values, and it loses information about the variabil-

ity of the data. Furthermore, averaging over all oc-
currences of words in a text will minimize the con-
tribution of low-frequency words—yet, it may be
precisely these less-frequent words that are causing
reading difficulties. In order to explore how word
frequency can be better used for readability assess-
ment, we test three different methods for character-
izing texts in terms of lexical frequency: (i) comple-
menting the mean frequency with the standard de-
viation, (ii) encoding separate means for the words
of a text according to which frequency band of the
language they occur in, and (iii) encoding the mean
of each cluster of words obtained by agglomera-
tive hierarchical clustering of the words in the text
based on their frequency. The second method or-
ganizes the frequency measures around general lan-
guage characteristics, whereas the third one aims to
lose as little information as possible about the dis-
tribution of word frequencies in a given text. The
goal of the series of experiments is to identify better
methods for characterizing texts of different reading
levels from the lexical perspective.

In sum, the reviews of the frequency effect on
reading comprehension and earlier research on the
use of word frequency for readability assessment
support the hypothesis that a lexical frequency mea-
sure reflecting the reader’s language experience can
play a substantial role in models of text readability.
The research reported here is devoted to testing this
hypothesis in a way that addresses the three prob-
lems spelled out above: the source of the frequency
list, the nature of the frequency measure used, and
the method for combining word-level evidence for
text-level predictions.

4 Experimental Setup

Before turning to the three experiments carried out,
let us introduce the resources and the general pro-
cedure used. As source of the frequency and CD1

information, we used the SUBTLEXus (Brysbaert
and New, 2009) and the SUBTLEXuk (van Heuven
et al., 2014) resources. We ran all experiments with
two distinct frequency resources to be able to study
the impact of the choice of resource. As corpus for
exploring the approach and 10-fold cross validation

1The CD measure we used is referred to as SUBTLCD in
SUBTLEXus and as CD in SUBTLEXuk.

86



testing we used the leveled text corpus WeeBit (Va-
jjala and Meurers, 2012). For independent cross-
corpus testing, we trained on WeeBit and tested on
the exemplar texts from Appendix B of the Common
Core State Standards (CommonCore, 2010). For
machine learning, we used the basic k-nearest neigh-
bor algorithm implemented in the R package class
given that in our initial exploration it turned out to
perform on a par or better than other commonly used
algorithms such as Support Vector Machine or De-
cision Trees.

4.1 The SUBTLEX Lists

The SUBTLEXus (Brysbaert and New, 2009) con-
tains 74,286 word forms with frequency values cal-
culated from a 51-million-word corpus of subti-
tles from 8,388 American films and television se-
ries broadcast between 1900 and 2007. The SUB-
TLEXuk (van Heuven et al., 2014) is the British
counterpart, consisting of 160,022 word forms with
frequency values calculated from a 201.7-million-
word corpus of subtitles from nine British TV chan-
nels broadcast between January 2010 and Decem-
ber 2012. The SUBTLEX resources provide fre-
quency information in several forms motivated in
van Heuven et al. (2014); we made use of the fre-
quencies given on the Zipf scale (log10 of the fre-
quency per billion words), as well as the CD values,
for which each film or TV program counted as a con-
text.

4.2 The WeeBit and Common Core Corpora

The WeeBit corpus used in a number of readability
and text simplification studies (Vajjala and Meurers,
2012; Vajjala and Meurers, 2013; Vajjala and Meur-
ers, 2014) was collected from the educational mag-
azine Weekly Reader used in earlier readability re-
search (Petersen and Ostendorf, 2009; Feng et al.,
2010) and the BBC-Bitesize website. As summa-
rized in Table 1, it is a 789,926-word corpus of texts
labeled with five grade reading levels.

The Common Core corpus consists of exemplar
texts from Appendix B of the English Language Arts
Standards of the Common Core State Standards.
The corpus we use for testing in our experiments
is exactly the same as the one used by Nelson et
al. (2012). They eliminated the lowest (K–1) level of
the original six levels and removed repetition, dra-

Grade Level Age
Group

# Articles # Words /
Article

WR Level 2 7–8 616 152.63
WR Level 3 8–9 616 190.74
WR Level 4 9–10 616 294.91
BiteSize KS 3 11–14 616 243.56
BiteSize GCSE 14–16 616 400.51

Table 1: Details of the WeeBit corpus

mas, and texts intended for teacher to read aloud,
resulting in 168 remaining passages at five levels.

4.3 Experimental Procedure

The following basic procedure was followed for
each of the experiments carried out:

1. Tokenize corpus texts with CoreNLP Tok-
enizer (Manning et al., 2014), which had also
been used to compose the SUBTLEX fre-
quency lists.

2. Characterize each text using frequency fea-
tures. The nature of the features differs across
the three studies, for which details are given in
the following sections.

3. Train classification models on the WeeBit cor-
pus i) in a 10-fold Cross-Validation (CV) setup
or ii) using the full corpus when the Common
Core data was used as test. The K-nearest
neighbors algorithm of the R package class

was used for model construction and testing.

4. Apply the trained model to the test folds or test
corpus to assess model performance.

5. Report results in terms of Spearman’s correla-
tion coefficient (ρ) to allow comparison of CV
and cross-corpus results. We report both 10-
fold CV performance on WeeBit and the test
performance on Common Core as references
for model fit and generalizability. The KNN
algorithm results in different models when the
parameter K is set differently. The parameter K
for each model was decided automatically by
testing K from one up to the square root of the
number of texts used for training and choosing
the value that resulted in the best performing
model. In this paper, we report the performance
of the best models.
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The complete program for feature extraction and
experiment settings with R code can be obtained
from http://xiaobin.ch.

5 Study 1: Adding Standard Deviation

In this first study, we tried the most conservative ex-
tension: in addition to the mean frequencies of the
words in a given document, we computed the stan-
dard deviation (SD). So we compared +SD models
trained on two frequency features (mean and SD)
with the baseline −SD models trained only on the
mean frequency. As explained in the previous sec-
tion, we tested this using the Zipf and CD mea-
sures from two different frequency resources, SUB-
TLEXus and SUBTLEXuk.

We experimented with both token and type
models. For token models, we considered the
SUBTLEX-frequency of each word instance in a
given text. For type models, each distinct word in
the document was considered only once.

Table 2 sums up the results for the 10-fold CV in
terms of the Spearman rank correlation ρ between
model-predicted and actual reading levels of texts.2

Table 3 shows the performance of the models trained
on WeeBit and tested on Common Core.

Token Type
−SD +SD −SD +SD

US-ZIPF -.02 .40∗∗∗ .26∗∗ .42∗∗∗

US-CD -.02 .46∗∗∗ .19∗ .44∗∗∗

UK-ZIPF .05 .25∗∗∗ .31∗∗∗ .38∗∗∗

UK-CD .04 .26∗∗∗ .21∗∗ .29∗∗∗

Table 2: 10-fold CV results for models without/with SD

Token Type
−SD +SD −SD +SD

US-ZIPF .03 .34∗∗∗ .33∗∗∗ .35∗∗∗

US-CD -.27∗∗∗ .28∗∗∗ .22∗∗ .33∗∗∗

UK-ZIPF -.13 .26∗∗∗ .36∗∗∗ .38∗∗∗

UK-CD .00 .02 .33∗∗∗ .27∗∗∗

Table 3: Common Core test results without/with SD

The models trained on frequency mean and SD
systematically performed better than those trained

2Here and throughout, we mark significant differences (from
the null hypothesis that there is no correlation) with *** for
p ≤ .001, ** for p ≤ .01, and * for p ≤ .05.

with only mean frequencies. While considering both
mean and SD of word frequencies seems like an ob-
vious choice, as far as we know no previous research
made use of this option providing significantly bet-
ter performance for text-level readability prediction.

The results also show that the type models uni-
formly outperform the token models. In order to
further explore this finding, in Figure 2 we plotted
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Figure 2: Mean token vs. type Zipf by Common Core text level

the mean token and type frequencies of the words in
each text of the Common Core corpus by text level.
As the reading level increases, the plot shows a clear
pattern of decreasing mean type Zipf values. This is
not observable for the token averages.

High-frequency tokens usually have multiple oc-
currence in a given text, inflating the sum of fre-
quency values and obscuring the influence of low
frequency words on the mean. The type-based mea-
sure eliminates multiple occurrences of tokens so
that words across the frequency spectrum contribute
equally. The fact that the average type frequencies
in Figure 2 are so clearly associated with the read-
ability levels transparently supports the frequency
effect.

Comparing the results based on frequency (Zipf)
with those using Contextual Diversity (CD), dif-
ferent from the lexical decision tasks (Brysbaert
and New, 2009), where CD was more predictive,
for text-level readability assessment, frequency per-
forms better for readability assessment.

Finally, Table 3 also showcases that frequency
lists calculated from different corpora (here: SUB-
TLEXus vs. SUBTLEXuk) do result in substantially
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different model performance. For example, the Zipf
measure from the SUBTLEXus corpus resulted in
the better 10-fold CV performance than that from
the SUBTLEXuk corpus, with a highly significant
Spearman’s correlation coefficient (ρ = .42, p ≤
.001) for the type model.

6 Study 2: Mean Frequencies of Words
from Language Frequency Bands

For the second study, frequency means3 of words
from stratified frequency lists were calculated and
used as features to characterize the texts’ reading
levels. To stratify the frequency list, the words in
the SUBTLEX lists were ordered by their frequency
values. Then the list was cut into a number of fre-
quency bands, resulting in each word being assigned
a band number. Words in the same band thus oc-
cur with similar frequency in the language as rep-
resented by the corpora the SUBTLEX lists were
compiled from. The words in a given text to be an-
alyzed are matched with the words in the frequency
list and grouped by the words’ band numbers. The
text can then be characterized by the average fre-
quencies of the words in each band, i.e., we obtain
one average per band. With both SUBTLEX lists,
we experimented with up to 100 bands. As before,
we used the Zipf frequency and CD measures and
tested both token and type models.

Figures 3 and 4 show the performance of token
and types models trained with features from both
the SUBTLEX lists. The performance is given in
terms of 10-fold CV ρs and cross-corpus ρs tested
on Common Core. Unlike the results of Study 1, the
token models did not perform significantly different
from the type models for 10-fold CV. However, the
type models generalized better to the Common Core
test set than the token models. Word type frequency
thus better captures the frequency characteristics of
a text. For readability assessment purposes, calcu-
lating mean type frequency of words from each fre-
quency band creates better prediction models.

A comparison of the results with those from
Study 1 shows that the models constructed using
the stratification method clearly outperformed those
from Study 1 using only a single mean for all words.
When the Zipf measure from the US list is stratified

3Without SD; adding SD did not improve performance.

into 60 bands, the trained model has the best per-
formance among all the models, reaching a 10-fold
CV ρ = .83, p ≤ .001 and a cross-corpus testing
ρ = .39, p ≤ .001). Performance on the test set is
rather volatile, though: when the list was cut into 20
bands, the resulting model failed to distinguish be-
tween text levels (ρ = −.11, p ≥ .05) for the test
corpus, while the with-in corpus CV correlation co-
efficient was ρ = .80, p ≤ .001. The method used
in this study thus needs to be fine-tuned with respect
to the corpora or resources at hand to achieve the
optimal results.

7 Study 3: Frequency Cluster Means

The idea behind the third study is the following: The
richest frequency representation of a text would be
a vector of the frequency of all words in the text.
But this is too fine grained to be directly compara-
ble across texts, and texts also differ in length.4 We
therefore incrementally group words together that
differ minimally in terms of their frequency values.
We can then compute the average frequencies of the
words in each group. To realize this idea, we used
agglomerative hierarchical clustering to construct a
word frequency hierarchical cluster tree for each
text in the training corpus. Concretely, we used the
hclust() function in R with the default complete
linkage method and the dist() function for calcu-
lating Euclidean distances as dissimilarity structure
for hclust().

The trees were then cut at different distances from
the root to obtain an increasing number of branches,
with each branch representing the set of words clos-
est in frequency. The branch means5 were calculated
for each set and used as features to construct the pre-
diction models.

We experimented with the Zipf measure from the
SUBTLEXus frequency list with up to 100 clusters
and explored type and token models. The perfor-
mance of the trained models are shown in Figure 5.

4Orthogonal to the number of frequency values compared,
note that the order of words in a given text is ignored here. The
order may well provide relevant information characterizing the
readability of a text. For example, a simple text may well in-
clude rare words as long as they are followed by more frequent
words explaining the rare ones. This could be interesting to ex-
plore in future work.

5Without SD; adding SD did not improve model perfor-
mance either.
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Figure 3: 10-fold CV and cross-corpus test ρs between predicted and actual text reading levels by number of SUBTLEXus bands
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Figure 5: 10-fold CV and cross-corpus testing ρs between predicted and actual text reading levels by number of clusters

For most cutting schemes, the token and type mod-
els performed comparably. As the number of clus-
ter increased, the trained models improved in perfor-
mance, with the testing ρs peaking at 70 clusters for
all models. Table 4 provides the information for the
best performing models from this study.

Model Type #Clusters ρ

Token Model
10-fold CV 85 .74***
Cross-corpus 70 .49***

Type Model
10-fold CV 85 .74***
Cross-corpus 71 .49***

Table 4: Best-performing models from clustering experiment

The models constructed in this experiments per-
formed significantly better than those from Study 1.
Although the models from Study 2 had higher CV
ρs, those from this study show a more stable cross-
corpus testing performance, which is of major im-
portance for using such a method in practice. It is
striking that clustering the words in a text that are
similar in word frequency is more reliable across

corpora than grouping words by the language fre-
quency bands as a general characteristic of language
independent of the texts.

8 Comparison with Previous Work

Nelson et al. (2012) assessed the capabilities of
six tools for predicting text difficulty: the com-
mercial systems Lexile (MetaMetrics), ATOS (Re-
naissance Learning), DRP Analyzer (Questar As-
sessment, Inc.), the Pearson Reading Maturity Met-
ric (Pearson Knowledge Technologies), SourceRater
(Educational Testing Service), and the research sys-
tem REAP (Carnegie Mellon University). Word fre-
quency is a measure that is included in all these sys-
tems, though all of them incorporate additional fea-
tures such as syntactic complexity. One of the eval-
uations reported by Nelson et al. (2012) was car-
ried out on the freely available Common Core exem-
plar texts that was also used in Vajjala and Meurers
(2014) and the present research, and they reported
Spearman’s ρ, making their results comparable to
ours.

The results reported for the best systems clearly

91



highlight the value of rich feature sets, reaching .76
for SourceRater and .69 for Reading Maturity, which
is also the level reached by the Vajjala and Meurers
(2014) model.

At the same time, the approach based solely on
frequency we discussed in Study 3 with a ρ of .50
is on a par with the results noted by Nelson et
al. (2012) for the Lexile system, and only slightly
worse than the .53 reported for DRP.

The comparison thus clearly confirms the rele-
vance of considering how lexical frequency informa-
tion is to be integrated into readability assessment.

9 Conclusions

In this paper, we explored the text readability anal-
ysis from a word-level perspective, zooming in on
lexical frequency. The goal of the three experiments
carried out in the research was to investigate how
a text-level classification problem can be informed
by a word-level feature of the text, namely the fre-
quency of words in general language use. Word fre-
quency is related to the difficulty level of a text given
that reading comprehension is partially determined
by the reader’s vocabulary knowledge, which in turn
is related to word frequency. The frequency effect
of vocabulary on the reading levels of text is in line
with a basic cognitive model positing that words of
higher frequencies have a higher level of activation
and require less extra effort when they are being re-
trieved from the reader’s mental lexicon. As a re-
sult, where frequency lists faithfully represent the
reader’s language experience, they can predict how
difficult the words used in a text are to the reader
and in turn inform estimates of the readability of the
text.

Three methods of using word frequency lists to
predict text readability were tested and confirmed
that word frequency is effective in characterizing
text difficulty, especially when more than just the av-
erage frequency of the words in a text is taken into
account. Characterizing text readability in terms of
the overall mean and standard deviation of word fre-
quencies performed better than models just using the
mean. The model based on the frequencies of the
word types occurring in the text (rather than the to-
kens) were better throughout and generalized much
better across corpora. In terms of the nature of the

measure itself, the models trained with the Zipf fre-
quency measures were found to outperform those
based on measures of Contextual Diversity. The
models trained with stratified frequency measures in
the second study showed the best performance for
the CV evaluation using a single corpus, but gener-
alized less well to the rather different test data set
based on the Common Core texts than the clustering
approach explored in the third study.

With respect to applying these methods in prac-
tical readability assessment contexts, the Zipf fre-
quency measures from the SUBTLEX frequency
lists seem to be well-suited, with the overall mean
frequency and SD values computed based on the
word types being easy and effective. The stratifica-
tion method improves performance over the simple
mean and SD, but it requires fine-tuning of the num-
ber of bands. The clustering method has the best
model performance and is least sensitive to the use
of different frequency lists and measures, but it is
also computationally the most expensive.

While the performance of the best frequency
models reaches a level that is competitive with sys-
tems such as Lexile, clearly a comprehensive ap-
proach to readability assessment will integrate a
broad range of features integrating more aspects of
the linguistic system, language use, and human lan-
guage processing. Where texts are characterized in
terms of observations of smaller units, based our
results for lexical frequency it will be advisable to
characterize text level readability by more than sim-
ple means when aggregating the information ob-
tained, e.g., at the lexical or sentence level.
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Abstract

The automated scoring of second-language
(L2) learner text along various writing dimen-
sions is an increasingly active research area.
In this paper, we focus on determining the top-
ical relevance of an essay to the prompt that
elicited it. Given the burden involved in manu-
ally assigning scores for use in training super-
vised prompt-relevance models, we develop
unsupervised models and show that they cor-
relate well with human judgements.

We show that expanding prompts using
topically-related words, via pseudo-relevance
modelling, is beneficial and outperforms other
distributional techniques. Finally, we incor-
porate our prompt-relevance models into a su-
pervised essay scoring system that predicts a
holistic score and show that it improves its
performance.

1 Introduction

Given the increase in demand for educational tools
and aids for L2 learners of English, the automated
scoring of learner texts according to a number of
predetermined dimensions (e.g., grammaticality and
lexical variety) is an increasingly important research
area. While a number of early approaches (Page,
1966; Page, 1994) and recent competitions1 (Sher-
mis and Hammer, 2012) have sought to assign a
holistic score to an entire essay, it is more infor-
mative to give detailed feedback to learners by as-
signing individual scores across each such writing
dimension.

1https://www.kaggle.com/c/asap-aes

This more specific feedback facilitates reflection
both on learners’ strengths and weaknesses, and
focuses attention on the aspects of writing that
need improvement. Recent work outlines a number
of broad competencies that systems should assess
(Kakkonen and Sutinen, 2008). These include mor-
phology, syntax, semantics, discourse, and stylistics,
noting that the specific assessment tasks that might
aim to measure these areas of competency may vary.
One dimension against which a piece of text is of-
ten scored is that of topical relevance. That is, de-
termining if a learner has understood and responded
adequately to the prompt. This aspect of automated
writing assessment has received considerably less
attention than holistic scoring.2

Topical relevance is not so much concerned with
whether an L2 learner has constructed grammati-
cally correct and well-organised sentences, as it is
concerned with whether the learner has understood
the prompt and attempted a response with appropri-
ate vocabulary. Other reasons for measuring the top-
ical relevance of a text include the detection of ma-
licious submissions, that is, detecting submissions
that have been rote-learned or memorised specifi-
cally for assessment situations (Higgins et al., 2006).

In this paper, we employ techniques from the
area of distributional semantics and information
retrieval (IR) to develop unsupervised prompt-
relevance models, and demonstrate that they cor-
relate well with human judgements. In particu-

2We note that a recent paper (Persing and Ng, 2014) has
referred to this task as prompt adherence, while we use the
terms prompt-relevance and topical-relevance interchangeably
throughout this paper.
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lar, we study four different methods of expanding a
prompt with with topically-related words and show
that some are more beneficial than others at over-
coming the ‘vocabulary mismatch’ problem which is
typically present in free-text learner writing. To the
best of our knowledge, there have been no attempts
at a comparative study investigating the effective-
ness of such techniques on the automatic predic-
tion of a topical-relevance score in the noisy domain
of learner texts, where grammatical errors are com-
mon. In addition, we perform an external evaluation
to measure the extent to which prompt-relevance in-
forms (Rotaru and Litman, 2009) the holistic score.

The remainder of the paper is outlined as follows:
Section 2 discusses related work and outlines our
contribution. Section 3 presents our framework and
four unsupervised approaches to measuring seman-
tic similarity. Section 4 presents both quantitative
and qualitative evaluations for all of the methods
employed in this paper. Section 5 performs an ex-
ternal evaluation by incorporating the best prompt-
relevance model as features into a supervised prefer-
ence ranking approach. Finally, Section 6 concludes
with a discussion and outline of future work.

2 Related Research

There are a number of existing automated text-
scoring systems (sometimes referred to as essay
scoring systems). For an overview, the interested
reader is directed to reviews and advances in the
area (Shermis and Burstein, 2003; Landauer, 2003;
Valenti et al., 2003; Dikli, 2006; Phillips, 2007;
Briscoe et al., 2010; Shermis and Burstein, 2013). In
this section, we review related research on topical-
relevance detection for automated writing assess-
ment, and outline the key differences between our
approach and that of existing work.

A wide variety of computational approaches
(Miller, 2003; Landauer et al., 2003; Higgins et
al., 2004; Higgins and Burstein, 2007; Chen et al.,
2010) have been used to automatically assess L2
texts. Early work on topical relevance (Higgins et
al., 2006) posed the problem as one of binary clas-
sification and aimed to identify whether a text was
either on or off-topic. The main motivation of the
research was to detect off-topic text, text submitted
mistakenly (within an online assessment setting), or

text submitted in bad faith (i.e., possibly memorised
on an unrelated topic). They adopted an unsuper-
vised approach to the problem, where they matched
each text to its corresponding prompt using tf-idf
weighted content vectors and a similarity function.
One of the heuristic approaches employed in that
work was to calculate the similarity of an essay to a
number of unrelated prompts. If the essay was closer
to an unrelated prompt than the relevant one, the es-
say was deemed to be off-topic.

Briscoe et al. (2010) tackle the problem of off-
topic detection using more complex distributional
semantic models that tend to overcome the problem
of vocabulary mismatch. However, they frame the
task as binary classification and evaluate their ap-
proach by determining if it can associate a learner
text with the correct prompt. The work which is
closest in spirit to that of our own is by Louis and
Higgins (2010), who expand prompts using mor-
phological variations, synonyms, and words that are
distributionally similar to those that appear in the
prompt. Their work builds on the earlier work by
Higgins et al. (2006), and again pose the problem as
one of binary classification.

The most recent work of Persing and Ng (2014)
involves scoring L2 learner texts for relevance on a
seven-point scale using a feature-rich linear regres-
sion approach. While they demonstrate that learn-
ing one linear regression model per prompt is a use-
ful supervised approach, it means that substantial
training data is needed for each prompt in order to
build the models. For the task of determining topical
relevance, this places a substantial burden on man-
ually annotating texts for each individual prompt.3

As a result, supervised prompt-specific approaches
are impractical and less flexible in an operational
setting; if, for example, a new previously-unseen
prompt is required for an upcoming assessment, the
model cannot be applied until a sizeable amount of
manually-annotated response texts are collected and
annotated for that prompt.

A dataset developed from the international corpus
of learner data (ICLE) (Granger et al., 2009) con-
sisting of 830 essays measured for relevance against
one of 13 prompts on a seven-point scale was re-

3In fact, it is often the case that there are multiple prompts
per exam, which change for every exam sitting.
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leased as part of that work (Persing and Ng, 2014).
We make use of this new resource in our work as it
is the only such public dataset.4 We make the fol-
lowing contributions to the automated assessment of
topical relevance:

• We perform the first systematic comparison
of several unsupervised methods for assessing
topical relevance in L2 learner text on a pub-
licly available dataset.

• We adopt a new unsupervised pseudo-relevance
feedback language-modelling approach and
show that it correlates well with human judge-
ments and outperforms a number of other dis-
tributional approaches.

• We perform an external evaluation of our
best prompt-relevance models by incorporat-
ing them into the feature set of a supervised
prompt-independent text-scoring system, and
show that they improve its performance.

3 Semantic Prompt Relevance

Previous research (Higgins et al., 2006) has shown
that representing a prompt p and an essay s as tf-
idf weighted vectors5 p and s in the term space Rv

(where v is the vocabulary of the system) yields use-
ful representations for exact matching using cosine
similarity as follows:

cos(p, s) =
∑

t∈v pt · st√∑
t∈v p

2
t ·
∑

t∈v s
2
t

(1)

However, it is likely that many L2-learner texts
will use words that are related to the prompt, but
which do not have an exact match to any words con-
tained in the prompt. Therefore, we extend this ap-
proach by aiming to expand the prompt p with a set
of topically related expansion terms e using one of a
number of distributional similarity techniques.

3.1 Prompt Expansion
As a general method of prompt expansion, we rep-
resent the prompt p and each candidate expansion

4www.hlt.utdallas.edu/˜persingq/ICLE/
paDataset.html

5We use bold lower-case letters throughout to denote vec-
tors, including probability vectors.

word w as vectors p and w in an n-dimensional
space Rn, and then use some measure of similar-
ity between the two vectors (e.g. cosine similarity)
to rank the candidate expansion words according to
how close they are to the original prompt. We then
select the top |e|most similar expansion terms to add
to the original prompt.

Once the |e| closest terms are selected and added
to the original prompt p, we create a tf-idf weighted
expanded prompt vector pp+e and compare it to the
tf-idf essay vector s using cosine similarity in the
original space Rv as per Equation (1). In our ap-
proach, we conduct the essay matching in the term
space Rv as it allows us to analyse the quality of
the expansion terms, and subsequently to understand
the merits and demerits of the various approaches.
We now outline four methods of selecting candidate
prompt expansion terms.

3.2 Traditional Distributional Semantics

Our first approach involves building traditional dis-
tributional vectors by constructing a matrix of co-
occurrence frequencies. For a specific word w, its
vector is constructed by counting the words (its con-
text words c) that it co-occurs with in a specified
context (usually a window of a few words). The
row for a specific word w then represents the vec-
tor for that word. We weight the vector elements
using the PPMI (positive pointwise mutual informa-
tion) weighting scheme (Turney et al., 2010).

We build word vectors using a lemmatised ver-
sion of Wikipedia from 2013. We removed from the
corpus all words that appeared less than 200 times
and used the 96,811 remaining words as both poten-
tial expansion words w and as contexts c. We used
a 5 word context window (2 words either side of the
target word) and reduced the size of the resultant
vectors by only storing dimensions that had a PPMI
greater than 2.0 (Turney et al., 2010). The resultant
vectors are competitive with the best reported results
for traditional word vectors on a word–word similar-
ity task (Spearman-ρ = 0.732 on 3000 word-pairs
from the MEN dataset) (Levy et al., 2015). We cre-
ate a vector representation for the prompt p in Rn by
summing the PPMI word-vectors of the words oc-
curring in the prompt. Finally, the |e| closest words
to the prompt vector p, as measured by cosine simi-
larity, can then be selected as expansion terms.
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3.3 Random Indexing

Random Indexing (RI) (Kanerva et al., 2000) is an
approach which incrementally builds word vectors
in a dimensionally-reduced space. Words are ini-
tially assigned a unique random index vector in a
space Zn, where n is user-defined. These near-
orthogonal vectors are updated by iterating over a
corpus of text. In particular, the word vector for a
specific word w is altered by adding to it the vectors
of the words in its contexts. The process proceeds
incrementally and therefore only requires one pass
over the data. In this way, words that occur in simi-
lar contexts will be pushed towards similar points in
the space Zn.

We use Random Indexing to build word vectors
using the S-Space package6 using the same prepro-
cessed Wikipedia corpus as outlined in the previ-
ous section. We used a dimensionality of 400 with
window sizes up to 5 words (finding a window of
5 words to create better vectors for the word-word
similarity task). The resultant vectors are not as
competitive as those built using the traditional ap-
proach on a word-word similarity task (Spearman-
ρ = 0.432 on 3000 word-pairs from the MEN
dataset). Again, we create a vector representation
for the prompt p by summing the RI vectors, and
find the closest words vectors w to the prompt.

3.4 Word Embeddings

The continuous bag-of-words architecture (cbow)
and the skip-gram architectures (skip) in word2vec
have been shown to be particularly well-suited to
learning word-embeddings (i.e. low-dimensional
vector representations of words) (Mikolov et al.,
2013). The word2vec package7 from Mikolov is the
original implementation of these models.

We use word2vec to learn distributed represen-
tations for prompts in a similar manner to that just
outlined (in Section 3.2 and Section 3.3). In particu-
lar, we learn distributed vectors using both cbow and
skip and the same preprocessed version of Wikipedia
as used previously. We used word vectors of length
400 for both architectures with a window of 5 for
cbow and 10 for skip-gram as recommended in the
original documentation. For both approaches we use

6https://github.com/fozziethebeat/S-Space
7https://code.google.com/p/word2vec/

negative sampling. The performance of these ap-
proaches on the word-word MEN dataset are ρ =
0.737 and ρ = 0.764 for cbow and skip respectively.
As with previous approaches, we create a vector rep-
resentation for the prompt p by summing the vectors
of the words in the prompt.

3.5 Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF) is a technique
in IR for expanding queries with topically related
words. In PRF, the top |F | ranked documents for
a query are deemed relevant and candidate terms oc-
curring in these documents are analysed and selected
according to a term-selection function. Each candi-
date word can be viewed as being described by a
vector of contexts of dimensionality |F | (i.e. where
the entire document d ∈ F is the context).

We use this approach by using a prompt analo-
gously to a query. In the popular relevance mod-
elling (RM) framework (Lv and Zhai, 2009), the
term-selection value can be viewed as the dot-
product of a prompt vector p (the vector of simi-
larities between the initial prompt p and the docu-
ment contexts d ∈ F ) and the candidate word vector
w (the vector of weights for word w in its contexts
d ∈ F ) as follows:

PRF (p,w) =
∑
d∈F

f(w, d) · Pr(p|d) (2)

where f(w, d) is the weight of the candidate word
w in document d and Pr(p|d) is the probability
that d generated p, i.e. the query-likelihood (Ponte
and Croft, 1998). Furthermore, by selecting only
the most important dimensions (i.e. top |F | docu-
ments), dimensional reduction is automatically in-
corporated in an operationally efficient manner. PRF
can be viewed as a dimensionally-reduced proba-
bilistic version of Explicit Semantic Analysis (ESA)
(Gabrilovich and Markovitch, 2007). The typical
dimensionality used for PRF is usually of around
|F | = 20.

In the language modelling framework, documents
are assumed to have been generated by a mixture
of a topical model ατ and a background model αc,
such that d ∼ (1 − ω) · ατ + ω · αc where ω is
the mixture parameter. Given a candidate term w
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appearing in d, the probability that it was generated
by the topical model is as follows:

f(w, d) = p(ατ |w) =
(1− ω) ·ατ

(1− ω) ·ατ + ω ·αc (3)

and therefore, we use this probability of topicality
f(w, d) as the vector weights for w. Assuming that
documents have been generated by a multivariate
Pólya distribution (Cummins et al., 2015), f(w, d)
is as follows:

f(w, d) =
tfw,d

tfw,d + ω·mc·dfw

(1−ω)·∑w′ dfw′
· |d|md

(4)

where tfw,d is the term-frequency, dfw is the doc-
ument frequency of w in the collection being
searched, md is the number of unique terms in the
document, mc is the background mass (Cummins et
al., 2015), and ω = 0.8 is a stable hyper-parameter
that controls the belief in the background model.
Essentially, this approach (denoted PRF ) selects
terms that occur more frequently in the top |F | doc-
uments than they should by chance. As our docu-
ments, we use the same preprocessed Wikipedia cor-
pus as outlined previously.

4 Evaluation of Expansion Methods

In this section, we present results on the effective-
ness of the unsupervised approaches for the task of
assessing the prompt relevance of an essay.

4.1 Data and Experimental Setup
For the first set of experiments, we use 830 L2
learner essays from the ICLE dataset that are as-
sessed for prompt relevance across 13 prompts. This
corpus consists of essays written by higher interme-
diate to advanced learners of English, which cor-
responds to approximately B2 level, or above, of
the CEFR (Common European Framework of Ref-
erence for Languages). The scores assigned to the
essays range from 1.0 to 4.0 in increments of 0.5
(although all essays received a score of 2.0 or more
in the dataset as seen in Table 1). The essays were
double-marked and the linear correlation8 between

8While this seems to suggest that the upper-bound on this
dataset is quite low, the original work notes that 89% of the

score 1.0 1.5 2.0 2.5 3.0 3.5 4.0
# of essays 0 0 8 44 105 230 443

Table 1: Distribution of ICLE essays over score grades.

the assessors was 0.243 (a weak correlation). The
distribution of essays per prompt is included in Ta-
ble 2. We lemmatised all prompts and essays us-
ing RASP (Briscoe et al., 2006). A point worth not-
ing is that there are minimal essay-length effects in
operation on this dataset. The Spearman correla-
tion between the length of the essay and the human-
assigned prompt-relevance score across all 830 es-
says is ρ = 0.007.

As a baseline approach, we use the cosine similar-
ity between the original prompt (unexpanded) and
the essay cos(p, s). For all expansion approaches,
we set the number of expansion terms |e| = 200 and
use the weight of association between the prompt
and the expansion term as the expansion term’s fre-
quency tf value in the expanded prompt. We evalu-
ate the approaches by calculating Spearman’s rank
(ρ) correlation coefficient between each method’s
predicted similarity score and the scores assigned by
the assessors.

4.2 Results for Prompt Relevance

Table 2 (Top) shows the performance of the ap-
proaches over 11 prompts.9 On average, all ap-
proaches increase over the baseline. We can see that
the most consistent approach is the PRF approach
as it improves over the baseline in 10 out of 11
prompts. The RI approach also performs well and
is the best approach on many of the prompts.

However, to measure the topical quality of the ex-
pansion words selected by each approach in isola-
tion, we removed the original prompt words from
the expanded prompts and again calculated the per-
formance of the different approaches. This more
rigorous evaluation in Table 2 (Bottom) shows that
the topical quality of the expansion words from the
PRF approach tends to be better than the other ap-
proaches. We next look at the actual expansion
words selected for two prompts.

time, assessors graded within a point of each other. Further-
more, correlation is affected by scale (Yannakoudakis and Cum-
mins, 2015).

9The two remaining prompts have only three essays associ-
ated with them.
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Prompt 1 2 3 4 5 6 7 8 9 10 11 Mean
# of essays 237 53 64 58 131 43 80 28 49 71 13

length -0.113 -0.026 -0.062 0.211 -0.023 -0.111 0.103 -0.115 -0.056 0.171 0.520 0.045
cos(p, s) 0.324 0.120 0.195 0.122 0.205 -0.019 0.333 0.511 0.268 0.064 0.637 0.251

dsp+e 0.328 0.141 0.182 0.114 0.208 -0.011 0.340 0.519 0.280 0.082 0.637 0.256
RIp+e 0.372 0.098 0.103 0.214 0.192 0.093 0.398 0.720 0.259 0.116 0.449 0.274

cbow p+e 0.345 0.125 0.131 0.114 0.209 0.068 0.328 0.581 0.265 -0.024 0.637 0.253
skipp+e 0.359 0.160 0.183 0.139 0.245 0.026 0.363 0.571 0.278 -0.064 0.677 0.267
PRFp+e 0.348 0.188 0.126 0.145 0.260 0.034 0.340 0.598 0.335 0.078 0.679 0.285

Prompt 1 2 3 4 5 6 7 8 9 10 11 Mean
# of essays 237 53 64 58 131 43 80 28 49 71 13

dse\p 0.008 0.043 -0.098 -0.073 -0.017 -0.092 0.126 0.619 0.202 0.029 0.375 0.102
RIe\p 0.097 0.016 -0.195 0.326 0.061 0.091 0.206 0.572 0.030 0.185 -0.082 0.119

cbowe\p 0.080 0.025 -0.209 0.165 0.071 0.266 0.088 0.677 -0.079 -0.118 0.239 0.110
skipe\p 0.087 0.133 -0.052 0.167 0.149 0.188 0.173 0.592 0.000 -0.171 0.222 0.135
PRFe\p 0.079 0.184 -0.055 0.363 0.151 0.155 0.157 0.612 0.161 0.125 0.455 0.217

Table 2: Correlation (Spearman’s ρ) between prompt–essay similarity scores and human annotations for each prompt (higher values

indicate a better approach) for expansion methods when including original prompt terms (Top – denoted p+ e) and when removing

original prompt terms from the expanded prompt (Bottom – denoted e \ p). Best result in bold.

# 2 – Most University degrees are theoretical and do not prepare us for the real life. Do you agree or disagree?
university degree theoretical prepare real life

ds RI cbow skip PRF
faculty 0.222 accept 0.948 accept 0.598 however 0.677 theory 0.544
graduate 0.214 while 0.919 psychology 0.558 nevertheless 0.677 study 0.444
professor 0.21 experience 0.918 understand 0.553 indeed 0.675 science 0.414
phd 0.204 idea 0.915 study 0.551 insist 0.672 differ 0.396
mathematics 0.199 from 0.913 teach 0.55 accept 0.671 student 0.396
philosophy 0.195 work 0.912 philosophy 0.549 fact 0.67 philosophy 0.394
theory 0.194 acknowledge 0.911 knowledge 0.545 s 0.67 topic 0.392
sociology 0.189 nevertheless 0.911 argument 0.538 would 0.664 educate 0.372
science 0.185 notice 0.91 discuss 0.538 while 0.66 academy 0.361
study 0.182 nonetheless 0.909 theory 0.528 nonetheless 0.656 argue 0.354

# 9 – Feminists have done more harm to the cause of women than good.
feminist harm cause women

ds RI cbow skip PRF
symptom 0.310 likewise 0.883 feminism 0.612 feminism 0.671 feminism 0.910
disease 0.275 consequence 0.882 sexual 0.583 landdyke 0.632 sex 0.896
risk 0.270 furthermore 0.879 violence 0.577 woman 0.617 sexual 0.896
chronic 0.266 affect 0.875 stigmata 0.573 affect 0.594 oppress 0.883
treatment 0.260 response 0.873 perceive 0.573 twwa 0.580 argument 0.875
infect 0.256 moreover 0.871 affect 0.564 argue 0.580 rape 0.800
diagnosis 0.255 hinder 0.871 detriment 0.553 provoke 0.578 men 0.787
patient 0.255 expose 0.869 homosexual 0.547 believe 0.574 gender 0.762
induce 0.253 lastly 0.866 consequence 0.545 consequence 0.573 anti 0.749
disorder 0.247 perceive 0.863 oppress 0.545 sexism 0.573 right 0.740

Table 3: The top 10 non-prompt words and their similarity to the prompt in a lemmatised Wikipedia corpus of 4.4M documents.

4.3 Qualitative Evaluation of Expansion Terms

Table 3 shows the expansion words selected by each
approach for two prompts (prompts # 2 and # 9).
For prompt # 2 we can see the top words selected
for RI and skip do not seem topically similar to the
prompt. The top words for ds, cbow, and PRF seem
on-topic and might be part of useful feedback to a
learner writing for this prompt.

For prompt # 9, ds and RI do not tend to promote
topically related words. The words for the ds ap-

proach seem to be related to topic of diseases as
it may have been mislead by some of the prompt
words. In fact, the top terms promoted by the RI
approach are not particularly on-topic for any of the
11 prompts, despite the empirical evaluation in the
previous section. This could be because some topi-
cal words appear further down the ranking for RI.

We believe the main reason that the PRF approach
outperforms the others is that topicality is a qual-
ity that spans larger segments of text (e.g. docu-
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ments). For the other approaches, the words that are
promoted are very close in proximity to the prompt
words (due to the smaller context sizes), and this is
more likely to capture local aspects of word usage.
Furthermore, in the PRF approach the most impor-
tant contexts are those in which all prompt words
appear together, and this aids automatic disambigua-
tion. Regardless, due to the empirical results in the
previous section and the perceived topical quality of
the terms from the PRF approach, we make use of
the PRF approach as a feature in the next experi-
ment.

5 Prompt-Relevance for Holistic Scoring

We now evaluate the effectiveness of a supervised
essay scoring system that incorporates tf-idf simi-
larity features and the PRF approach for the task of
predicting an overall essay quality score.

5.1 Data and Experimental Setup

For this experiment, we used a dataset consisting
of 2,316 essays written for the IELTS (International
English Language Testing System) English exami-
nation from 2005 to 2010 (Nicholls, 2003). The
examination is designed to measure a broad profi-
ciency continuum ranging from an intermediate to a
proficient level of English (A2 to C2 in the CEFR
levels). The essays are associated with 22 prompts
that are similar in style (i.e. essay style) to those in
the ICLE dataset. Candidates are assigned an overall
score on a scale from 1 to 9. Prompt relevance is an
aspect that is present in the marking criteria, and it is
identified as a determinant of the overall score. We
therefore hypothesise that adding prompt-relevance
measures to the feature set of a prompt-independent
essay scoring system (i.e. that is designed to as-
sess linguistic competence only) would better reflect
the evaluation performed by examiners and improve
system performance.

The baseline system is a linear preference ranking
model (Yannakoudakis et al., 2011; Yannakoudakis
and Briscoe, 2012) and is trained to predict an over-
all essay score based on the following set of features:

- word unigrams, bigrams, and trigrams
- POS (part-of-speech) counts
- grammatical relations
- essay length (# of unique words)

- counts of cohesive devices
- max-word length and min-sentence length
- number of errors based on a presence/absence

trigram language model

We divided the dataset into 5-folds in two sepa-
rate ways. First, we created prompt-dependent folds,
where essays associated with all 22 prompts ap-
pear in both the training and test data in the ap-
propriate proportions. This scenario allows the sys-
tem to learn from essays that were written in re-
sponse to the prompt. Second, we created prompt-
independent folds, where all essays associated with
a specific prompt appear in only one fold. This sec-
ond dataset is a more realistic real-world scenario
(see Section 2) whereby the system learns on one
set of prompts (possibly from previous years) and
aims to predict the score for essays associated with
different prompts. For both of these supervised ex-
periments, we measured system performance using
Spearman’s and Pearson’s correlation between the
output of the system and the gold essay scores (hu-
man judgements).

In order to examine the effect of prompt relevance
on these datasets, we added to our baseline system
two sets of features. The first set of features la-
belled PR includes the cosine similarity between the
essay and the prompt cos(p, s), the fraction of es-
says words that appear in the prompt cov(p, s), and
the fraction of prompt words that appear in the essay
cov(s, p). The second set of features labelled semPR
is the same as the first set except that the prompt is
expanded using the PRF method from earlier.

5.2 Results for Overall Scoring

The results of the experiment are outlined in Table 4.
Firstly, we observe that the effectiveness of the base-
line system is higher on the prompt-dependent folds
(ρ = 0.661) than on the prompt-independent folds
(ρ = 0.637). This confirms expectations as the
prompt-dependent folds allow the baseline model to
learn useful features from essays written specifically
for those prompts. When adding the exact matching
prompt-relevance features – referred to as PR in Ta-
ble 4 – we observe an increase in performance on the
prompt-independent folds. When we add the seman-
tic prompt-relevance models – referred to as semPR
in Table 4 – we again observe a modest increase in
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Prompt-Dependent Folds
System Spearman-ρ Pearson-r
Baseline 0.661 0.686
+ PR 0.659 0.685
+ semPR 0.662 0.691

Prompt-Independent Folds
System Spearman-ρ Pearson-r
Baseline 0.637 0.665
+ PR 0.650† 0.678†
+ semPR 0.656† 0.687†

Table 4: Performance of systems using 5-fold cross-validation

on prompt-dependent folds (top) and prompt-independent folds

(bottom) when adding unsupervised prompt-relevance (PR) fea-

tures and semantic prompt-relevance features (semPR) on a set

of 2316 essays. †means statistically significant compared to the

baseline using Steiger’s test (1980).

performance on the prompt-independent folds. We
can see that both Spearman and Pearson correlations
approach the performance of the baseline system on
the prompt-dependent folds.

On the other hand, there is little or no increase in
performance when adding the PR and semPR fea-
tures on the prompt-dependent folds. One suspected
reason for this is that it is likely that the lexical fea-
tures in the prompt-dependent folds are performing
prompt-relevance modelling (by learning appropri-
ate weights for lexical features in essays written for
that prompt). Overall, this is an interesting result
as it shows that the features developed in this paper
are useful and contribute to the holistic score in real-
world examinations.

6 Discussion

Firstly, the results from Section 4 are not directly
comparable with previous research using the ICLE
dataset, as that work (Persing and Ng, 2014) re-
ported metrics averaged over all essays where each
prompt was not isolated individually. Ignoring
prompt effects may lead to favouring systems that
perform well only on a few prompts, and that are not
robust across the types of prompt that may be used
operationally. Table 5 shows the results of the ap-
proaches outlined in this paper against those from
the original research using the ICLE dataset that
used supervised models. Importantly, we achieve

these correlations without any training data.

System Baseline* tf-idf PRF Persing*
Pearson’s-r 0.233 0.261 0.277 0.360

Table 5: Pearson correlation of systems over all 830 essays. *

means from original paper.

Interestingly, we have shown that the PRF prompt
expansion is effective and is easily analysable. In an
operational setting, prompt expansion is likely to be
a highly important feature. Observing non-prompt
words, that are related to the prompt, in a learner
text is likely to be indicative of a learner who has a
good understanding of the vocabulary of the topic.

The expansion step issues the entire prompt to
a Wikipedia index to gather candidate expansion
terms. While this has been shown to be a useful
approach on average, there may be cases when as-
pects of the prompt are not adequately reflected by
the candidate expansion terms. In such cases it may
be better to partition the prompt into useful phrases
that can be expanded in isolation, or to manually
rephrase the prompt before expanding it with related
terms.

6.1 Conclusion and Future Work

We have shown that using an unsupervised pseudo-
relevance language modelling approach to measur-
ing relevance in learner texts is beneficial as it cor-
relates with human annotators. The expansion terms
in isolation have been shown to be useful and we ar-
gue that they are an important feature for overcom-
ing vocabulary mismatch in learner text.

The estimation of an L2 learner’s language
model from lexemes produced by the learner is
an intuitive and theoretically-motivated way to as-
sess many lexical aspects of writing. However,
compositionally-motivated language modelling ap-
proaches exist (Mitchell and Lapata, 2009), and it
would be interesting to investigate these across dif-
ferent areas in assessment.

The approaches developed herein may also be
useful for providing feedback and/or suggestions to
learners during the process of writing. Future work
will look at supplying feedback in pedagogically
sound ways.
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Abstract

This is a report on the methods used and re-
sults obtained by the UW-Stanford team for
the Automated Evaluation of Scientific Writ-
ing (AESW) Shared Task 2016 on gram-
matical error detection. This team devel-
oped a symbolic grammar-based system aug-
mented with manually defined mal-rules to
accommodate and identify instances of high-
frequency grammatical errors. System results
were entered both for the probabilistic estima-
tion track, where we ranked second, and for
the Boolean decision track, where we ranked
fourth.

1 Introduction

Over the past several years, a series of shared tasks
have been organized to foster research on the auto-
matic detection of grammatical errors in composi-
tions from a variety of genres. In this year’s task,
the organizers invited participants to “analyze the
linguistic characteristics of scientific writing to pro-
mote the development of automated writing evalua-
tion tools that can assist authors in writing scientific
papers. The task is to predict whether a given sen-
tence requires editing to ensure its ’fit’ within the
scientific writing genre.” This Automated Evalua-
tion of Scientific Writing (AESW) Shared Task 2016
is described in more detail, along with descriptions
of the seven teams and their system results, in Dau-
daravicius et al. (2016).

This paper provides a description of the system
adapted for this task by a team of collaborators
from the University of Washington and from Stan-

ford University, The system is based on a sym-
bolic grammar augmented with a set of manually
constructed mal-rules (Schneider and McCoy, 1998;
Bender et al., 2004) designed to license and iden-
tify ungrammatical or stylistically deprecated sen-
tence properties in running text. We used an effi-
cient parser to analyze the training and development
sets repeatedly with successively refined versions of
augmented grammar, producing for each sentence
a derivation which recorded any use of mal-rules,
thus triggering the “needs editing” flag relevant for
the shared task. In the end, we applied the best-
performing of these grammar versions to the test
data in order to produce the results submitted for
scoring.

2 Resources and methods

Our basic approach to this task has much in com-
mon with the one used in the Stanford system
participating in the 2013 CoNLL Shared Task on
Grammatical Error Correction (Flickinger and Yu,
2013), again employing a current version of the En-
glish Resource Grammar (ERG: Flickinger (2000),
Flickinger (2011)) and a task-specific inventory
of mal-rules, but this time using a more efficient
parser (ACE: moin.delph-in.net/AceTop).
As with the earlier task, we used the most likely
derivation licensed by the grammar and produced by
the parser for each sentence, to identify any use of
one or more of these mal-rules in the analysis.

For the Boolean decision track, we predicted an
error if the top-ranked analysis has an error or does
not exist, if the probability of using a mal-rule was
at least 1%, or if this sentence was the most likely
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sentence in the paragraph to require a mal-rule. For
the probabilistic track, our estimator also included
several parameters hand-tuned on the training data.

2.1 Existing resources
Most of the components used in the UW-Stanford
system were drawn from the inventory of re-
sources developed and maintained by members
of the DELPH-IN (Deep Linguistic Processing
with HPSG) consortium (www.delph-in.net).
These components include the ACE parser, the
ERG, the Redwoods treebank (Oepen et al.,
2004), and a set of Python libraries for the
processing of DELPH-IN components’ data
(github.com/delph-in/pydelphin).

For the grammar, we used a modified version of
the “1214” release of the ERG, with substantially
the same core linguistic coverage, but with the im-
portant addition of a separate set of rules and lexi-
cal entries dubbed mal-rules, to explicitly character-
ize frequently occurring ill-formed phrasal construc-
tions and words observed in the data for this shared
task. This extended grammar enabled full analyses
of roughly 92% of the sentences in each of the train-
ing and development data sets provided for the task.
Of the 8% of the sentences not covered by this gram-
mar, nearly half failed to parse due to reaching ex-
ternally imposed (though generous) resource limits
before yielding any analysis. Lacking any guidance
from the grammar, all of these unparsable sentences
were tagged by the system as in need of editing, for
the purposes of scoring.

ACE is a modern unification-based chart parser,
using an agenda-driven variant of the CKY algo-
rithm. Efficiency is enhanced by aggressive ambi-
guity packing (Oepen and Carroll, 2000) and selec-
tive unpacking (Carroll and Oepen, 2005), and dis-
ambiguation is performed using a maximum entropy
ranker trained on the Redwoods treebank. ACE’s
integrated preprocessing and support for clustered
computing made it easy to use for parsing the large
bodies of text in the training and development data.

Since for this task we only wanted the most likely
analysis for each sentence, we used the best avail-
able statistical parse selection model for the ERG,
one trained using the Redwoods treebank, a man-
ually annotated corpus of some 1.4 million words
of text across multiple genres. Crucially, and to the

disadvantage of our use for this task, the treebank
does not contain any analyses using the mal-rules
which of course figure prominently in the deriva-
tions of many of the sentences in the AESW corpus.
We hypothesize that the system could have been im-
proved in both precision and recall if the parse se-
lection model had contained information about the
relative likelihoods of these mal-rules, but a method-
ical test of this hypothesis will have to await further
study.

2.2 Error Discovery

In order to focus our efforts we performed a series
of basic searches over the training corpus. Table 1
shows the number of deletes (not followed by in-
serts), inserts (not preceded by deletes), and sub-
stitutions (delete followed by insert) in the corpus.
With the training set consisting of about 1.2 million
sentences, roughly one of every three sentences con-
tains one or more error corrections.

Error Type Count % Sentences
del-only 124,919 9.03%
ins-only 267,465 17.89%
del-ins 341,108 28.68%
total 733,492 39.24%

Table 1: Basic error types: unique counts and percentage of

sentences affected

Table 2 shows the ten most frequent token-specific
insertions, deletions, and substitutions made by the
editors in the training corpus. Changes to commas,
hyphens, and colons together comprise more than
half of all of the edits in the corpus in each of the
three types of changes, and the frequency of these is
reflected in the choices of phrasal and lexical mal-
rules added to the grammar for this task. Changes
to the English articles the and a, while much less
frequent than punctuation edits, are the next most
significant category. The substitution of section to
Section is the most frequent instance of a class of
capitalization edits which collectively account for
roughly 5.91% of substitutions. Edits in this cat-
egory are highly dependent on their context (e.g.,
the initial capital is generally preferred in Section
_REF_, but not in this section).
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<del>,</del> 40.09% <ins>,</ins> 52.94% <del> </del><ins>-</ins> 13.03%
<del>the </del> 9.19% <ins>the </ins> 12.66% <del>-</del><ins> </ins> 5.10%
<del>:</del> 8.96% <ins>.</ins> 4.78% <del>,</del><ins>;</ins> 1.92%
<del>-</del> 3.14% <ins>a </ins> 4.03% <del>.</del><ins>,</ins> 0.74%
<del>.</del> 1.94% <ins>:</ins> 2.87% <del>section</del><ins>Section</ins> 0.66%
<del>’s</del> 1.84% <ins>that </ins> 2.14% <del>:</del><ins>.</ins> 0.60%
<del>that </del> 1.49% <ins>and </ins> 1.92% <del>the</del><ins>a</ins> 0.59%
<del>a </del> 1.45% <ins>an </ins> 0.78% <del>a</del><ins>the</ins> 0.56%
<del>’</del> 1.29% <ins>is </ins> 0.63% <del>which</del><ins>that</ins> 0.54%
<del>"</del> 0.91% <ins>of </ins> 0.63% <del>is</del><ins>are</ins> 0.54%

Table 2: Top ten deletions, insertions, and substitutions

2.3 Symbolic methods

The system relies on the analyses licensed by the
grammar to identify sentences containing an error,
by finding, in the most likely analysis of an ill-
formed sentence, one or more occurrences of mal-
rules that permit specific types of ungrammatical
constituents. For example, in (1) we show the
analysis produced for the sentence “Another im-
portant point to note is the problem of unknown
SNR situation.” where the rule used to admit
the phrase unknown SNR situation is a mal-rule
(hdn_bnp_c_rbst) recording the omission of an
obligatory article for the noun phrase.
(1) Sample derivation tree with mal-rule

(sb-hd_mc_c
(sp-hd_n_c
(another "another")
(hd-cmp_u_c
(aj-hdn_norm_c
(hd_optcmp_c
(j_tough_dlr (important_a2 "important")))
(n_sg_ilr (point_n2 "point")))
(hd-cmp_u_c
(to_c_prop "to")
(hd_xcmp_c
(v_n3s-bse_ilr (note_v1 "note"))))))

(hd-cmp_u_c
(be_id_is "is")
(sp-hd_n_c
(the_1 "the")
(hd-cmp_u_c
(n_sg_ilr (problem_n1 "problem"))
(hd-cmp_u_c
(of_prtcl "of")
( hdn_bnp_c_rbst
(aj-hdn_norm_c
(j_j-un_dlr
(v_j-nb-pas-tr_dlr
(v_pas_odlr (know_v1 "unknown"))))

(np-hdn_cpd_c
(hdn_bnp-pn_c
(n_sg_ilr (generic_proper_ne "SNR")))
(w_period_plr
(n_sg_ilr
(situation_n1 "situation.")))))))))))

In order to identify frequently occurring error
phenomena as candidates to motivate the addition of
mal-rules for this task, we carried out a manual anal-
ysis and classification of the types of insertion and
deletion editing operations annotated in the train-
ing and development corpora. As each good can-
didate emerged, we added a corresponding mal-rule
to the grammar, and evaluated the resulting behav-
ior of the system on sample data sets drawn from
both training and development. Not all of the rules
survived in the final system, either because a partic-
ular rule interacted poorly with the rest of the gram-
mar, or because the annotations in the corpus for
that phenomenon showed more variation than the
rule anticipated. In the final system, the grammar
included thirteen phrasal mal-rules, seventeen lexi-
cal mal-rules, and about 350 robust lexical entries.
Examples of each are given in (2).

(2) Sample mal-rules added to the ERG

a. Syntactic: Comma-spliced sentences

cl-cl_runon-cma_c_rbst

Multi-biometrics may address the problem of
nonuniversality, e.g., in a speaker recognition
system, the individuals who cannot speak can-
not be enrolled.

b. Lexical: Subject-verb agreement mismatch

third_sg_fin_v_rbst

In what follow, this letter investigates mixed
synchronization of fractional-order Lorenz-like
system

c. Lexical entry: Missing obligatory direct object

allow_v1_rbst

The LHC will be a top quark factory, allowing
to study several of its properties in great detail.
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A large number of the editorial annotations in the
AESW corpora addressed errors in the use of punc-
tuation marks, and thus several of the mal-rules were
added to the grammar to permit ill-formed or stylis-
tically deprecated uses of commas and hyphens. For
example, several of the phrasal coordination rules
were adapted as mal-rules to identify the missing fi-
nal comma in a multi-part conjoined structure, as in
the phrase such as _MATH_, _MATH_ or _MATH_.

The process of refining the choices and definitions
of these mal-rules included a frequently repeated cy-
cle of manual inspection of the corpus annotations,
modifications to the mal-rule inventory, parsing of
three 1000-item samples taken from the training and
development data sets, and examination of the re-
sulting precision and recall performance of the sys-
tem on these sample sets.

2.4 Statistical methods

The ERG nearly always produces multiple candidate
analyses for a given input. Since not all analyses are
equally likely, the ERG supplies a maximum entropy
model which defines a probability distribution over
the set of analyses of any given input:

P (a|I) =
1
Z
e
∑

f∈a λf

Z =
∑

b∈analyses(I)

e
∑

f∈b λf

By virtue of ambiguity packing, the parser is able
to represent vast sets of analyses in a compact form
known as a packed forest. Typically, a user of the
ERG wants a single parse tree out, and to this end
the ACE parser is capable of efficiently selecting the
single tree from the packed forest without enumer-
ating the rest of the analyses (selective unpacking).
For the task at hand, however, we were interested
not in the complete structure of the best tree, but in
whether or not it used any mal-rules. This Boolean
quantity can be evaluated directly on the top-ranked
tree, but its expected value with respect to the prob-
ability distribution defined by the maximum entropy
model can also be evaluated over the entire packed
forest.

To compute this expectation, we defined a root

symbol1 which matches2 all and only trees that in-
clude mal-rules. These are conceptually similar to
unary rules which can only appear at the root of the
derivation tree. The parser computes the normaliza-
tion factor Zr for the set of analyses3 dominated by
each root symbol, using an algorithm similar to the
inside algorithm for PCFGs, but keeping track of
grandparent contexts as required by the maximum
entropy model in a fashion similar to that used by the
selective unpacking algorithm. The expected value
of the mal-rule indicator (i.e. the probability that a
tree drawn according to the maximum entropy dis-
tribution uses mal-rules) is then:

P (mal-rules|I) =
Zmal(I)

Zmal(I) + Zordinary(I)

Thus we have two signals for use in producing the
output value for the shared task: the Boolean indica-
tor for the top-ranked tree:

Btop(I) =
{

1 best tree uses mal-rules
0 best tree does not use mal-rules

and the real-valued expectation of that indicator:

E(B|I) = P (mal-rules|I)

We use both of these signals in both the Boolean
and probabilistic tracks. Specifically, our Boolean
estimator for an input I in a paragraph P is:

outputboolean(I) =


1 no parse was found
1 B(I) = 1
1 E(B|I) > 0.01
1 E(B|I) = maxS∈PE(B|S)
0 otherwise

That is, we predict an error if the top-ranked tree has
an error or does not exist, if the probability of using
a mal-rule was at least 1%, or if this sentence was

1In fact, we have multiple root symbols for mal-rule trees
and multiple root symbols for ordinary trees.

2The fact that a mal-rule has been used is passed up through
the feature structures by the grammar.

3Actually, the factor computed can in some cases include
probabilities for trees which are not fully-consistent with all of
the constraints in the grammar, depending on the aggressiveness
of the ambiguity packing optimizations employed; however, we
hypothesize that this does not have a large effect on the accuracy
of the system.
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the most likely sentence in the paragraph to require
a mal-rule.

For the probabilistic track, our estimator included
several parameters hand-tuned on the training and
development data. An obvious approach would be
to directly use P (mal-rules|I) as our probabilistic
estimate, but this does not produce very good re-
sults, because the task’s evaluation metric is a kind
of F -score on errors, rather than a balanced mea-
sure over the entire data set. Indeed, we noticed that
results are penalized for ever guessing a probabil-
ity less than 0.5, and indeed always guessing 0.63
yields an F -score that outperforms all but 2 of the
participating teams. This is arguably a deficiency in
the probabilistic track evaluation metric. Instead of
using P (mal-rules|I) directly, we applied a simple
nonlinear transformation:

outputprobabilistic(I) =
0.75 no parse was found

0.72 + 0.1 · (E(B)− 0.5) B = 1
0.70 + 0.12 · E(B)0.2 B=0 and

E(B)>0.01

0.70 otherwise

The various “magic” numbers in these formulae
were determined by manual search on the training
and development data.

3 Results

Roughly one in three sentences in the training cor-
pus was annotated with an error. The probabilistic
track and the Boolean track both used varieties of
F-score over error sentences as the evaluation met-
ric. Our system tended to be somewhat conserva-
tive about identifying errors; as a result, we found
that skewing our outputs towards recall in exchange
for some precision improved F-score, although ac-
curacy suffered substantially.

3.1 Probabilistic track
Our system ranked second of eight entrants in F-
score in the probabilistic track. The probabilistic
F-score was defined as the harmonic mean of two
related quantities, dubbed precision and recall, de-
fined as follows:

Pprob = 1− 1
n

∑
i

πi>0.5

(πi −Gi)2

Rprob = 1− 1
m

∑
i

Gi=1

(πi −Gi)2

F-scores ranged from 0.6925 to 0.8311 on the eval-
uation data, with our system achieving 0.7849. Ta-
ble 3 shows the relative F-score of the entrants on
the official evaluation data, alongside the correlation
coefficient between their outputs and the gold stan-
dard.

Team F-Score Correlation
1 0.8311 0.0600
UW-SU 0.7849 0.2471
2 0.7581 0.2690
3 0.7419 0.4043
4 0.7224 0.1298
5 0.7220 0.1666
6 0.6926 0.4173
7 0.6925 0.3516

Table 3: Results for the probabilistic track

It is interesting (and a bit concerning) to note that
the F-score metric defined for the task has a strong
negative correlation (-0.60) with the more intuitively
interpretable correlation coefficient. As mentioned
above, we modified the intuitively more appropri-
ate estimator E(B|I) to fit the F-score metric better.
Table 4 shows the result of this modification, on the
development data (as well as the baseline of always
guessing 0.63):

Estimator F-Score Correlation
P = E(B|I) 0.5644 0.2414
P = outputprobabilistic 0.7902 0.2602
P = 0.63 0.7756 –

Table 4: Comparison of estimators (probabilistic track)

As can be seen, rearranging our results with a sim-
ple nonlinear transformation had almost no effect
on the correlation with gold scores, but improved
our F-score tremendously. We wonder what effect
a similar simple transformation might have for a
team like NTNU-YZU or Knowlet, whose correla-
tion with gold substantially exceeds ours.

3.2 Boolean track
Our Boolean track system ranked number four of
nine entrants. The evaluation metric for the binary
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track was the F-score for identifying error sentences,
defined in a normal way. The relative performance
of the nine entrants on the official evaluation data is
shown in Table 5.

Team Prec Rec F-score
1 0.5444 0.7413 0.6278
2 0.5025 0.7785 0.6108
3 0.4482 0.7279 0.5548
UW-SU 0.4145 0.8201 0.5507
5 0.3851 0.9241 0.5436
6 0.3765 0.9480 0.5389
7 0.3960 0.6970 0.5051
8 0.6717 0.3805 0.4858
9 0.6241 0.3685 0.4634

Table 5: Results for the Boolean track

This evaluation metric, while somewhat different in
focus from a simple accuracy measure, did not ex-
hibit the disconcerting behaviors observed with the
probabilistic track metric; for instance, the correla-
tion coefficient between F-score and system-to-gold
correlation was 0.31, which is far less alarming than
the -0.60 observed in the probabilistic track.

Again, we found that using the raw grammar out-
put (i.e. the B indicator variable described above)
was less effective in terms of the evaluation metric
than the thresholded and transformed outputboolean,
as demonstrated in Table 6 (computed over the de-
velopment data):

Estimator F-Score Accuracy
B 0.5411 0.6333
outputboolean 0.5854 0.5322
no errors – 0.6111
all errors 0.5600 0.3889

Table 6: Comparison of estimators (Boolean track)

The raw B estimator achieves much higher accu-
racy than the transformed outputboolean, but some-
what lower F-score—lower in fact than the baseline
of guessing that every sentence contains an error.

4 Discussion

We encountered several challenges while developing
and tuning our system for this task, both in the con-
sistency of the error annotations in the corpus, and in

the grammatically lossy method of substituting the
single tokens _MATH_, _MATHDISP_, etc. in place
of formulaic sequences of tokens. It is not surprising
that a corpus of this size would reflect inconsisten-
cies due to the use of multiple “annotators” (editors),
and also some number of overlooked errors due to
the complexity and scale of the editorial task. Yet
for our rule-based approach to error detection, judg-
ing the benefit of a newly added mal-rule was not
easy, since it might perform as intended on the data,
but fail to have a positive impact on the final F-score
because of a substantial number of missing or incon-
sistent error annotations. For example, an error was
often signaled for adjective-noun compounds used
as modifiers if there was no hyphen connecting the
two tokens, as with second order derivatives vs. the
corrected second-order derivatives; however, in the
training set, we find the following frequency counts
for the three different patterns:

“ second order ” 636
“ second<del> </del><ins>-</ins>order ” 710
“ second-order ” 952

Clearly, the dominant intended pattern is for these
adjective-noun compounds to be hyphenated, but
a significant percentage of occurrences without the
hyphen were left unedited for many such com-
pounds, and this made the calculation of whether or
not to globally impose the regularity via mal-rule a
murky one. We saw similar wide variation in error
annotation for other hyphenation conventions, such
as with the insertion or deletion of hyphen with the
non- prefix as in non-linear.

A second set of challenges to our grammar-based
method arose from effects of the quite reasonable
and useful decision to replace certain complex ex-
pressions in the text with single placeholder to-
kens, such as _MATH_ for mathematical expres-
sions, or _CITE_ for citations. Because these to-
kens could stand in for a variety of grammatically
distinct phrase types, such as singular or plural noun
phrases, declarative clauses, or numerical adjectives,
the parsing task could quickly become costly when
explicitly representing these ambiguities for each
occurrence of each such placeholder token, partic-
ularly when a sentence included a series of such
terms. A more useful representation might have
been to preserve the original literal string as markup
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on the token that replaced it.

5 Conclusions

The grammar-based method we adopted for this task
gave us quite fine-grained control over the types of
errors that our system would attend to, but many of
the more linguistically interesting error phenomena
occurred with low enough frequency in the training
and development corpora that their accurate identifi-
cation had little noticeable effect on system scoring,
given the preponderance of punctuation-oriented ed-
its. Overall, we remain optimistic about the utility
of the kind of grammar-based approach we adopted
here, when applied to real-world grammar-checking
where fully consistent execution of a particular set
of editorial principles should be welcomed by the
scientific writer.
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Abstract

We investigate questions of how to reason
about learner meaning in cases where the set
of correct meanings is never entirely com-
plete, specifically for the case of picture de-
scription tasks (PDTs). To operationalize
this, we explore different models of represent-
ing and scoring non-native speaker (NNS) re-
sponses to a picture, including bags of depen-
dencies, automatically determining the rele-
vant parts of an image from a set of native
speaker (NS) responses. In more exploratory
work, we examine the variability in both NS
and NNS responses, and how different system
parameters correlate with the variability. In
this way, we hope to provide insight for fu-
ture system development, data collection, and
investigations into learner language.

1 Introduction and Motivation

Although much current work on analyzing learner
language focuses on grammatical error detection
and correction (e.g., Leacock et al., 2014), there is
a growing body of work covering varying kinds of
semantic analysis (e.g., Meurers et al., 2011; Bai-
ley and Meurers, 2008; King and Dickinson, 2014,
2013; Petersen, 2010), including assessment-driven
work (e.g., Somasundaran et al., 2015; Somasun-
daran and Chodorow, 2014). One goal of such work
is to facilitate intelligent language tutors (ILTs) and
language assessment tools that maximize commu-
nicative interaction, as suggested by research in sec-
ond language instruction (cf. Celce-Murcia, 1991,
2002; Larsen-Freeman, 2002). Whether for feed-
back or for assessment, however, there are lingering

questions about the semantic analysis to address. We
investigate questions of how to reason about learner
meaning in cases where the set of correct meanings
is never entirely complete.

Focusing on semantic analysis requires a sense of
what counts as a semantically appropriate utterance
from a language learner. Consider when a learner
has to describe the contents of a picture (see sec-
tion 3). There are a number of questions to address
in such a situation: 1) Does a semantically correct
answer have to sound nativelike or only convey the
correct facts? 2) Which facts from the picture are
more or less relevant? 3) Are responses strictly cor-
rect or not, or is it better to treat correctness as a
gradable phenomenon? Additionally, a gold stan-
dard of correct responses cannot capture all possible
variations of saying the correct content (cf. para-
phrases, Barzilay, 2003). We thus must address the
specific question of how one can reason about se-
mantic correctness from a (necessarily) incomplete
gold standard of answers.

In this paper, we build from our previous work
(King and Dickinson, 2013, 2014) and move to-
wards finding a “sweet spot” of semantic analy-
sis (cf. Bailey and Meurers, 2008) for such image-
based learner productions. In particular, using avail-
able NLP tools, we move away from specific cor-
rect semantic representations and an exact defini-
tion of correctness, to more abstract data representa-
tions and more gradable notions of correctness (sec-
tion 4). A benefit of more abstract representations is
to allow correct and relevant information to be de-
rived from a relatively small set of native speaker
responses, as opposed to deriving them by hand, in
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addition to allowing for a range of sentence types.
We should note, in this context, that we are dis-

cussing semantic analysis given a gold standard of
native sentences. Image description tasks can of-
ten rely on breaking images into semantic primitives
(see, e.g., Gilberto Mateos Ortiz et al., 2015, and
references therein), but for learner data, we want to
ensure that we can account not just for correct se-
mantics (the what of a picture), but natural expres-
sions of the semantics (the how of expressing the
content). In other words, we want to reason about
meaning based on specific linguistic forms.

A second issue regarding semantic analysis, be-
yond correctness, stems from using an incomplete
gold standard, namely: assessing the degree of se-
mantic variability, both for native speakers (NSs)
and non-native speakers (NNSs). In addition to pro-
viding insight into theoretical research on variability
in learner language (cf. Ellis (1987), Kanno (1998)),
analyzing variability can help determine the best pa-
rameters for an NLP system for different kinds of
responses. That is, different types of image content
might require different mechanisms for processing.
Additionally, knowing how different pictures elicit
different kinds of content can provide feedback on
appropriate types of new data to collect. We ap-
proach this issue by clustering responses in various
ways (section 5) and seeing how the clusters connect
to system parameters.

For both the experiments involving the accuracy
of different system parameters (section 4) and the
clustering of different responses (section 5), we
present results within those sections that show the
promise of moving to abstract representations, but
in different ways for different kinds of data.

2 Related Work

In terms of the overarching goals of developing an
interactive ILT, a number of systems exist (e.g.,
TAGARELA (Amaral et al., 2011), e-Tutor (Heift
and Nicholson, 2001)), but few focus on matching
semantic forms. Herr Komissar (DeSmedt (1995))
is one counter-example; in this game, German learn-
ers take on the role of a detective interviewing sus-
pects and witnesses. The system relies largely on
a custom-built database of verb classes and related
lexical items. Likewise, Petersen (2010) has a sys-

tem to provide feedback on questions in English, ex-
tracting meanings from the Collins parser (Collins,
1999). We also rely on reusing modern NLP soft-
ware, as opposed to handcrafting a system.

The basic semantic analysis in this paper paral-
lels work on content assessment (e.g., c-rater (Lea-
cock and Chodorow, 2003)). These systems are
mostly focused on relatively open-ended short an-
swer scoring, with some systems employing task-
based restrictions. As one example, Meurers et al.
(2011) evaluate English language learners’ short
answers to reading comprehension questions, con-
strained by the topic at hand. Their approach per-
forms multiple levels of annotation, including de-
pendency parsing and lexical analysis from Word-
Net (Fellbaum, 1998), then aligns elements of the
sentence with those of the (similarly annotated)
reading prompt, the question, and target answers to
determine whether a response is adequate. We ex-
plore here a looser notion than alignment for match-
ing NNS responses to a gold standard.

In research closer to our own image-based
work, Somasundaran and Chodorow (2014) analyze
learner responses to a PDT where the responses
were constrained by requiring the use of specific
words. The pictures were annotated by experts, and
the relevance of responses was calculated through
the overlap of the response and annotation contents.
Somasundaran et al. (2015) present similar work an-
alyzing responses to sequences of pictures. While
they score via a machine learning system, we stick
closer to the original forms in trying to find an appro-
priate way to analyze the data; the notion of overlap
for relevance, however, is very similar in spirit to our
count-based methods (section 4.2).

We build directly from King and Dickinson
(2013, 2014), where the method to obtain a semantic
form from a NNS production is: 1) obtain a syntac-
tic dependency representation from the off-the-shelf
Stanford Parser (de Marneffe et al., 2006; Klein and
Manning, 2003), and 2) obtain a semantic form from
the parse, via a small set of hand-written rules. It is
this method we attempt to generalize (section 4).

3 Data Collection

Because our approach requires both NS and NNS re-
sponses and necessitates constraining both the form
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and content of responses, we previously assembled
a small corpus of NS and NNS responses to a PDT
(King and Dickinson, 2013). Research in SLA often
relies on the ability of task design to induce particu-
lar linguistic behavior (Skehan et al., 1998), and the
PDT should induce context-focused communicative
behavior. Moreover, the use of the PDT as a reliable
language research tool is well-established in areas
of study ranging from SLA to Alzheimer’s disease
(Ellis, 2000; Forbes-McKay and Venneri, 2005).

We rely on visual stimuli here for a number of
reasons. First, an overarching goal of our work is
the development of an ILT that feels like more like
a computer game than a grammar drill, and visual
stimuli are essential to many games. Secondly, by
using images, the information the response should
contain is limited to the information contained in the
image. Relatedly, particularly simple images should
restrict elicited responses to a tight range of expected
contents. The current visual stimuli present events
that are mainly transitive in nature and likely to elicit
responses with an unambiguous subject, verb and
object, thereby restricting form in addition to con-
tent. Finally, this format allows one to investigate
pure interlanguage without the influence of verbal
prompts and shows learner language being used to
convey meaning and not just manipulate forms.

The PDT consists of 10 items (8 line drawings and
2 photographs1) intended to elicit a single sentence
each; an example is given in Figure 1. Participants
were asked to view the image and describe the ac-
tion in past or present tense. The data consist of
responses from 53 informants (14 NSs, 39 NNSs),
for a total of 530 sentences, with the NNSs being in-
termediate and upper-level adult English learners in
an intensive English as a Second Language program.
The distribution of first languages (L1s) is: 14 En-
glish, 16 Arabic, 7 Chinese, 2 Japanese, 4 Korean, 1
Kurdish, 1 Polish, 2 Portuguese, and 6 Spanish.

Responses were typed by the participants them-
selves, with spell checking disabled in some cases.
Even among the NNSs that used spell checking, a
number of spelling errors resulted in real words. To
address this, we use a spelling correction tool to ob-
tain candidate spellings for each word, prune the

1We have not observed substantial differences between re-
sponses for the drawings and the photographs.

Response (L1)
The man killing the beard. (Arabic)
A man is shutting a bird. (Chinese)
A man is shooting a bird. (English)
The man shouted the bird. (Spanish)

Figure 1: Example item and responses

candidates using word lists from the NS responses,
recombine candidate spellings into candidate sen-
tences, and evaluate these with a trigram language
model (LM) to select the most likely intended re-
sponse (King and Dickinson, 2014).

Once the responses had been collected, the NNS
responses were annotated for correctness, with re-
spect to the content of the picture. The lead author
marked spelling and meaning errors which prevent a
complete mapping to correct information (see King
and Dickinson, 2013). On the one hand, minor mis-
spellings are counted as incorrect (e.g., The artiest
is drawing a portret), while, on the other hand, the
annotation does not require distinguishing between
between spelling and meaning errors. In the future,
we plan on fine-tuning the annotation criteria.

4 Generalizing the Methods

The previous work assumed that the assessment of
NNS responses involves determining whether the
gold standard (GS) contains the same semantic triple
that the NNS produced, i.e., whether a triple is cov-
ered or non-covered. In such a situation the GS need
only be comprised of types of semantic triples. But
the GS is comprised of the small set of NS responses
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and is thus incomplete—meaning that exact match-
ing is going to miss many cases, and indeed in King
and Dickinson (2013), we note that GS coverage is
only at 50.8%. Additionally, relying on matching
of triples limits the utility of the method to specific
semantic requirements, namely transitive sentences.
By moving to bags of dependencies and tallying the
counts of (NS) responses in the GS, we can move
into a gradable, or ranking, approach to NNS re-
sponses.

We want to emphasize the degree to which a re-
sponse conveys the same meaning as the GS, neces-
sitating an approach which can automatically deter-
mine the importance of a piece of information in the
GS. We break this down into how we represent the
information (section 4.1) and then how we compare
NNS information to GS information (section 4.2),
allowing us to rank responses from least to most
similar to the GS.2 We also discuss the handling of
various other system parameters (section 4.3).

4.1 Representation

To overcome the limitations of an incomplete GS,
we represent each response as a list of terms taken
from the dependency parse (de Marneffe et al.,
2006), the terms referring to individual dependen-
cies (i.e., relations between words). This eliminates
the complications of extracting semantic triples from
dependency parses, which could only handle a very
restricted set of grammatical forms and resulted in
errors in 7–8% of cases (King and Dickinson, 2013).
Operating directly on individual dependencies from
the overall tree also means the system can allow
for “partial credit”; it distributes the matching over
smaller, overlapping pieces of information rather
than a single, highly specific triple.

Specifically, representations take one of five
forms. We first tokenize and lemmatize the response
to a list of lemmas that represents the response. The
five term representations are then variations on de-
pendencies. The full form concatenates the label,
head and dependent, as in subj#boy#kick. We
call this ldh (label, dependent, head). The remain-
ing four forms abstract over either the label, head
and/or dependent, as in X#boy#kick. We refer to

2Although rankings often go from highest to lowest, we pri-
oritize identifying problematic cases, so we rank accordingly.

these forms as xdh, lxh, ldx, and xdx. The xdx
model is on a par with treating the sentence as a bag
of lemmas, except that some function words not re-
ceiving parses (e.g., prepositions) are not included
(see King and Dickinson, 2013). In our current ex-
periments, we test each of these term representations
separately, but we expect to ultimately make use of
some weighted combination. Future representations
may also incorporate WordNet relations or semantic
role labeler output.

4.2 Scoring Responses

Taking the term representations from the previous
section, the next task is to combine them in a way
which ranks responses from least to most appro-
priate. Responses are scored with one of four ap-
proaches, using one of two methods to weight re-
sponse terms combined with one of two methods to
compare the weighted NNS terms with the GS.

For weighting, we use either a simple frequency
measure (F) or one based on tf-idf (T) (Manning
et al., 2008, ch. 6). We explore tf-idf as a mea-
sure of a term’s importance with the hope that it is
able to reduce the impact of semantically unimpor-
tant terms—e.g., determiners like the, frequent in
the GS, but unimportant for evaluating the semantic
contents of NNS responses—and to upweight terms
which may be salient but infrequent, e.g., only used
in a handful of GS sentences. For example, for an
item depicting a man shooting a bird (see Table 1
and Figure 1), of 14 GS responses, 12 described the
subject as man, one as he and one as hunter. Since
hunter is infrequent in English, even one instance
in the GS should get upweighted via tf-idf, and in-
deed it does. This is valuable, as numerous NNS
responses use hunter.

Calculating tf-idf relies on both term frequency
(tf ) and inverse document frequency (idf ). Term
frequency is simply the raw count of an item, and
for tf-idf of terms in the GS, we take this as the fre-
quency within the GS. Inverse document frequency
is derived from some reference corpus, and it is
based on the notion that appearing in more docu-
ments makes a term less informative with respect to
distinguishing between documents. The formula is
in (1) for a term t, where N is the number of doc-
uments in the reference corpus, and dft is the num-
ber of documents featuring the term (idft = log N

dft
).
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A term appearing in fewer documents will thus ob-
tain a higher idf weight, and this should readjust fre-
quencies based on semantic importance.

(1) tfidf(t) = tfGS log N
dft

After counting/weighting, the frequencies are
then either averaged to yield a response score (A),
or NNS term weights and GS term weights are
treated as vectors and the response score is the co-
sine distance (C) between them. This yields:

Frequency Average (FA). Within the GS, the fre-
quency of each term is calculated. Each term in the
NNS response is then given a score equal to its fre-
quency in the GS; terms missing from the GS are
scored zero. The response score is the average of
the term scores, with higher scores closer to the GS.

Tf-idf Average (TA). This involves the exact same
averaging as with model FA, but now the terms in the
GS are assigned tf-idf weights before averaging.

Frequency Cosine (FC). The frequency of each
term is calculated within the GS and (separately)
within the NNS response. The term scores are then
treated as vectors, and the response score is the co-
sine distance between them, with lower scores being
closer to the GS.

Tf-idf Cosine (TC). This involves the exact same
distance comparison as with model FC, but now the
terms of both the GS and NNS responses are as-
signed tf-idf weights before comparison.

4.3 System Parameters

In addition to the four approaches, we have term rep-
resentations and two sets of parameters, listed be-
low, to vary, resulting in a total of 60 settings for
processing responses (see also Table 2).

Term form. As discussed in section 4.1, the terms
can take one of five representations: ldh, xdh,
lxh, ldx, or xdx.

Scoring approach. As discussed in section 4.2,
the NNS responses can be compared with the GS
via models FA, TA, FC, or TC.

Reference corpus. The reference corpus for de-
riving tf-idf scores can be either the Brown Corpus

(Kucera and Francis, 1967) or the Wall Street Jour-
nal (WSJ) Corpus (Marcus et al., 1993). These are
abbreviated as B and W in the results below; na in-
dicates the lack of a reference corpus, as this is only
relevant to approaches TA and TC. The corpora are
divided into as many documents as originally dis-
tributed (W: 1640, B: 499). The WSJ is larger, but
Brown has the benefit of containing more balance
in its genres (vs. newstext only). Considering the
narrative nature of PDT responses, a reference cor-
pus of narrative texts would be ideal, but we choose
manually parsed reference corpora as they are more
reliable than automatically parsed data.

NNS source. Each response has an original ver-
sion (NNSO) and the output of a language model
spelling corrector (NNSLM) (see section 3).

4.4 Results

4.4.1 Evaluation metrics

We ran 60 response experiments, each with dif-
ferent system settings (section 4.3). Within each
experiment, we rank the 39 scored NNS responses
from least to most similar to the GS. For assess-
ing these settings themselves, we rely on past anno-
tation, which counted unacceptable responses as er-
rors (see section 3).3 As the lowest rank indicates the
greatest distance from the GS, a good system setting
should ideally position the unacceptable responses
among those with the lowest rankings. Thus, we
assign each error-containing response a score equal
to its rank, or, if necessary, the average rank of re-
sponses sharing the same score.

In Table 1, an excerpt of sentence responses is
shown for one item, ranked from lowest to highest.
To take one example, the third-ranked sentence, the
man is hurting duck, has a score of 0.996, and it is
annotated as an error (1 in the E column). Thus,
the evaluation metric adds a score of 3 to the overall
sum. The sentence ranked 18, by contrast, is not an
error, and so nothing is added. In the case of the top
rank, two responses with errors are tied, covering
rank 1 and 2, so each adds a score of 1.5.

3The source of the error is also labeled—stemming from
NNS unintelligibility or a system error (from spelling correc-
tion, parsing, or some downstream component)—but we do not
currently use this annotation.
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R S Sentence E V

1
1.000 she is hurting. 1 1.5
1.000 man mull bird 1 1.5

3 0.996 the man is hurting duck. 1 3.0
4 0.990 he is hurting the bird. 1 3.0

11 0.865 the man is trying to hurt a bird 1 11.0
12 0.856 a man hunted a bird. 0 0.0
17 0.775 the bird not shot dead. 1 17.0
18 0.706 he shot at the bird 0 0.0
19 0.669 a bird is shot by a un 1 19.0
20 0.646 the old man shooting the birds 0 0.0
37 0.086 the old man shot a bird. 0 0.0
38 0.084 a old man shot a bird. 0 0.0
39 0.058 a man shot a bird 0 0.0

Total (Raw) 17 169
Average Precision 0.75084

Table 1: Rankings for Item 10 from the best system setting

(TC B NNSLM ldh) based on average precision scores. R:

rank; S: sentence score; E: error; V: rank value.

The sum of these scores is taken as the Raw met-
ric for that experimental setting. In many cases, one
version of a response (NNSO or NNSLM) contains an
error, but the other version does not. Thus, for ex-
ample, an NNSO experiment may result in a higher
error count than the NNSLM equivalent, and in turn a
higher Raw score. In this sense, Raw scores empha-
size error reduction and incorporate item difficulty.

However, it is possible that the NNSO experiment,
even with its higher error count and Raw score, does
a better job ranking the responses in a way that sep-
arates good and erroneous ones. To account for this,
we also use (mean) average precision ((M)AP)
(Manning et al., 2008, ch. 8), which emphasizes dis-
criminatory power.

For average precision (AP), one calculates the
precision of error detection at every point in the
ranking, lowest to highest. In Table 1, for exam-
ple, the precision for the first cut-off (1.000) is 1.0,
as two responses have been identified, and both are
errors (2

2 ). At the 11th- and 12-ranked response,
precision is 1.0 (11

11 ) and 0.917 (=11
12 ), respectively,

precision dropping when the item is not an error.
AP averages over the precisions for all m responses
(m = 39 for our NNS data), as shown in (2), with
each response notated as Rk. Averaging over all 10

items results in the Mean AP (MAP).

(2) AP (item) = 1
m

m∑
k=1

Precision(Rk)

As mentioned, the Raw metric emphasizes error
reduction, as it reflects not just performance on iden-
tifying errors, but also the effect of the overall num-
ber of errors. In this way, it may be useful for
predicting future system performance, an issue we
explore in the evaluation of clustering items (sec-
tion 5.3). MAP, on the other hand, emphasizes find-
ing the optimal separation between errors and non-
errors and is thus more of the focus in the evaluation
of the best system parameters next.

4.4.2 Best system parameters
To start the search for the best system parame-

ters, it may help to continue our single example,
in Table 1. The best setting, as determined by the
Normalized metric, uses the tf-idf cosine (TC) ap-
proach with the Brown Corpus (B), the spelling cor-
rected response (NNSLM), and the full form of the
dependencies (ldh). It ranks highest because er-
rors are well separated from non-errors; the high-
est ranked of 17 total errors is at rank 19. Dig-
ging a bit deeper, we can see in this example how
the verb shoot is common in all the highest-ranked
cases shown (#37–39), but absent from all the low-
est, showing both the effect of the GS (as all NSs
used shoot to describe the action) and the potential
importance of even simple representations like lem-
mas. In this case, the ldh representation is best,
likely because the word shoot is not only important
by itself, but also in terms of which words it relates
to, and how it relates (e.g., dobj#bird#shoot).

Table 3 shows the five best and five worst sys-
tem settings averaged across all 10 PDT items, as
ranked by MAP. Among the trends that pop out is
a favoritism towards NNSLM models (i.e., spelling
correction). This is due to the fact that higher num-
bers of errors inflate the MAP scores, and somewhat
counterintuitively, the spelling correction module in-
troduces more errors than it corrects, meaning there
are more errors present overall in the NNSLM re-
sponses than in the NNSO responses.4

4Note that among the remaining parameter classes, variation
does not effect the number of errors.

117



Approach Term Form Ref. Corpus (TA/TC) NNS Source
0.51577 TC xdh 0.51810 Brown 0.51534 NNSLM 0.51937
0.50780 FC ldh 0.51677 WSJ 0.50798 NNSO 0.49699
0.50755 TA lxh 0.51350
0.49464 FA xdx 0.49901

ldx 0.49352
Table 2: Approaches and parameters ranked by mean average precision for all 10 PDT items.

Another feature among the best settings is the in-
clusion of heads in the dependency representations.
In fact, the top 17 ranked settings all include heads
(lxh, xdh, ldh); xdx first enters the rankings at
18, and xdx and ldx are common among the worst
performers. This is likely due to the salience of
the verbs in these transitive sentences; they consti-
tute the heads of the subjects and objects, in rela-
tively short sentences with few dependencies. Fur-
thermore, the tf-idf weighted models dominate the
rankings, especially TC. It is also clear that for our
data tf-idf works best with the Brown Corpus (B).

Rank MAP Settings
1 0.5534 TC B NNSLM lxh
2 0.5445 TA B NNSLM lxh
3 0.5435 TC W NNSLM lxh
4 0.5422 TC B NNSLM xdh
5 0.5368 TC B NNSLM ldh

56 0.4816 TA B NNSO xdx
57 0.4796 FA na NNSLM ldx
58 0.4769 FC na NNSO lxh
59 0.4721 TA W NNSO xdx
60 0.4530 FA na NNSO lxh

Table 3: Based on Mean Average Precision, the five best and

five worst settings across all 10 PDT items.

We also summarize the rankings for the individual
parameter classes, presented in Table 2, confirming
the trends in Table 3. For a given parameter, e.g.,
ldh, we averaged the experiment scores from all
settings including ldh across all 10 items. Notably,
TC outperforms the other models, with FC and TA
close behind (and nearly tied). Performance falls
for the simplest model, FA, which was in fact in-
tended as a baseline. With TC>FC and TA>FA, tf-
idf weighting seems preferable to basic frequencies.

Again, the importance of including heads in de-

pendencies is apparent here; the three dependency
representations containing heads constitute the top
three, with a sizable drop in performance for the
remaining two forms (xdx and ldx). Moreover,
given the content and narrative style of the PDT re-
sponses, it is unsurprising that the Brown Corpus
serves as a better reference corpus than the WSJ
Corpus for tf-idf. Finally, the NNSLM source sig-
nificantly outperforms the NNSO source.

Despite the strength of these overall trends, vari-
ability does exist among the best settings for differ-
ent items, a point obscured in the averages. In Ta-
bles 4 and 5, we present the best and worst ranked
settings for two of the least similar items, 1 and 5.
Their dissimilarity can be seen at a glance, simply
from the range of the AP scores (0.05–0.31 for item
1 vs. 0.52–0.81 for item 5), which in itself reflects a
differing number of erroneous responses (2 [NNSO]
or 6 [NNSLM] for item 1 vs. 23 or 24 for item 5).

For item 1, a drawing of a boy kicking a ball, we
see considerable variability in the best approach just
within the top five settings: all four approaches are
in the top five. Contrary to the overall trends, we also
see the ldx form—without any head information—
in the two best settings. Note also that, even though
tf-idf weighting (TA/TC) is among the best settings,
it is consistently the worst setting, too.

For item 5 in Table 5, a drawing of a man rak-
ing leaves, the most noticeable difference is that of
xdx being among three of the top five settings. We
believe that part of the reason for the superior perfor-
mance of xdx (cf. lemmas), is that for this item, all
the NSs use the verb rake, while none of the NNSs
use this word. For item 1 (the boy kicking a ball),
there is lexical variation for both NSs and NNSs.

These types of differences—for these items and
others—lead us to explore the clustering of item pat-
terns, in order to leverage these differences and auto-
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Rank AP Settings
1 0.30997 TC B NNSLM ldx
2 0.30466 TA B NNSLM ldx
3 0.30015 TA B NNSLM xdh
4 0.29704 FC na NNSLM xdh
5 0.29650 FA na NNSLM ldh

56 0.06474 TC B NNSO ldx
57 0.06174 TC W NNSO ldx
58 0.06102 TA W NNSO lxh
59 0.05603 TA W NNSO xdx
60 0.05094 TA W NNSO ldx

Table 4: Based on Average Precision, the five best and five

worst settings for item 1.

Rank AP Settings
1 0.80965 FA na NNSLM xdx
2 0.80720 TA B NNSLM lxh
3 0.80473 TC B NNSLM lxh
4 0.79438 TC B NNSLM xdx
5 0.78108 TC W NNSLM xdx

56 0.56495 FC na NNSO xdh
57 0.56414 TC B NNSO lxh
58 0.55890 TC W NNSO lxh
59 0.54506 FC na NNSO lxh
60 0.52013 FA na NNSO lxh

Table 5: Based on Average Precision, the five best and five

worst settings for item 5.

matically choose the optimal settings for new items;
we turn to this next.

5 Clustering

Given the variability of NS and NNS responses, and
the possible correlation with different system param-
eters, we have begun exploring connections by clus-
tering the different items. The clustering uses, for
one set, response features, i.e., features observable
from the responses, and, separately, performance
features, i.e., the performance of different system
settings on the responses. Although the work is very
exploratory, our goal is to get a handle on learner
variability for different items and explore correla-
tions between response and performance clusters.

5.1 Response Clustering

We cluster the 10 PDT items using simple features
taken from the responses themselves. Specifically,
we use various combinations of type counts, token
counts, and type-to-token ratios for each term form
(ldh, xdh, lxh, ldx, xdx), taken from each re-
sponse source (GS, NNSO, NNSLM).

5.2 Performance Clustering

From the system output, we cluster items using per-
item Raw scores for various settings. That is, for
each of the 10 items, we calculate an average er-
ror score for each approach (FA, TA, FC, TC), each
term form (ldh, xdh, lxh, ldx, xdx), each refer-
ence corpus (B, W), and each response source (NNSO,
NNSLM). As mentioned in section 4.4.1, Raw scores
should account for the number of errors produced
by NNSs for each item, which should correlate with
future system performance.

5.3 Results

Although there is noise in some experiments, some
patterns do seem to emerge in many of the cluster-
ings; we present some of the most common patterns
here. Figure 2 shows a clustering based on response
features that shares some characteristics with Fig-
ure 3, a clustering based on performance features.
(Note that clustering heights are not to scale.) In
both examples, items 5 and 9 form a cluster attach-
ing to the root. These are described in the GS as
A man is raking leaves and Two boys are rowing a
boat. These were also the two most difficult items
for NNSs. While other items involved common
verbs like kick, paint and cut, the actions depicted in
these items were more specific and required words
outside the vocabulary of many participants. For ex-
ample, while all 14 NSs used either row or paddle,
only five of 39 NNSs used these verbs; the rest used
verbs like boat, sail, sit, play or ride.

Items 1 and 4 also appear as a cluster in both
cases. In GS examples, these are described as The
boy is kicking a ball and A man is reading a newspa-
per. The images portray actions that language learn-
ers often learn in beginner courses, and in fact, these
were the easiest items for NNSs. The simple ac-
tions and objects mean that both token counts and
type counts are relatively low. With regard to fea-
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Figure 2: PDT items clustered by type and token counts of all

NS, NNSO and NNSLM responses.

5 9 8 3 2 10 1 4 6 7

Figure 3: PDT items clustered by parameter performance.

ture performance, for both items the same param-
eters perform highly (TC/TA, ldx/ldh/xdh), sug-
gesting that a future item which clusters with these
two would benefit from the same processing.

6 Summary and Outlook

We have investigated ways to reason about learner
meaning in cases where the set of correct meanings
is incomplete, namely in the case of picture descrip-
tion tasks (PDTs). Specifically, we have explored
different models of representing and scoring NNS
responses to a picture—different linguistic represen-
tations, term weighting schemes, reference corpora,
and use of spelling correction—in order to automati-
cally determine the relevant parts of an image from a
set of NS responses. In more exploratory work, we
have also examined the variability in both NS and
NNS responses, and how different system parame-
ters correlate with the variability.

Already, the results are providing insight for fu-
ture system development, data collection, and inves-
tigations into learner language. A big next step of
the work is to collect more data, and examining the
variability in the NS/NNS data has provided feed-
back on the types of new data to gather, to better
ensure a wide range of behavior from NNSs. Get-
ting a range of items, with different sentence types
and variability in responses, will help us properly

find our envisioned sweet spot of semantic analy-
sis. In that vein, we plan on exploring more parame-
ters (e.g., semantic role information) and holding out
data to better gauge the impact of clustering a new
item with the existing items and selecting the pro-
cessing parameters on that basis. Beyond that loom
large questions about how to annotate gradability in
learner responses and how to map system processing
to accurate semantic feedback.
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Abstract 

This study describes the design of the 
NTNU-YZU system for the automated 
evaluation of scientific writing shared task. 
We employ a convolutional neural network 
with the Word2Vec/GloVe embedding rep-
resentation to predict whether a sentence 
needs language editing. For the Boolean 
prediction track, our best F-score of 0.6108 
ranked second among the ten submissions. 
Our system also achieved an F-score of 
0.7419 for the probabilistic estimation 
track, ranking fourth among the nine sub-
missions.   

1 Introduction 

Automated grammatical error detection and correc-
tion are important tasks and research topics in 
computational linguistics. A number of competi-
tive tasks have been organized to encourage inno-
vation in this direction (Leacock et al., 2014). For 
examples, Helping Our Own (HOO) was a series 
of shared tasks used for correcting grammatical er-
rors of English texts written by non-native speak-
ers (Dale and Kilgarriff, 2011; Dale et al., 2012). 
The CoNLL 2013/2014 shared tasks aimed to cor-
rect grammatical errors among learners of English 
as a foreign language in the educational application 
(Ng et al., 2013; 2014). The first NLP-TEA work-
shop featured a shared task on grammatical error 
diagnosis for learners of Chinese as a foreign lan-

guage (Yu et al., 2014). The following year, a 
similar Chinese grammatical error diagnosis shared 
task was held in the second NLP-TEA workshop in 
conjunction with ACL-IJCNLP 2015 (Lee et al., 
2015). These competitions reflect the need for au-
tomated writing assistance for various applications. 

The Automated Evaluation of Scientific Writing 
(AESW) shared task seeks to promote the use of 
NLP tools to help improve the quality of scientific 
writing in English by predicting whether a given 
sentence needs language editing or not. The AESW 
shared task contains two tracks: (1) a Boolean pre-
diction track in which a sentence in need of editing 
will result in a binary classifier outputting true; 
otherwise the system should return false; and (2) a 
probabilistic estimation track in which the system 
estimates the editing probability (between 0 and 1) 
of each input sentence. A sentence is assigned 1 if 
it requires editing, and 0 otherwise. Each partici-
pating team can submit multiple results using dif-
ferent approaches for evaluation, but the final per-
formance comparisons are limited to two designat-
ed submissions for each track.  

This study describes the joint efforts between 
National Taiwan Normal University and Yuan Ze 
University (NTNU-YZU) in the AESW shared task. 
We introduce a convolutional neural network and 
its use for predicting language editing of scientific 
writing at the sentence level. The input sentence is 
represented as a sequence of words using distribut-
ed vectors looked up in a word embedding matrix. 
The datasets provided by the AESW organizers are 
used to train the neural network for the prediction 
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task. The output is a value for probabilistic estima-
tion. If the output value exceeds a certain threshold, 
it is considered as true for binary decision. Our be-
st results in terms of F-score are 0.6108 (ranked at 
2/10) and 0.7419 (4/9), respectively for the Boole-
an prediction track and the probabilistic estimation 
track. 

The rest of this paper is organized as follows. 
Section 2 introduces existing studies for grammati-
cal error detection and correction. Section 3 de-
scribes the details of the NTNU-YZU system ar-
chitecture for the AESW shared task. Section 4 
presents the evaluation results and their perfor-
mance comparison. Section 5 elaborates on the im-
plications and lessons learned. Conclusions are fi-
nally drawn in Section 6. 

2 Related Work 

Automated grammatical error detection and correc-
tion for second/foreign language learners has at-
tracted considerable research attention. Although 
commercial products such as Microsoft Word have 
long provided grammatical checking for English, 
researchers in NLP have found that there is still 
much room for improvement in this area. A num-
ber of techniques have recently been proposed to 
deal with various types of writing errors. A novel 
approach based on alternating structure optimiza-
tion was proposed to correct article and preposition 
errors (Dahlmeier and Ng, 2011). A linguistically 
motivated approach was also proposed to correct 
verb errors (Rozovskaya et al., 2014). A classifier 
was designed to detect word-ordering errors in 
Chinese sentences (Yu and Chen, 2012). Linguistic 
structures with interacting grammatical properties 
were identified to address such dependencies via 
joint inference and learning (Rozovskaya and Roth, 
2013). A set of linguistic rules with syntactic in-
formation was handcrafted for detecting errors in 
Chinese sentences (Lee et al., 2013). A sentence 
judgment system was developed using both rule-
based linguistic analysis and an n-gram statistical 
method for detecting grammatical errors (Lee et al., 
2014). A penalized probabilistic first-order induc-
tive learning algorithm was presented for Chinese 
grammatical error diagnosis (Chang et al., 2012). 
Relative position and parse template language 
models were proposed to correct grammatical er-
rors (Wu et al., 2010). Dependency trees were used 
to train a language model for correcting grammati-

cal errors at the tree level (Zhang and Wang, 2014). 
A classification-based system and a statistical ma-
chine translation-based system were combined to 
improve correction quality (Susanto et al., 2014). 
Different from correcting grammatical errors inde-
pendently, integer linear programming was used to 
model the inference process considering all possi-
ble errors (Wu and Ng, 2013). The theory of con-
trastive analysis was formalized to demonstrate 
that language-specific error distributions could be 
predicted from the typological properties of the na-
tive language and its relation to English (Berzak et 
al., 2015).  

Chodorow et al. (2012) presented the evaluation 
scheme for mapping writer, annotator, and system 
output onto traditional evaluation metrics for 
grammatical error detection. In addition to the 
choice of metric, they argued that the data skew is 
an important factor that should be considered. 
Evaluation methods from WMT human evaluation 
campaigns were also adapted to grammatical error 
correction (Grundkiewicz et al., 2015). The evalua-
tion method based on globally optimal alignment 
between the source, a system hypothesis, and a ref-
erence was used to provide scores for both detec-
tion and correction (Felice and Briscoe, 2015). In-
ter-annotator agreement statistics in grammatical 
error correction was analyzed (Bryant and Ng, 
2015). They found that the human upper bound is 
roughly 73% in terms of the F-score between hu-
man annotators.  

More recently, deep learning techniques have 
been widely applied to problems in natural lan-
guage processing with promising results. This 
trend motivates us to explore convolutional neural 
networks to automatically evaluate scientific writ-
ing at the sentence level.  

3 The NTNU-YZU System 

Figure 1 shows our Convolutional Neural Network 
(CNN) architecture for the AESW shared task. An 
input sentence is represented as a sequence of 
words. Each word refers to a row looked up in a 
word embedding matrix generating from 
Word2Vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014). We use convolutions over the 
sentence matrix to extract the features. A single 
convolution layer is adopted. The sliding window 
is called a filter in the CNN. We obtain the full 
convolutions by sliding the filters over the whole 
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matrix. Each filter performs the convolution opera-
tion on the sentence matrix and generates a feature 
map. A pooling layer is then used to subsample 
features over each map. The most common ap-
proach to pooling is to apply a max operation to 
reduce the dimensionality for keeping the most sa-
lient features, which are then concatenated to form 
the flatten for neural computing. The final softmax 
layer then receives this flatten as input and uses it 
to classify the sentence.  

During the training phase, a CNN automatically 
learns the values of its filters. If a sentence needs 
language editing to improve its grammaticality, the 
class is assigned as 1, and 0 otherwise. All training 
sentences accompanying their classes are used for 
learning in our CNN model. 

To classify a sentence during the testing phase, 
we directly use the probability of the class 1 (i.e., 
needs improvements) as the result for probabilistic 
estimation track. For the Boolean prediction track, 
if this probability exceeds a predefined threshold, 
then its output will be considered as true.  

4 Evaluations 

4.1 Data 

The datasets for the AESW shared task were pro-
vided by task organizers (Daudaravicius, 2016), 
including a collection of texts extracted from 9,919 
selected papers published in 2006-2013 by Spring-
er Publishing Company and edited at VTex by na-
tive English speaking editors. The training, devel-
opment and test datasets were comprised of data 
from an independent set of articles. After editing, 
the training and development sets respectively con-
sists of 1,196,940 and 148,478 sentences, for de-
signing and implementing the system. In total, 
143,804 sentences in the test dataset were used for 
final performance evaluation.  

The pre-trained word vectors we used are pub-
licly available for download at the official 
Word2Vec and GloVe web sites. For Word2Vec 
representation, the model was trained on part of the  
Google News dataset, producing 300 dimensional 

 
 

Figure 1: The illustration of our convolutional neural network architecture for the AESW shared task. 
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vectors for 3 millions words and phrases as a result. 
For the GloVe representation, we adopted 4 differ-
ent datasets for training the vectors including one 
from Wikipedia 2014 and Gigaword 5 (400K vo-
cabulary), two common crawl datasets (uncased 
1.9M vocabulary, and cased 2.2M vocabulary) and 
one Twitter dataset (1.2M vocabulary). 

To implement the system, a python library 
Theano (Bastien et al., 2012) was used. The 
abovementioned datasets and linguistic resources 
were used to construct a convolutional neural net-
work for this shared task.  

4.2 Scores  

For performance evaluation, this shared task 
adopted three metrics: precision, recall, and F-
score. The scores were calculated for both tracks 
individually. 

For the Boolean prediction track, precision 
measures the proportion of the gold standard sen-
tences among all sentences reported by the system 
as positive examples. Recall measures the propor-
tion of gold standard sentences correctly identified 
as needing improvement. F-score is the harmonic 
means of precision and recall. 

For the probabilistic estimation track, the Mean 
Squared Error (MSE) is used. The precision (de-
noted as P), recall (R), and F-score (F) are defined 
in the following equations: 

𝑃 = 1 − !
!

𝑞! − 𝑠! !, 𝑖𝑓 𝑞!! > 0.5    (1) 

𝑅 = 1 − !
!

𝑞! − 𝑠! !, 𝑖𝑓 𝑠!! = 1  (2) 

𝐹 = !∗!∗!
!!!

     (3) 

where qi is the probabilistic estimation, si is the 
gold standard, n is the number of sentences pre-
dicted as requiring improvement, and m is the 
number of gold standard sentences needing im-
provement. 

4.3 Experiments 

In the first set of experiments, we fine-tuned sever-
al parameter combinations to obtain the Convolu-
tional Neural Network (CNN). Three main pa-
rameters may affect system performance: (1) 
Number of epochs, which is the number of itera-
tions required to learning the network parameters 
(set from 3 to 5); (2) Number of filters, which is 
regarded as the number of features used to train the 

network (100 and 250 in this experiment); and (3) 
Filter length, which denotes the number of contexts 
for convolution (set from 2 to 4). We used mini-
batches to train the network. The size of each mini-
batch was set as 100. We also considered the num-
ber of learning instances. In addition to adopting 
training instances used only for network learning, 
we incorporate sentences from the development 
datasets for model training. To optimize training 
CNN efficiently, this set of experiments adopts the 
conventional bag-of-word vectors used to index a 
word as vocabulary. In addition, the default 
threshold was set as 0.5 for binary decisions. 

In the second set of experiments, we compared 
the effects of different word embedding methods 
including Word2Vec and Glove. We also evaluat-
ed the influence of the number of dimensions used 
for word representation.  

In the third set of experiments, we adopted the 
best settings generated from the above experiments 
to fine-tune the threshold for Boolean decision. We 
increase the threshold from 0.1 to 0.9 in increments 
of 0.1, and then fine tune in increments of 0.01 to 
obtain approximately optimal performance for the 
CNN model.  

4.4 Results 

Table 1 shows the Boolean results with different 
parameter settings. A greater number of epochs do 
not always produce the better results. A smaller 
number of filters obtained better outcomes in more 
than two-thirds of testing cases with the same set-
tings. Similarly, a longer filter length does not 
guarantee better results. In more than half of test-
ing cases, using more sentences from the develop-
ment dataset in model training did not produce bet-
ter F-scores. In summary, 4 epochs, 100 filters, and 
a filter length of 3 achieved the best recall of 
0.5251 and an F-score of 0.5526. We used these 
parameter settings for the following experiments. 

Table 2 shows the results of our CNN model 
with different word embedding methods for the 
Boolean prediction track. Within the GloVe repre-
sentation, the Twitter dataset (only 200 dimensions) 
does not achieve good results, possibly due to the 
poor suitability of textual usages of social media 
for the automated evaluation of scientific writing. 
With 300 dimensions each, trained word vectors 
from Wikipedia and Gigaword obtained relatively 
better effects than that from common crawl data. In 
addition, more dimensions usually lead to better 
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results. Comparing the representations of GloVe 
and Word2Vec, the GloVe achieves better recall 
and a higher F-score than Word2Vec, while 
Word2Vec provides higher precision. Again, using 
more sentences to train the CNN does not result in 
better performance in this set of experiments. In 
summary, the Word2Vec training from the Google 
News data obtains the best precision at 0.6717. The 
best recall 0.5344 and F-score 0.5618 were 
achieved using the GloVe representation learning 
from Wikipedia and Gigaword (300 dimensions).  

Compared with the default threshold of 0.5, 
evaluation results showed that the F-score obtained 
using the Word2Vec representation could be im-
proved to 0.6108 by setting the threshold to 0.21. 
Similarly, the F-score of the GloVe representation 
learning from Wikipedia and Gigaword (300 di-
mensions) can be slightly improved to 0.6046 with 
a threshold of 0.34. We also analyzed why the low 
thresoulds resulting the better results. In our 
obserations, the class (0/1) in the training set is 
imbalanced. The number of instances with class 0 
(i.e., without needing improvements) is about 1.5 
times than that with the class 1, which may affect 

the model favors the class 0 and generates a low 
probability of the class 1.  

Table 3 shows the results of our CNN model 
with different word embedding methods for the 
probabilistic estimation track. Similar outcomes 
are obtained for the probabilistic estimation track. 
Our CNN using the Word2Vec representation 
achieved the best precision of 0.79. Also, using the 
CNN model with the GloVe representation trained 
from Wikipedia and Gigaword (300 dimensions) 
obtained the best recall of 0.7177 and the highest 
F-score of 0.7419. 

4.5 Comparisons 

In this shared task, each participant can submit 
up to two results as final submissions for each 
track. Our submission selected the result with best 
F-score and the result with relatively better preci-
sion without obviously bad recall. For the Boolean 
prediction track, we selected the best F-score of 
0.6108 (with a precision at 0.5025 and recall at 
0.7785) achieved by the Word2Vec representation 
with a threshold 0.21, and a precision of 0.6717 

Number 
of Epochs 

Number 
of Filters 

Filter 
Length 

Training Training + Development 

Precision Recall F-score Precision Recall F-score 

3 100 2 0.5964 0.4567 0.5173 0.5908 0.482 0.5309 
3 100 3 0.6058 0.4751 0.5325 0.6285 0.4294 0.5102 
3 100 4 0.6151 0.4388 0.5122 0.5942 0.5006 0.5434 
4 100 2 0.5876 0.4692 0.5218 0.5959 0.4534 0.515 
4 100 3 0.6049 0.4558 0.5199 0.5832 0.5251 0.5526 
4 100 4 0.6099 0.4441 0.5139 0.6026 0.465 0.525 
5 100 2 0.5644 0.5167 0.5395 0.5851 0.466 0.5188 
5 100 3 0.5952 0.4769 0.5295 0.6064 0.4569 0.5211 
5 100 4 0.5981 0.4451 0.5103 0.6132 0.4156 0.4954 
3 250 2 0.6081 0.4381 0.5093 0.6085 0.4363 0.5082 
3 250 3 0.6222 0.4466 0.5199 0.6102 0.4726 0.5327 
3 250 4 0.632 0.4007 0.4904 0.6067 0.4702 0.5298 
4 250 2 0.5828 0.4874 0.5308 0.5944 0.4558 0.516 
4 250 3 0.6187 0.4362 0.5116 0.626 0.4263 0.5072 
4 250 4 0.6091 0.4479 0.5162 0.6325 0.3995 0.4897 
5 250 2 0.5929 0.4325 0.5001 0.6 0.4388 0.5069 
5 250 3 0.6052 0.4427 0.5113 0.5972 0.4725 0.5276 
5 250 4 0.6413 0.3431 0.4471 0.6424 0.3545 0.4569 

Table 1: Boolean results of our CNN model with different parameters. 
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and recall of 0.3805 (the F-score of 0.4858 as a re-
sult) with the same word embedding method at the 
default threshold 0.5. For the probabilistic estima-
tion track, we submitted a result with an F-score of 
0.7419 (with a precision at 0.7678 and recall of 
0.7177) using the GloVe representation trained 
from Wikipedia and Gigaword at 300 dimensions, 
and the result with best precision at 0.79 and recall 
at 0.6166 (the F-score was 0.6926) using the 
Word2Vec embedding.  

The official results of this shared task for the 
Boolean prediction track and probabilistic estima-
tion track can be found in the organizers’ task re-
port (Vidas et al., 2016). The organizers also pro-
vided the baseline method using random guess. If 
the F-score is considered, our first NTNU-YZU 
submission for the Boolean track ranked a close 
second (the best is 0.6278) among the ten submis-
sions. The second NTNU-YZU submission 
achieved the best precision among all submissions 

Word Embedding 
Training Training + Development 

Precision Recall F-score Precision Recall F-score 

Word2Vec (Google News, 300d) 0.79 0.6166 0.6926 0.7759 0.6805 0.7251 

GloVe  
(Wikipedia 2014 + Gigaword 5, 50d) 0.7675 0.6865 0.7248 0.7714 0.6853 0.7258 

GloVe (W. 2014 + G. 5, 100d) 0.779 0.6552 0.7117 0.7744 0.6818 0.7252 

GloVe (W. 2014 + G. 5, 200d) 0.7767 0.6819 0.7262 0.7785 0.6775 0.7245 

GloVe (W. 2014 + G. 5, 300d) 0.7678 0.7177 0.7419 0.7745 0.6938 0.7319 

GloVe  
(Common Crawl, uncased, 300d) 0.7755 0.6916 0.7311 0.7784 0.68 0.7259 

GloVe  
(Common Crawl, cased, 300d) 0.773 0.704 0.7369 0.779 0.6789 0.7255 

GloVe (Twitter, 200d) 0.784 0.649 0.7102 0.7817 0.668 0.7204 

Table 3: Probabilistic results of our CNN model with different word embedding methods. 

 

Word Embedding 
Training Training + Development 

Precision Recall F-score Precision Recall F-score 

Word2Vec (Google News, 300d) 0.6717 0.3805 0.4858 0.6279 0.4871 0.5486 

GloVe  
(Wikipedia 2014 + Gigaword 5, 50d) 0.5956 0.4539 0.5152 0.6084 0.437 0.5086 

GloVe (W. 2014 + G. 5, 100d) 0.6357 0.3968 0.4886 0.6178 0.451 0.5214 
GloVe (W. 2014 + G. 5, 200d) 0.6234 0.4548 0.5259 0.6303 0.4422 0.5198 
GloVe (W. 2014 + G. 5, 300d) 0.5923 0.5344 0.5618 0.6164 0.4842 0.5424 

GloVe  
(Common Crawl, uncased, 300d) 0.6222 0.4843 0.5447 0.6293 0.4584 0.5304 

GloVe  
(Common Crawl, cased, 300d) 0.6129 0.508 0.5555 0.6328 0.4634 0.535 

GloVe (Twitter, 200d) 0.6532 0.3925 0.4903 0.6419 0.4301 0.5151 

Table 2: Boolean results of our CNN model with different word embedding methods. 
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with a moderate F-score. For the probabilistic es-
timation track, the F-score of our first NTNU-YZU 
submission ranked fourth among the nine submis-
sions. In terms of precision, our second NTNU-
YZU submission ranked second among all submis-
sions.  

5 Lessons 

The CodaLab is used to evaluate this competition-
based shared task. This open-source system is very 
helpful for automating such competitions, but is 
still in development. About 12%(=31/269) of our 
submissions for the Boolean prediction track failed 
with/without error information. Similarly, 
16%(=13/81) of submissions for the probabilistic 
estimation track failed.  

Based on our experience in organizing or partic-
ipating in shared tasks, all participants should in-
dependently complete the systems and their eval-
uation. The CodaLab automatically keeps the last 
submission of each participant in the leaderboard. 
All participants have access to the current leader-
board results during the testing phrase, which may 
affect system development and the final result se-
lection.  

For the shared task, only about three months are 
allowed for system design and implementation, 
and some participants were unable to complete the 
task in time, or withdrew because of unsatisfactory 
results. The schedule left our team time to only ex-
plore one of possible machine learning models. Al-
lowing more time to complete the task, may pro-
duce better results.  

In addition to using precision, recall, and F-
score as evaluation metrics, we suggest evaluating 
the false positive rate, which is the proportion of 
sentences that incorrectly identified as needing im-
provement. Although high precision usually im-
plies a low error rate, a low false positive rate is 
still considered as an important metric in the real 
world, because frequently and incorrectly identify-
ing sentences as in need of improvement may 
cause user frustration.  

6 Conclusions and Future Work 

This study describes the NTNU-YZU system in the 
AESW shared task, including system design, im-
plementation, and evaluation. We trained a convo-
lutional neural network using two embedding 
methods (Word2Vec and GloVe) for the automated 

evaluation of scientific writing. Our system 
achieved an F-score of 0.6108, ranking second 
among the ten submissions for the Boolean predic-
tion track. For the probabilistic estimation track, 
our best F-score of 0.7419 ranked fourth among 
the nine submissions.  

This is our first exploration for this research top-
ic and future work will explore other machine 
learning approaches to improve system perfor-
mance. In addition to predicting whether a given 
English sentence needs language editing or not, we 
will focus on detecting/correcting grammatical er-
rors in sentences written by Chinese learners.  
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Abstract

In this paper we investigate how well the sys-
tems developed for automated evaluation of
written responses perform when applied to
spoken responses. We compare two state of
the art systems for automated writing evalua-
tion and a state of the art system for evaluat-
ing spoken responses. We find that the sys-
tems for writing evaluation achieve very good
performance when applied to transcriptions of
spoken responses but show degradation when
applied to ASR output. The system based on
sparse n-gram features appears to be more ro-
bust to such degradation. We further explore
the role of ASR accuracy and the performance
and construct coverage of the combined model
which includes all three engines.

1 Introduction

In this paper we evaluate how well the systems
developed for automated evaluation of written re-
sponses perform when applied to spoken responses.
We use a corpus of spoken responses to an English
language proficiency test and compare the perfor-
mance of two state-of-the-art systems for evaluating
writing and a state of the art system for evaluating
spoken responses.

Automated speech scoring, until recently, pri-
marily focused on evaluating pronunciation and
prosody of highly constrained read speech (Bern-
stein et al., 1990; Neumeyer et al., 1996; Witt and
Young, 2000). With the improvement in automatic
speech recognition technology, automated scoring
has lately also been applied to constructed responses
where the content of the response may not be known

in advance (Zechner et al., 2009; Cheng et al., 2014).
Earlier scoring systems for such responses still pri-
marily evaluated delivery aspect of the response, but
there has also been a growing amount of work on
automatic evaluation of grammar, vocabulary and
content of spoken responses (Bernstein et al., 2010;
Chen and Zechner, 2011; Xie et al., 2012; Bhat and
Yoon, 2015).

While automatic evaluation of these high-level as-
pects of language proficiency is a relatively new field
in automated speech scoring, there exists a substan-
tial body of research on evaluating these constructs
in written responses including several systems al-
ready used operationally for scoring responses to
high-stakes language proficiency tests (see Shermis
(2014) for a comprehensive overview).

Automated scoring systems for spoken and writ-
ten responses generally share a common structure:
they extract a set of features measuring different
aspects of language proficiency and use a machine
learning algorithm to map those features to a human
score. There is also a substantial overlap in the crite-
ria used to score grammar and vocabulary of spoken
and written responses. Therefore, it is not unreason-
able to expect that some of the features developed
for evaluating writing will also be applicable to scor-
ing spoken responses (cf. Crossley and McNamara
(2013)).

On the other hand, the performance of such fea-
tures can be affected by a number of factors. First
of all, many grammatical features rely on knowl-
edge of sentence boundaries in order to parse the
response into syntactic constituents. In written re-
sponses the sentence boundaries can be established
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based on punctuation. In spoken responses, how-
ever, these have to be estimated using machine learn-
ing algorithms such as the ones described in Chen
and Yoon (2011). Furthermore, sentence boundaries
in speech are often ambiguous. These factors may
lead to a decrease in feature performance.

Second, in automated speech scoring the tran-
scription of the spoken responses necessary to eval-
uate grammar and vocabulary is obtained using au-
tomated speech recognition (ASR) (Higgins et al.,
2011). These systems may incorrectly recognize
certain words introducing additional noise into the
feature input and consequently lowering their per-
formance.

Finally, spoken and written discourse differ in
what is considered appropriate in terms of language
use (Chafe and Tannen, 1987; Biber and Gray,
2013). Thus, for example, sentence fragments typ-
ically considered inappropriate for written language
are generally very common in unscripted spoken re-
sponses. This may also impact how well the features
developed for written responses perform on spoken
responses.

We first introduce three state-of-the-art opera-
tional systems for automated scoring. We then apply
the engines for evaluating writing to a corpus of spo-
ken responses. Finally, we evaluate whether com-
bining different engines leads to further improve-
ment in system performance and construct coverage.

2 Automated scoring systems

2.1 e-rater R©

e-rater R© (E) is an engine that can automatically pro-
vide feedback on students’ writing, as well as au-
tomatically assign a score to that writing. Using
statistical and rule-based NLP methods, E identifies
and extracts several feature classes for model build-
ing and essay scoring (Attali and Burstein, 2006;
Burstein et al., 2013)). Individual feature classes
typically represent an aggregate of a larger feature
set and are designed to capture a specific aspect of
the construct being measured. The feature classes
used in this paper include the following: (a) gram-
matical errors (e.g., subject-verb agreement errors),
(b) word usage errors (e.g., their versus there), (c)
presence of essay-based discourse elements (e.g.,
thesis statement, main points, supporting details,

and conclusions), (d) development of essay-based
discourse elements, (e) a feature that considers cor-
rect usage of prepositions and collocations (Futagi
et al., 2008), and (f) sentence variety. To train a new
scoring model, features are extracted from a training
data set, and a linear model (roughly equivalent to
non-negative least squares regression) is learned.

2.2 c-rater-ML

c-rater-ML (C) is an automated scoring engine orig-
inally designed to evaluate the content of a student
response. It is typically applied to short responses
ranging from a few words to a short paragraph.
Therefore, in contrast to E and S many of the fea-
tures used in the C engine are sparse lexicalized fea-
tures similar to the ones described in Heilman and
Madnani (2013). In addition to word and character
n-gram features, the models also include syntactic
dependency features. As a result of the large num-
ber of sparse features, the modeling technique for
this kind of feature set needs to be different from
a straightforward linear model. C employs a Sup-
port Vector Regressor with a radial basis function
kernel. We use this alternative approach to scor-
ing (with many sparse lexical features and a non-
linear learning function) to contrast with the typical
scoring models used for evaluating speech or writing
quality.

2.3 SpeechRater

SpeechRatersm (S) (Zechner et al., 2009) is an auto-
mated scoring engine that is designed to evaluate the
quality of spontaneous spoken responses. Using sig-
nal processing as well as NLP techniques, S extracts
features for evaluating both the delivery characteris-
tics (e.g. fluency, pronunciation) and the language
use characteristics (e.g. grammar, vocabulary) of
each response.

The features are extracted from the sound record-
ing of the response using the two stage method de-
scribed in Higgins et al. (2011) where the transcrip-
tion of the responses is obtained using automated
speech recognition technology. The ASR engine in-
corporated into S was trained on over 800 hours of
non-native speech from the same assessment used
in this study with no speaker overlap. The ASR sys-
tem uses a GMM-based crossword triphone acoustic
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model and a 4-gram language model with a vocabu-
lary size of 65,000 words.

The S model used in this study contained 18 fea-
tures. Of these, 15 features covered various as-
pects of delivery such as fluency, pronunciation and
rhythm. Three features measured language use.
These feature were: (1) average log of the frequency
of all content words (Yoon et al., 2012), (2) CVA-
based comparison between the lexical content of
each response and the reference corpus (based on
Xie et al. (2012)) and (3) a CVA-based comparison
computed based on part-of-speech tags (Bhat and
Yoon, 2015). As in case of E, the final score is com-
puted as a linear combination of these features.

3 Data and methodology

3.1 Corpus of spoken responses

The study is based on a corpus of 5,884 spoken re-
sponses to an English language proficiency test ob-
tained from 996 speakers. The corpus contains up to
six responses from each speaker. Each response was
unscripted and around 1 minute long.

The corpus was equally split into training and
evaluation sets (2,941 responses each). There was
no overlap of speakers or prompts in the two sets.
All responses were assigned a holistic proficiency
score by expert raters. The scores ranged from 1
(low proficiency) to 4 (high proficiency). The raters
evaluated the overall intelligibility of responses,
grammar, the use of vocabulary, and topic develop-
ment. To obtain human benchmarks, 136 responses
from the evaluation set were scored by two raters.
The agreement between the two raters was Pearson’s
r = 0.56.

All responses were transcribed by a professional
transcription agency. The average length of tran-
scribed responses was 104 words (σ = 30) with the
length of 50% of the responses falling between 84
and 124 words. The responses from more profi-
cient speakers were generally longer: the number
of words in the response was moderately correlated
with proficiency score with Pearson’s r = 0.51 (p <
0.0001). Table 1 shows the number of responses in
the evaluation set assigned to each score category as
well as the mean and standard deviation of the num-
ber of words in the transcriptions of these responses.

Finally, we computed the word error rate (WER)

Score 1 2 3 4
N responses 104 1005 1485 347
Average N words 51.5 91.0 111.9 126.5
Std. N words 25.4 24.7 25.5 28.9
Average WER 48% 36% 31.5% 30%

Table 1: The total number of responses in each score category,

the average number of words/standard deviation of transcribed

responses and the average ASR word error rate for responses in

each category.

for the ASR output for each response in our corpus.
The average WER for the whole corpus was 34%
(σ = 13.7). The ASR was somewhat more accu-
rate for more proficient speakers with the correlation
between response WER and response score Pear-
son’s r = -0.24 (p < 0.0001). As can be seen from
Table 1, the relationship between WER and profi-
ciency scores was non-linear: the WER was sub-
stantially greater for speakers with the lowest pro-
ficiency level (score 1), the difference between the
rest of the speakers was smaller.

3.2 Method

3.2.1 Feature extraction
We used each of the three engines to extract

the corresponding features for each response. Fea-
tures for S were extracted following the operational
pipeline from the sound recording of the response
with all features including those related to language
use computed on the ASR output. For E and C the
features were extracted using three different inputs:
(1) the ASR output (the same as used in S), (2) the
expert human transcription which included punctua-
tion, and (3) the human transcription after removing
all punctuation. All transcriptions were processed
to remove fillers such as ‘uhm’ and ‘uh’, word frag-
ments and repeated words.

3.2.2 Model building
We then used various combinations of features to

compare the performance of the engines. For S and
E we used the actual feature values returned by each
system (18 S features and 9 E features). Since C is
based on numerous sparse features we used a stack-
ing approach (Wolpert, 1992) to combine it with the
other two engines: we used 10-fold cross-validation
to generate predicted scores for all responses in the

132



training set and used these predicted scores as a sin-
gle “C” feature. For the evaluation set this feature
corresponded to scores predicted for the evaluation
set using the C model trained on the training set.

We then trained a series of models based on differ-
ent combinations of features from the three engines.
The coefficients for all models were estimated on the
training set using non-negative least squares regres-
sion. The models were then used to generate predic-
tions on the evaluation set. Finally, in all cases the
predictions were re-scaled using a normal transfor-
mation to match the distribution of human scores on
the training set.

4 Results

Table 2 shows the performance of all 19 models in
terms of correlation (Pearson’s r) between predicted
and observed scores for the evaluation set. We used
Steiger’s method for comparing dependent correla-
tions (Steiger, 1980)1 to evaluate whether the dif-
ferences between models are statistically significant.
Unless stated otherwise, all reported differences are
significant at α = 0.01 after applying Bonferroni cor-
rection for multiple comparisons.

4.1 Performance of E and C on transcriptions

When used with human transcription, both E and
C performed close to the S baseline (r = 0.61 for
E, 0.61 for C and 0.63 for S, the differences are not
significant). There was a small improvement from
combining the two automated writing evaluation en-
gines (EC) with r increasing to 0.64.

4.2 Performance of E and C on ASR output

There was a decrease in performance of both writing
engines when the features were computed on ASR
output. The degradation was larger for E (from 0.61
to 0.52). C appeared to be more robust to the noise
introduced by ASR with the performance decreas-
ing from 0.61 to 0.58. The model based on the com-
bination of both engines computed on ASR output
achieved r = 0.60.

We further explored the reason for degradation
between the features computed on transcription and
ASR output. As discussed in the introduction, ASR

1We used the Python implementation from
https://github.com/psinger/CorrelationStats

output does not contain sentence boundaries neces-
sary for the computation of some of the features.
To evaluate the impact of this factor we computed a
new set of features using human transcriptions with
punctuation removed. We found that this had no sig-
nificant effect on model performance.

We next looked at the effect of response WER on
the accuracy of the scoring engine for this response.
We first hypothesized that the scoring error may be
greater for responses with higher WER. To test this
hypothesis we computed the correlation between the
scoring error (the absolute difference between pre-
dicted and observed score) and the WER for each
response. As expected, there was no significant cor-
relation when automated scores were computed on
transcriptions with or without punctuation. Surpris-
ingly, the correlations between WER and scoring er-
ror for scores computed on ASR output were very
low: r = 0.09 (p < 0.00001) for E and r = 0.07, p
= 0.0001 for C . In other words, there was no lin-
ear relationship between the response WER and the
scoring error.

We also tested whether the relationship between
the scoring error and WER was further obscured by
training the models on already “noisy” ASR outputs.
We retrained the E, C and EC models using the fea-
tures computed on transcriptions and then evaluated
them using features computed on ASR outputs. We
found that the performance of these new models was
similar (E) or slightly lower (C and EC) than the
performance of the models trained on ASR outputs.
Furthermore, the correlation between the WER and
scoring error for these models were as low as the
correlations observed for ASR-trained models.

4.3 Combined performance of all three engines
Finally, we evaluated the performance and construct
coverage of the model based on the combination of
all three engines.

We found that the performance improved if S fea-
tures were combined with writing features computed
based on transcriptions. This is not surprising con-
sidering that all S features were computed on ASR
output and therefore the new features computed on
transcriptions most likely contained the information
lost due to inaccurate ASR.

For features computed on ASR output, we found
that there was no further gain in performance from
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Model Description Org N feats trans trans-no-punct asr
S Baseline model containing S features only 18 0.63
E The model containing only E features 9 0.61 0.60 0.52
C The original C model (see text) 0.61 0.62 0.58
EC The model which combined E features and pre-

dictions from C (see main text)
10 0.64 0.64 0.60

SE The combination of S and E features 27 0.67 0.66 0.63
SC The combination of S features and predictions

from C (see main text)
19 0.66 0.66 0.64

SEC The combination of S and E features and predic-
tions from C

28 0.67 0.67 0.64

Table 2: Summary of performance (Pearson’s r between the predicted and human score) of all 19 models evaluated in this study.

The table shows the original number of features and the model performance for different types of input (see section 3.2.1). The

final number of features in the model may be less than the original number of features since all coefficients were set to be positive.

combining S and E (SE), C (SC) or all three engines
(SEC).

We also evaluated which features had the biggest
contribution to the final score in different models. In
the baseline S model, delivery features (fluency, pro-
nunciation, and prosody) accounted for 80% of the
final score. The language use features accounted for
the remaining 20%. In the combined model, the rel-
ative contribution of language use features increased
to 38% for SE, 37% for SC and 44% for SEC. Thus
in the combined model the delivery and language
use features are more evenly balanced.

5 Discussion

In this paper we explored how well state-of-the-
art engines for evaluating written responses per-
form when applied to transcriptions of spoken re-
sponses. Surprisingly, we found that the writing en-
gines achieve relatively high agreement with human
scores even though they do not measure some funda-
mental aspects of spoken language proficiency: flu-
ency and pronunciation. At the same time, there was
no improvement between the baseline S system and
a system that combines all three engines.

Furthermore, the drop in performance of writing
engines when moving from well-formed transcribed
text to ASR output is not as high as one might ini-
tially expect given the relatively high WER in this
data set. We also found that the relationship between
the ASR accuracy and scoring error was not straight-
forward and deserves further study. Finally, lack of
sentence boundaries had no effect on the engine per-

formance.

C engine showed good agreement with human
scores even though there was no overlap between
prompts in training and evaluation sets and there-
fore the model could not learn any specifics relevant
to particular prompts and had to rely on general pat-
terns of word use.

Our results highlight the complex role of con-
struct in automated scoring. The majority of speak-
ers who show good performance along one of the
dimensions of language proficiency generally also
score high along other dimensions. This is ex-
emplified by our result that writing engines which
measured only one aspect of spoken responses
still showed relatively high agreement with holistic
scores. Consequently, as shown in this study, the
gain in performance from combining different en-
gines is small or non-existent. However, a system
which heavily relies on features measuring a single
aspect of proficiency is sub-optimal both in terms of
validity of the final score and the system vulnerabil-
ity to various gaming behaviours.

We showed that combining the speech scoring en-
gine with the existing features developed for scoring
written responses produces a model where the con-
tribution of different proficiency aspects to the final
score is more balanced leading to a more valid sys-
tem, which is potentially more robust to gaming. In
future study we will investigate the individual con-
tribution of different features in these engines.
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Abstract
Many grammatical error correction approaches
use classifiers with specially-engineered fea-
tures to predict corrections. A simpler alterna-
tive is to use n-gram language model scores.
Rozovskaya and Roth (2011) reported that clas-
sifiers outperformed a language modeling ap-
proach. Here, we report a more nuanced result:
a classifier approach yielded results with higher
precision while a language modeling approach
provided better recall. Most importantly, we
found that a combined approach using a logis-
tic regression ensemble outperformed both a
classifier and a language modeling approach.

1 Introduction

In this paper, we compare methods for correcting
grammatical errors. Much of the previous work on
grammatical error detection and correction has stud-
ied methods based on statistical classifiers (Tetreault
and Chodorow, 2008; De Felice and Pulman, 2009;
Tetreault et al., 2010; Rozovskaya and Roth, 2010;
Dahlmeier and Ng, 2011; Seo et al., 2012; Cahill
et al., 2013). In particular, Tetreault and Chodorow
(2008) and Tetreault et al. (2010) found that classi-
fiers based on a variety of contextual linguistic fea-
tures performed well, especially in terms of precision
(i.e., avoiding false positives). Gamon (2010), how-
ever, reported that a language modeling approach
substantially outperformed a classifier using contex-
tual features. Finally, Rozovskaya and Roth (2011)
found that a classifier outperformed a language mod-
eling approach on different data, making it unclear
which approach is best.

∗Michael Heilman is now a data scientist at Civis Analytics.

Much of the previous work has used well-formed
text when training contextual classifiers due to the
lack of large error-annotated corpora. Han et al.
(2010) conducted experiments with a relatively small
error-annotated corpus and showed that it outper-
formed a contextual classifier trained on well-edited
text. More recently, Cahill et al. (2013) mined
Wikipedia revisions to produce a large, publicly avail-
able error-annotated corpus and reported similar re-
sults on multiple, publicly available data sets.

Our goal in this paper is not to build a state-of-
the-art system but rather to investigate the following
research questions:
• Does a contextual classifier trained on error-

annotated data outperform a language modeling
approach?

• Can a classifier trained on error-annotated data
and the language modeling approach be effec-
tively combined?

With respect to the second question, Gamon (2010)
previously reported that a combination of a contex-
tual classifier trained on well-edited text and a lan-
guage modeling approach outperformed each indi-
vidual method. However, given that the performance
of his classifier was lower than what has been re-
ported on other datasets (Tetreault and Chodorow,
2008; Rozovskaya and Roth, 2011), we believe it is
worth reinvestigating the merits of system combina-
tion but with publicly available data sets and with a
classifier trained on error-annotated data instead of
on well-edited text. This work differs from Susanto
et al. (2014) in that we are interested in combining
statistical models in order to more accurately cor-
rect individual preposition errors, while their work
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combined — at the sentence level — the outputs of
multiple systems designed to correct different types
of grammatical errors.

2 Task Description

In this paper, we focus on the task of detecting and
correcting preposition selection errors in English writ-
ing — that is, errors where the writer selects the in-
correct preposition for a given context. We consider
36 different prepositions (§3.1).

2.1 Evaluation Datasets

We use two data sets for evalution: (a) The CLC
FCE dataset, which contains exam scripts written by
English language learners for the Cambridge ESOL
First Certificate in English (Yannakoudakis et al.,
2011), with 20% held out for development, and (b)
The HOO 2011 shared task data set, which contains
excerpts of ACL papers manually annotated for gram-
matical errors (Dale and Kilgarriff, 2011). No HOO
data was used for development.

2.2 Metrics

To evaluate performance, we compute precision, re-
call, and F1 score for each dataset. Precision is the
percentage of system corrections that are correct ac-
cording to the gold standard, and recall is the per-
centage of the gold standard corrections that were
correctly marked by the system. Our evaluation met-
ric can be viewed as similar to a micro-averaged
F1 score for a multi-class document classification
task where documents are the original prepositions,
classes are the possible corrections, and only doc-
uments for ungrammatical prepositions have class
labels. Our F1 score is similar to the WAS evalua-
tion scheme of Chodorow et al. (2012), except that
we treat cases where the original preposition, sys-
tem prediction, and gold standard all differ as false
negatives. Chodorow et al. (2012) instead treat such
cases as both false positives and false negatives, and
as a result, the sum of true positives, false positives,
true negatives, and false negatives does not equal the
number of examples.

3 Methods

This section describes our implementations of the
classifier, language modeling, and system combina-

tion approaches to preposition error correction.

3.1 Classifier

Our first system is a classifier trained on error-
annotated data, following Cahill et al. (2013). The
classifier uses logistic regression to solve a 36-way
classification problem with one class per preposition
(Tetreault and Chodorow, 2008). It includes 25 lexi-
cal and syntactic contextual features. It also includes
a feature indicating the writer’s original preposition.
The classifier learns a conditional probability dis-
tribution pCLS(w|x) over prepositions w given the
context x in which they appear.

To train this classifier, we used the preposition
error corpus mined from revisions in an XML snap-
shot of Wikipedia (Cahill et al., 2013). The snapshot
contained 8,735,890 articles and 288,583,063 revi-
sions. The resulting data set consists of 7,125,317
prepositions and their sentence contexts. Of these
prepositions, 1,027,643 were marked as errors and
annotated with corrections.

We include a threshold parameter λCLS , tuned to
maximize F1 score on the development set. Letworig

be the writer’s preposition, letQ be the set of preposi-
tions, and let walt = argmaxy∈Q−{worig} pCLS(y|x)
(i.e., the best alternative that differs from the orig-
inal). If pCLS(walt) − pCLS(worig) > λCLS , then
the alternative is predicted (i.e., a correction is made).
Otherwise, no change is made. We explored values
ranging from 0 to 1, with steps of size .001.

3.2 Language Model

Our second system uses a language modeling ap-
proach. We use KenLM (Heafield, 2011) to estimate
an unpruned model for n = 6 with modified Kneser-
Ney smoothing (Chen and Goodman, 1998) on the
text of all articles contained in a snapshot of English
Wikipedia from June 2012 (68,356,743 sentences).
We use this n-gram language model to obtain scores
gLM (w, s, i) = log10 pLM (f(w,s,i))

|s|+1 , where w is the
preposition to be scored, s is the writer’s original
sentence, i is the position of the original preposition
in s, f is a function that returns a variant of s with
the preposition at i replaced with w, and pLM returns
the probability for a sentence. We divide the lan-
guage model log probability by |s|+ 1, where |s| is
the number of tokens in the sentence, to account for
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differences in sentence lengths.1

Again, we include a threshold λLM for deciding
whether to replace the writer’s original preposition
with the best alternative preposition. This works
similarly, except that it works with differences in the
language model scores gLM rather than differences
in probabilities. We explored a grid with 45 manually
selected points obtained by examining the percentiles
for gLM on the development set.2

3.3 System Combinations

We examine three methods for combining the lan-
guage modeling and classifier approaches.

3.3.1 Heuristic
The first method is a simple heuristic combination

intended to increase the recall of the classifier ap-
proach. We first tune the λCLS and λLM thresholds
individually for the classifier and language model
approaches to optimize F1 score, as described above.
Then, if the classifier predicts a correction, we return
that as the final correction. If the classifier did not
predict a correction but the language model did, then
we return the language model’s suggested correction.
If neither predicts a correction, then we return the
original preposition.

3.3.2 Interpolation
The second method combines the scores from the

classifier and the language model, finds the best al-
ternative to the original (i.e., a potential correction),
and then applies a threshold to decide whether or not
to make the correction.

Let gLM (w, s, i) be the language model score
(§3.2) for the sentence s containing the preposition
of interest w at position i, and let gCLS(w, s, i) =
log10 pCLS(w|fCLS(s, i)), computed using the clas-
sifier, where fCLS is a function that returns the con-
textual features for the classifier.3

1Our language modeling approach differs from that of Ro-
zovskaya and Roth (2011). We use a language model to compute
probabilities for whole sentences, whereas they use one to de-
rive feature weights for contexts around the writer’s original
preposition, which are used in a separate model.

2We also evaluated language models for n=3, 4, 5 on the
development set, but we do not include them here since their
performance was not as good as the 6-gram model.

3We take the logarithm of the classifier probability here to
put it on a similar scale to the language model score.

For each original preposition worig, this method
computes the difference between its classifier or lan-
guage model score and the corresponding score for
each alternative preposition walt:

∆CLS(worig, walt, s, i) = gCLS(walt, s, i)
− gCLS(worig, s, i)

∆LM (worig, walt, s, i) = gLM (walt, s, i)
− gLM (worig, s, i)

The method then computes an interpolated score for
each alternative preposition as follows:

gINT (worig, walt, s, i) =
α ∗∆CLS(worig, walt, s, i)

+ (1− α) ∗∆LM (worig, walt, s, i)

It then finds the best alternative ŵINT to the
writer’s original prepositionworig based on that score,
i.e.,

ŵINT = arg max
walt

gINT (worig, walt, s, i),

and then predicts it as the final correction if
gINT (worig, ŵINT , s, i) > λINT . The interpolation
parameter α and the threshold parameter λINT are
tuned to maximize F1 on the development set, with a
search grid for α and λINT ranging from 0 to 1 with
steps of size .01.

3.3.3 Ensemble Classifier
Finally, we evaluate an ensemble that uses scores

from the classifier and language model as features.
Specifically, we use a logistic regression classifier

to make binary predictions about whether or not to ac-
cept potential corrections from the revision classifier
(§3.1). We give priority to the classifier since it had
higher precision on the development set. Given an
original preposition worig in a sentence s at position
i, with ŵCLS being the best alternative according
to the revision classifier, the following features are
considered by the logistic regression:
• binary features for each of the 36 possible values

of the writer’s original preposition. The feature
for worig is set to 1, and the rest are set to 0.

• binary features for each of the 36 possible values
of the best alternative to the writer’s original
preposition, according to the revision classifier.
The feature for ŵCLS is set to 1, and the rest are
set to 0.

138



• ∆CLS(worig, ŵCLS , s, i) (see §3.3.2)

• ∆LM (worig, ŵCLS , s, i)
Once trained, we obtain the probability of mak-
ing a change for any given preposition p(change =
1|worig, s, i) according to the logistic regression. We
output ŵCLS as the final prediction if p(change =
1|worig, s, i) > λENS .

To tune λENS , we use a procedure based on 10-
fold cross-validation to obtain probabilities for the
development set. Each fold (i.e., tenth) of the devel-
opment set is iteratively held out, and the ensemble
is trained on the remaining folds. The ensemble is
then used to obtain probabilities of corrections for the
examples in the held-out fold. Once we have proba-
bilities for the whole set, we tune λENS to maximize
F1 score, using a search grid ranging from 0 to 1 with
steps of .001.

4 Results

Figure 1 shows the development set precision-recall
curves for the revision classifier, the language mod-
eling approach, the interpolation approach, and the
ensemble approach. The heuristic approach is shown
as a single point in the figure since there is no thresh-
old to tune. For each curve, the figure also shows
the point corresponding to the threshold that yields
the optimal F1 score. From these results, all system
combination approaches seem useful for combining
the outputs of the classifier and language model to
balance precision and recall. The ensemble appears
particularly effective: the ensemble system’s preci-
sion is generally higher than the classifier and lan-
guage model systems at the same levels of recall, and
the ensemble’s recall is generally higher at the same
levels of precision.

Table 1 shows the performance of all methods
on the FCE and HOO test sets. Note that to apply
the ensemble method to a test set, we trained the
ensemble on the entire development set and then
computed probabilities of corrections for the test set
instances. We observe the following:

1. For both the FCE and the HOO test sets, the clas-
sifier approach yields results with higher preci-
sion whereas language model approach provides
better recall.

2. For the FCE test set, we find that the ensemble
approach attains the best F1 score and that it

Dataset System P R F1 Sig.
FCE Classifier 65.63 17.77 27.97 ∗

LM 28.42 30.39 29.37 ∗
Heuristic 30.91 37.26 33.79 ∗
Interpolation 50.67 36.30 42.30 ∗
Ensemble 51.72 38.35 44.04

HOO Classifier 59.26 19.75 29.63
LM 12.90 14.81 13.79 ∗
Heuristic 21.24 29.63 24.74 ∗
Interpolation 34.29 29.63 31.79
Ensemble 32.93 33.33 33.13

Table 1: P, R and F1 scores for the FCE and HOO test sets. Bold

indicates the best result for each metric. “∗” indicates that the

F1 score for a system was significantly different (p < .05) from

that of the ensemble system as per the BCa Bootstrap (Efron and

Tibshirani, 1993) test with 10,000 replications.

performs significantly better than all other ap-
proaches, including both the classifier and the
language model.

3. For the HOO test set — which is quite differ-
ent from the FCE data in both its genre (ACL
papers) and the distribution of grammatical er-
rors — the ensemble approach still attains the
best performance and is significantly better than
the language model and the heuristic system
combination approach.

Finally, we also compared the ensemble approach
to a current state-of-the-art preposition error correc-
tion system. To do this, we evaluated on the CoNLL
2013 shared task test set (Ng et al., 2013), which
contains essays written by students at the National
University of Singapore and manually annotated with
grammatical errors. We use the “revised” version of
the annotations that includes revisions submitted by
participants after the initial evaluation and only evalu-
ate preposition selection errors. We did not use any of
this data for development. We compared our ensem-
ble system to the system submitted by the team that
performed best on preposition errors (“NAIST, PC”).
Our ensemble obtained F1 = 14.24, whereas the
NAIST system obtained F1 = 7.56. This difference
is statistically significant (p < 0.05).

Note that these results are not directly comparable
with the official results of the preposition error correc-
tion component of the CoNLL shared task. First, we
only measured the performance of the two systems
on preposition selection errors since our system is
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Figure 1: P and R values for the development set. Curves indicate performance at various values for the threshold λ for making a

correction. Corresponding shaped dots indicate points at which F1 is highest for each method.

not designed to correct either extraneous or missing
preposition errors. Secondly, the F1 results on the
CoNLL shared task used estimated types for comput-
ing precision, while were were certain of our error
type. It is also not possible to compare to the pub-
lished results on the HOO 2012 shared task (Dale
et al., 2012) which used CLC-FCE data, because re-
sults for the three types of preposition errors were
combined in one overall score.

5 Conclusions

Our goal in this paper was not to build a state-of-the-
art preposition error correction system but rather to
re-examine how well a simple language modeling
approach performs on the task of correcting preposi-
tion selection errors, compared to the more typical

approach that uses a classifier trained on a large error-
annotated corpus (Cahill et al., 2013). We found that
a language model does not generally perform as well
as a classifier in terms of F1, similar to a previous
finding from Rozovskaya and Roth (2011). In addi-
tion, we also found that while the classifier has higher
precision, the language model yields higher recall.

We also examined several methods for combin-
ing the classification and the language modeling ap-
proaches and found that a logistic regression ensem-
ble is particularly effective. This ensemble signifi-
cantly outperformed both the classifier and language
modeling approaches on two publicly available test
sets which indicates that more hybrid approaches
should be investigated for grammatical error correc-
tion.
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Abstract

As many as two-thirds of individuals with
an Autism Spectrum Disorder (ASD) also
have language impairments, which can range
from mild limitations to complete non-verbal
behavior. For such cases, there are sev-
eral Augmentative and Alternative Commu-
nication (AAC) devices available. These are
computer-designed tools in order to help peo-
ple with ASD to palliate or overcome such
limitations, at least partially. Some of the
most popular AAC devices are based on pic-
tograms, so that a pictogram is the graphical
representation of a simple concept and sen-
tences are composed by concatenating a num-
ber of such pictograms. Usually, these tools
have to manage a vocabulary made up of hun-
dreds of pictograms/concepts, with no or very
poor knowledge of the language at semantic
and pragmatic level. In this paper we present
Pictogrammar, an AAC system which takes
advantage of SUpO and PictOntology. SUpO
(Simple Upper Ontology) is a formal semantic
ontology which is made up of detailed know-
ledge of facts of everyday life such as sim-
ple words, with special interest in linguistic is-
sues, allowing automated grammatical super-
vision. PictOntology is an ontology developed
to manage sets of pictograms, linked to SUpO.
Both ontologies make possible the develop-
ment of tools which are able to take advantage
of a formal semantics.

1 Introduction

Language acquisition and comprehension is difficult
for people with certain language impairments. Com-
munications based on modern technologies could

play a relevant role in helping with such processes.
This papers introduces one of those potential tech-
nologies with important novelties.

Autism and autism spectrum disorders (ASD),
such as Asperger syndrome, are neurodevelopmen-
tal conditions diagnosed on the basis of a triad
of behavioral impairments: impaired social inter-
action, impaired communication and restricted and
repetitive interests and activities (American Psy-
chiatric Association, 2004). Thus, communica-
tion is severely impaired in persons with acute
autism. What the individual understands (recep-
tive language) as well as what is actually spoken
by the individual (expressive language) are signif-
icantly delayed or nonexistent. Deficits in lan-
guage comprehension include the inability to un-
derstand simple directions, questions or commands
(Lim, 2011). Furthermore, the absence of verbal
communication is common or, when present, it is
often very immature: “want water” instead of “I
want some water, please”. Some of the most popular
tools used to palliate, at least partially, severe com-
munication impairments are the so-called Systems
of Augmentative and Alternative Communication
(SAAC). Augmentative and Alternative Communi-
cation (AAC) involves the study and proposal of
alternative communication mechanisms and, when
needed, to compensate for temporary or permanent
impairments, activity limitations, and participation
restrictions of individuals with severe disorders of
speech-language production and/or comprehension,
including spoken and written modes of communica-
tion (Beukelman and Mirenda, 2005).

Some of the most popular SAACs are based on
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Figure 1: PECS book

Figure 2: Some examples of PECS pictograms

pictograms, such the Pictograms Exchange Com-
munication System (PECS) (Andy and Lori, 1994;
Andy and Lori, 2001) (Figures 1 and 2). Pictograms
are images which are used to support text, making
the meaning clearer and easier to understand. PECS
is not only a SAAC, but a method for teaching young
children or any individual with communication im-
pairment a way to communicate within a social con-
text. PECS has a very remarkable influence on de-
velopment of most of SAACs based on pictograms.

In the most advanced phases, individuals are taught
to answer questions and to comment. Additionally,
descriptive language concepts such as size, shape,
color, number, etc. are also taught so the student
can make her message more specific by combining
picture symbols. For example, “I want a big yellow
ball” (Figure 3).

Figure 3: “I want big yellow ball” using ARASAAC pic-

tograms

There are several communicators inspired by
PECS, such as Speak4Yourself1, ARaSuite2,
SC@UT3, CPA4, e-Mintza5 or Mind-Express6. The
pictograms are usually categorized under families
of words. The way such families are defined is
a bit vague and it varies across applications. For
example, the pictograms in e-Mintza are sometimes
categorized according to the most usual part-of-
speech of the word such as verbs or adjectives,
while other words are categorized based on mean-
ing, such as food or friends. With this application,
the user chooses every pictogram from the full set
of pictograms available which is made up of several
hundred or even thousands of pictograms in some
cases.

Figure 4: A simplified diagram of the working hypothesis

The main objective of this paper is to describe Pic-
togrammar, a complete AAC system within a frame-
work under the following hypothesis: an upper on-
tology which includes a formal representation of a

1http://speakforyourself.org
2http://sourceforge.net/projects/arasuite/
3http://scaut.ugr.es/scaut/
4http://prezi.com/jcpr9qcmcnr-/cpa/
5http://fundacionorange.es/emintza.html
6http://fundacionorange.es/emintza.html
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controlled natural language is an adequate frame-
work for developing therapeutic and palliative tools
for severe language impairments in general, and be-
ginning communicators in particular, which refers to
those people (mainly children) learning how to com-
municate. This idea is depicted in a very simplified
way in Figure 4.

Pictogrammar is described in section 2. Sections
3 and 4 describe both SUpO and PictOntology on-
tologies. Then, an overview of an ontology to ma-
nage collections of pictograms, called PictOntology,
is given, along with how it works with SUpO, an
ontology that models the piece of language which
is supported by Pictogrammar. Section 5 provides a
more detailed view of the issues regarding the inte-
gration of these ontologies into Pictogrammar. We
finish with some conclusions and future work.

2 Pictogrammar

Pictogrammar is an AAC device that follows the
scheme outlined in figure 4. It is therefore necessary
to define the three components: a controlled lan-
guage, the ontology to model, at a conceptual level,
this language, and an authoring tool to obtain ac-
cess to the ontology. In the end, this authoring tool
makes communication possible. More specifically,
the elements involved in the platform are described
as follows:

• The controlled natural language is the
piece of symbolic communication to be
learned/mastered.

• The users are the student and a number of peo-
ple such as language pathologists, family and
caregivers. The student is the person to be in-
troduced into symbolic communication, i.e. a
beginning communicator.

• Simple Upper Ontology, SUpO, is the upper
ontology, a semantic grammar with regard to
the world in which it is suitable to communi-
cate within a controlled language. This ontol-
ogy is feasible because the size of the core vo-
cabulary of the controlled language is relatively
small and it is used to make straightforward as-
sertions (Martı́nez-Santiago et al., 2015). Pict-
Ontology is an ontology linked to SUpO (de-
scribed in section 4).

• The authoring tool is Pictogrammar, a system
of Augmentative and Alternative Communica-
tion (SAAC) based on pictograms. Pictogram-
mar uses as input a vocabulary made up of a set
of pictograms contained in PictOntology.

Since Pictogrammar is linked to an ontology with
linguistic knowledge, it provides several benefits
and novel issues in message generation (when the
user ”writes the message by using the pictograms)
and in message communication (when the system
“reads” what the user wrote to transmit this message
to a counterpart). These are the benefits expected:

1. In message generation:

(a) Expandable. By using ontology authoring
tools, it is possible to increase the know-
ledge of the world as the user requires.

(b) Predictive semantic grammar: given the
construction of a sentence, the SAAC fil-
ters pictograms based on the context of the
sentence.

(c) Only syntactically correct sentences are
allowed, by means of a controlled gram-
mar where words are related to syntactic
categories (part of speech). For in-
stance, the pictogram related to dog could
not be used as a verb.

(d) Only meaningful sentences are allowed,
due to syntactic correctness and topic-
based relations.

(e) Adaptive. The syntax and systems of
meanings are adapted to the user’s linguis-
tic skills. For example, a given user could
be ready to use articles and prepositions
whereas other users could use just a few
nouns.

2. In message communication:

(a) Sentences generated using the SAAC are
grammatically correct, so they are more
natural. This is achieved by means of:

i. Correction at the morphosyntactic
level: genre and number concordance,
or correct conjugation of verbal tenses.
The more inflective the term is, the
more impact this aspect produces.
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ii. Compensating for syntactic deficien-
cies in the input, as much as possi-
ble. For example, the user omits pic-
tograms about articles or prepositions,
but in some cases the grammar could
assign “default” values.

(b) It is easy to translate to other languages
and means of communication.

3. A common ontology makes it possible to share
knowledge about the language model that users
are able to understand and produce. In this way,
a teacher (usually a language therapist) uses a
computer-aid system in order to improve the
verbal behavior of a given student (therapeutic
software).

In addition, the same student could use an aug-
mentative and adaptive communicator (palliative
software). If the language of the student is formally
modeled then it is possible that both the therapeutic
and palliative software share the same knowledge,
creating a homogeneous learning ecosystem. For
example, if the teacher is teaching the expression
I want (also know as a mand according to Skinner
(Chomsky, 1959)), then the student will have access
to specific exercises for this expression and, in addi-
tion, she could use the expression in her own com-
municator. This is the case of Pictogrammar as a
system rather than as a standalone communicator:
the language therapist defines every detail of the vo-
cabulary for every student by using a cloud-based
application (an application program that functions in
the cloud) that, in the end, is an authoring tool used
to produce new knowledge. Meanwhile, the stu-
dent learns and uses such a language by using their
own Android device (smartphone or tablet) with our
communication app, an authoring tool to make use
of the same piece of knowledge (see Figure 5).

Some of these components are detailed in section
5 when explaining the integration of Pictogrammar,
SUpO and PictOntology.

3 SUpO, a simple upper Ontology

SUpO (Martı́nez-Santiago et al., 2015) models
generic and basic knowledge about the world such as
the main properties and uses of everyday concepts:
food, toys, places, persons, etc. On the other hand,

there are several upper ontologies available such as
DOLCE (Masolo et al., 2003) (Descriptive Ontology
for Linguistic and Cognitive Engineering), SUMO
(Pease, 2006) (Suggested Upper Merged Ontology)
or OpenCyC 7. All of them formally define concepts
of the world and are filled with axioms and rules
for tasks which concern reasoning and planning, but
they have no semantic detail, especially predicate-
argument structure. Since one of the highlights of
SUpO is the provision of support tools to improve
communicative skills, this ontology has special in-
terest in modeling the semantic level of the lan-
guage. Thus, SUpO is oriented to a more suitable
form for language modeling: FrameNet (Baker et
al., 1998) and the Resource Grammar Library of
Grammatical Framework (GF) (Ranta, 2011).

The semantic model of SUpO is an adaptation and
specialization of a small piece of FrameNet, which
provides the taxonomy of concepts on which SUpO
is designed.

The syntactic and morphosyntactic modules are
implemented with Grammatical Frameworks and
Grammatical Framework Resource Grammar Li-
brary, which is available for more than 20 languages,
including English and Spanish.

An important property of Grammatical Frame-
works is that they are designed to support multilin-
gual grammars, and the translation between gram-
mars which share the same representation of mean-
ings is automatic. From this point of view, it is
possible to define PictOntology as the SUpO ver-
sion whose vocabulary is concreted by means of pic-
tograms.

4 PictOntology

This section is a brief description of PictOntology, a
straightforward ontology to manage a collection of
pictograms linked to SUpO. PictOntology is part of
Pictogrammar, but it could be reused in future appli-
cations where pictograms are involved.

Pictograms provide a visual representation of a
concept. We have chosen pictograms as the visual
representation of every concept included in SUpO.
Thus, our ontology is made up of 621 pictograms be-
longing to SymbolStix8 collection. We have chosen

7available at http://sw.opencyc.org/
8https://www.n2y.com/products/symbolstix
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Figure 5: Shared vocabulary between teacher(left) and student(right).

SymbolStix because it is a comprehensive collection
of symbols (about 12,000 symbols) which covers a
wide range of categories such as Geography, Sports,
Logos, People, Health, Technology, Food and Drink,
and many others.

The construction of PictOntology is mainly an in-
tegration process with the ontology for media re-
sources, which is a recommendation of the W3C (the
Media Resource Ontology (Champin et al., 2012)).
The intent of the ontology for media resources is to
bridge the different descriptions of media resources,
and to provide a core set of descriptive properties.
It defines a core set of metadata properties for me-
dia resources, along with their mappings to elements
from a set of existing metadata formats. PictOnto-
logy reuses several concepts and attributes concern-
ing Exchangeable Image File Format (EXIF), au-
thoring and creator. Thus, PictOntology could be
defined as a specialization of the ontology for me-
dia resources where we have established additional
properties and a taxonomy of the pictograms (see
Table 1).

The definition of each category in PictOntology
is similar to the SUMO (Niles and Pease, 2001) idea
of category: a category is made up of words which
are intended to be used as constituents of the same
semantic role. In any case, the PictOntology def-
inition of category is more restrictive: a PictOnto-
logy category groups together pictograms which na-
turally evoke multiple ideas about the same concept
(the category) and, moreover, share the same part of
speech. In this way, we have defined 35 different
categories. Some examples are shown in Table 2.
The goals behind it are:

• To simplify and make intuitive the location of
every pictogram as much as possible.

• The integration of PictOntology whitin SUpO.
It is possible to define PictOntology as the con-
cretion of SUpO by using a vocabulary based
on pictograms so that every PictOntology cat-
egory has a one-to-one relation with a SUpO
category.

• To group together similar categories, if needed.
Categories are pictograms themselves, thus a
category could be part of a more general cat-
egory. This is useful, for example, for adapting
the rendering of categories to different screen
resolution (the bigger the screen, the more cat-
egories)9.

Since PictOntology is based on Media Resource
Ontology, we have formalized PictOntology in the
same way that Media Resource Ontology is formal-
ized, i.e. by using the Web Ontology Language
(OWL) (Horrocks et al., 2012).

5 Improving communication strategies
using Pictogrammar

In this section we outline some available commu-
nicative strategies by using Pictogrammar which are
possible by means of both SUpO and PictOntology.

9The current version of the AAC device of Pictogrammar is
optimized to be used on 7 inches displays. It makes possible to
include 50 categories x 50 concepts per category approximately.
It provides access up to 2500 concepts by implementing a two-
click category + concept pattern
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Name DataType Description
ma:identifier identifier:URI,

type:String
The file which contains the pictogram

ma:title title:String, type:String The English name of the pictogram. This name is
usually equivalent to its expression in English.

ma:language String Usually, pictograms are language-independent but
sometimes are localized for a given language or cul-
ture, e.g. calendars.

ma:creator String The creator of the resource
ma:contributor identifier:URI—String,

role:String
The ID of the person who added the pictogram to the
ontology

ma:collection URI—String Name of the collection it belongs to
ma:relation identifier:URI, rela-

tion:String
“is-a” relation between a pictogram and its category

pt:expressions List of lang:String, ex-
pression: String

The textual translation of the pictogram in the group
of supported languages

pt:level {“transparent” “learned”
“abstract”} • “transparent” symbols are very obvious depic-

tions of the concepts that they illustrate.

• “learned”: the meaning needs to be learned.
The consistent nature of learned symbols
means that the concepts they represent become
obvious when they are shown together.

• “abstracts”: symbols that have no obvious
meaning when viewed on their own, and typ-
ically represent determiners or adpositions.

pt:learned group String If a pictogram is learned, then it is consistent with
other pictograms relative to the same concept. This
label is shared for the learned pictograms relative to
the same concept. For example, in, on, under and
behind are all about “relative position”

pt:SUpO concepts { identifier:URI, type:List
of Strings }

The ID of SUpO concepts depicted by the pictogram

Table 1: Examples of properties of PictOntology

Category Description Examples
Flavours Usual adjectives regarding food tasty, spicy, salty, sweet
Moving verbs related to movement come, climb, dance, drive, drop, fly, follow, kick,

quit, run
Professions Names of well-known jobs teacher, bus driver, doctor, nurse

Table 2: Examples of categories in PictOntology
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The American Speech Language Hearing Associa-
tion recommends that an AAC should be thought of
as a system comprising four components: symbols,
aids, strategies, and techniques (American Psychi-
atric Association, 2004). Strategy is defined to be
the way in which symbols can be conveyed most
effectively and efficiently. During the writing of
a sentence, Pictogrammar improves the strategy by
reducing the number of pictograms that the user
has available at a given moment. This makes pos-
sible the implementation of three complementary
strategies: predictive grammar, Language Acquisi-
tion Motor Planning (LAMP) and Motor Planning
overload.

5.1 Semantic predictive parser

Because of the use of a semantic grammar, the
construction of phrases using Pictogrammar is sup-
ported by a predictive parser(Angelov, 2009). Note
that this predictive parser is different to usual pre-
dictive text tools which are applied to the prediction
of possible words when typing the first letters of the
word, or the word taking into account just the gram-
matical role, not the semantic role. Since Pictogram-
mar predicts by taking into account the semantics of
the phrase, the predictions are much more accurate.
Moreover, the number of pictograms available while
the phrase is being constructed is reduced because
the user only has access to the pictograms which
make sense in the sequence. For example, if a user
writes “I want to eat” then Pictogrammar only shows
the most popular foods, other categories of foods
and properties of food. Pictogrammar knows this
from the patterns and categories found in SUpO.

In addition, since semantic predictive grammar
only allows her to write meaningful sentences, the
user receives feedback of the correct use of language
at the pragmatic level, which could be relevant from
a therapeutic point of view, although we have no ev-
idence for this at the moment.

5.2 Language acquisition motor planning

A usual criticism of AAC systems based on pic-
tograms is the high number of pictograms required
as the communicative user’s skills grows. Since
every word has its own pictogram, the user has to
spend a lot of time at first learning every pictogram,
and then finding out where the pictogram is located

in the SAAC. Language Acquisition Motor Plan-
ning (LAMP) (Baker, 1982),(Halloran and Emerson,
2006) is a suitable strategy for dealing with a grow-
ing vocabulary. In short, praxis or motor planning
is the planning and execution of a series of move-
ments. Language Acquisition through Motor Plan-
ning (LAMP) is a therapeutic approach based on
motor planning principles that can be reinterpreted
according to our purposes as follows:

• The motor patterns used to “speak” with the
SAAC must be consistent and unique, that is,
the user should not have variants in the way she
clicks and dives into categories in order to se-
lect the same pictogram in different situations.

• Each consistent pattern of one, two or three
“clicks” on the SAAC must always result in the
same term.

• These motor patterns are meant to reflect the
consistent and unique motor patterns that result
in the production of speech.

• The vocabulary sets in LAMP are organized to
maintain consistent and unique motor patterns.

Consistent motor patterns for word selection al-
low the development of automaticity in com-
munication but they are difficult to implement
in a low-tech SAAC because of the number of
pictograms. In such a case, consistently search-
ing for the location of desired symbols and
the placement of those individual symbols on
a strip requires more motor planning and cog-
nitive attention to the communication process.

Thus, the LAMP strategy is implemented in Pic-
togram as follows:

1. The predictive parser allows the user to hold a
reduced number of icons on the main screen.

2. The only way to communicate with Pictogram-
mar are pictograms (even categories are pic-
tograms)

3. Every PictOntology concept is associated with
a unique motor pattern.
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Furthermore, motor planning is usually imple-
mented in systems which are not based on pic-
tograms but on icons with several meanings depend-
ing on every motor pattern which the icon forms.
But using pictograms which represent a concept or
idea is a valuable resource if you are interested in
teaching literacy (Flewitt, Nind, A Payler, 2009)
(Lacey, Layton, Miller, Goldbart, A Lawson, 2007).

5.3 Motor planning overload

Another advantage of using motor planning by
means of a predictive parser is that we are able to
design more compact boards by overloading motor
patterns, and this is not a minor issue because makes
it possible to implement Pictogrammar for smaller
screens which would make it easier to carry a de-
vice. Thanks to SUpO, it is possible to infer words
which are mutually exclusive, for example apple and
happy. Thus, two pictograms share the same motor
pattern only if such pictograms cannot be simulta-
neously available. For example, two words which
both represent fruits have to have necessarily dif-
ferent motor patterns, but if one word is about a
fruit and another word is about feelings, they could
share the same motor pattern since there is no way
to choose between both words in a given state of the
construction of a phrase. This issue is what we call
motor planning overload.

6 Conclusion and future work

In this paper we present Pictogrammar, a SAAC
based on PictOntology which has some remarkable
properties from a therapeutic and palliative point of
view, such as: (a) sharing of a common ontology
among students, language pathologists, family and
caregivers, (b) implementation of an effective pre-
dictive parser, (c) motor planning overload and (d)
generation of natural language which is grammati-
cally correct even if the input is not. We also de-
scribe PictOntology, an ontology developed to ma-
nage sets of pictograms. PictOntology is linked with
SUpO, a formal semantic which is made up of de-
tailed knowledge of facts of everyday life as simple
words, with special interest in linguistic roles. In ad-
dition, it is a model of correct use of the language at
the pragmatic level, since Pictogrammar only allows
the user to write meaningful sentences.

As future work, we want to measure the effective-
ness of this system in terms of speed of learning and
size of the vocabulary acquired, evaluating the sys-
tem with real users. The application this approach to
other disorders regarding literacy development and
oral acquisition of language is also under study. Re-
garding oral acquisition of language, we are encour-
aged in following this line since (Kasari et al., 2014)
showed that speech-generating-devices improve the
acquisition of oral, spontaneous, and communicative
utterances in school-aged, minimally verbal children
with autism.
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Abstract

We explore the factors influencing the depen-
dence of single sentences on their larger tex-
tual context in order to automatically identify
candidate sentences for language learning ex-
ercises from corpora which are presentable in
isolation. An in-depth investigation of this
question has not been previously carried out.
Understanding this aspect can contribute to a
more efficient selection of candidate sentences
which, besides reducing the time required for
item writing, can also ensure a higher degree
of variability and authenticity. We present a
set of relevant aspects collected based on the
qualitative analysis of a smaller set of context-
dependent corpus example sentences. Fur-
thermore, we implemented a rule-based al-
gorithm using these criteria which achieved
an average precision of 0.76 for the iden-
tification of different issues related to con-
text dependence. The method has also been
evaluated empirically where 80% of the sen-
tences in which our system did not detect
context-dependent elements were also consid-
ered context-independent by human raters.

1 Introduction

Extracting single sentences from corpora with the
use of Natural Language Processing (NLP) tools can
be useful for a number of purposes including the de-
tection of candidate sentences for automatic exercise
generation. Such sentences are also known as seed
sentences (Sumita et al., 2005) or carrier sentences
(Smith et al., 2010) in the Intelligent Computer-
Assisted Language Learning (ICALL) literature. In-
terest for the use of corpora in language learning

has arisen already in the 1980s, since the increas-
ing amount of digital text available enables learn-
ing through authentic language use (O’Keeffe et al.,
2007). However, since sentences in a text form a
coherent discourse, it might be the case that for the
interpretation of the meaning of certain expressions
in a sentence, previously mentioned information, i.e.
a context, is required (Poesio et al., 2011). Corpus
sentences whose meaning is hard to interpret are less
optimal to be used as exercise items (Kilgarriff et al.,
2008), however, having access to a larger linguis-
tic context is not possible due to copy-right issues
sometimes (Volodina et al., 2012).

In the followings, we explore how we can auto-
matically assess whether a sentence previously be-
longing to a text can also be used as a stand-alone
sentence based on the linguistic information it con-
tains. We consider a sentence context-dependent if
it is not meaningful in isolation due to: (i) the pres-
ence of expressions referring to textual content that
is external to the sentence, or (ii) the absence of one
or more elements which could only be inferred from
the surrounding sentences.

Understanding the main factors giving rise to con-
text dependence can improve the trade-off between
discarding (or penalizing) sub-optimal candidates
and maximizing the variety of examples and thus,
their authenticity. Such a system may not only facil-
itate teaching professionals’ work, but it can also aid
the NLP community in a number of ways, e.g. eval-
uating automatic single-sentence summaries, detect-
ing ill-formed sentences in machine translation out-
put or identifying dictionary examples.

Although context dependence has been taken into
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consideration to some extent in previous work, we
offer an in-depth investigation of this research prob-
lem. The theoretical contribution of our work is a set
of criteria relevant for assessing context dependence
of single sentences based on a qualitative analysis
of human evaluators’ comments. This is comple-
mented with a practical contribution in the form of a
rule-based system implemented using the proposed
criteria which can reliably categorize corpus exam-
ples based on context dependence both when evalu-
ated using relevant datasets and according to human
raters’ judgments. The current implementation of
the system has been tested on Swedish data, but the
criteria can be easily applied to other languages as
well.

2 Background

2.1 Corpus Examples Combined with NLP for
Language Learning

In a language learning scenario, corpus example
sentences can be useful both as exercise items and
as vocabulary examples. Previous work on exer-
cise item generation has adopted different strategies
for carrier sentence selection. In some cases, sen-
tences are mainly required to contain a lexical item
or a linguistic pattern that constitutes the target of
the exercise, but context dependence is not explic-
itly addressed (Sumita et al., 2005; Arregik, 2011).
Another alternative has been using dictionary exam-
ples as carrier sentences, e.g. from WordNet (Pino
and Eskenazi, 2009). Such sentences are inherently
context-independent, however, they pose some limi-
tations on the linguistic aspects to target in the ex-
ercises. In Pilán et al. (2014) we presented and
compared two algorithms for carrier sentence selec-
tion for Swedish, using both rule-based and machine
learning methods. Context dependence, which had
not been specifically targeted in that phase, emerged
as a key issue for sub-optimal candidate sentences
during an empirical evaluation.

Identifying corpus examples for illustrating lexi-
cal items is the main purpose of the GDEX (Good
Dictionary Examples) algorithm (Husák, 2010; Kil-
garriff et al., 2008) which has also inspired a
Swedish algorithm for sentence selection (Volod-
ina et al., 2012). GDEX incorporates a number of
linguistic criteria (e.g. sentence length, vocabulary

frequency) based on which example candidates are
ranked. Some of these are related to context depen-
dence (e.g. incompleteness of sentences, presence of
personal pronouns), but they are somewhat coarser-
grained criteria not focusing on syntactic aspects. A
system using GDEX for carrier sentence selection
is described in Smith et al. (2010) who underline
the importance of the well-formedness of a sentence
and who determine a sufficient amount of context
in terms of sentence length. Segler (2007) focuses
on vocabulary example identification for language
learners. Teachers’ sentence selection criteria has
been modeled with logistic regression, the main di-
mensions examined being syntactic complexity and
similarity between the original context of a word and
an example sentence.

2.2 Linguistic Aspects Influencing Context
Dependence

The relationship between sentences in a text can be
expressed either explicitly or implicitly, i.e. with or
without specific linguistic elements requiring extra-
sentential information (Mitkov, 2014). The explicit
forms include words and phrases that imply struc-
tural discourse relations or are anaphoric (Webber et
al., 2003). In a text, the way sentences are intercon-
nected can convey an additional relational meaning
besides the one which we can infer from the content
of each sentence separately. Examples of such ele-
ments include structural connectives: conjunctions,
subjunctions and “paired” conjunctions (Webber et
al., 2003).

Another form of reference to previously men-
tioned information is anaphora. The phenomenon
of anaphora consists of a word or phrase (anaphor)
referring back to a previously mentioned entity (an-
tecedent). Mitkov (2014) outlines a number of
different anaphora categories based on their form
and location, the most common being pronominal
anaphora which has also been the focus of recent re-
search within NLP (Poesio et al., 2011; Ng, 2010;
Nilsson, 2010). A number of resources available to-
day have noun phrase coreference annotation, such
as the dataset from the SemEval-2010 Task (Re-
casens et al., 2010) and SUC-CORE for Swedish
(Nilsson Björkenstam, 2013).

Besides the anaphora categories described in
Mitkov (2014), Webber et al. (2003) argue that
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adverbial connectives (discourse connectives), e.g.
istället ‘instead’, also behave anaphorically, among
others because they function more similarly to
anaphoric pronouns than to structural connectives.
A valuable resource for developing automatic meth-
ods for handling discourse relations is the Penn Dis-
course Treebank (Prasad et al., 2008) containing an-
notations for both implicit and explicit discourse
connectives. Using this resource Pitler and Nenkova
(2009) present an approach based on syntactic fea-
tures for distinguishing between discourse and non-
discourse usage of explicit discourse connectives
(e.g. once as a temporal connective corresponding
to ”as soon as” vs. the adverb meaning ”formerly”).
Another phenomenon connected to context depen-
dence is gapping where the second mention of a lin-
guistic element is omitted from a sentence (Poesio
et al., 2011).

3 Datasets

Instead of creating a corpus specifically tailored for
this task with gold standard labels assigned by hu-
man annotators, which can be a rather time- and
resource-intensive endeavor, we explored how dif-
ferent types of existing data sources which contained
inherently context-(in)dependent sentences could be
used for our purposes.

Language learning coursebooks contain not only
texts, but also single sentences in the form of ex-
ercise items, lists and language examples illustrat-
ing a lexical or a grammatical pattern. We collected
sentences belonging to these two latter categories
from COCTAILL (Volodina et al., 2014), a corpus
of coursebooks for learners of Swedish as a sec-
ond language. Most exercises contained gaps which
might have misled the automatic linguistic annota-
tion, therefore they have not been included in our
dataset.

Dictionaries contain example sentences illustrat-
ing the meaning and the usage of an entry. One
of the characteristics of such sentences is the ab-
sence of referring expressions which would require
a larger context to be understood (Kilgarriff et al.,
2008), therefore they can be considered suitable rep-
resentatives of context-independent sentences. We
collected instances of good dictionary example sen-
tences from two Swedish lexical resources: SALDO

(Borin et al., 2013) and the Swedish FrameNet
(SweFN) (Heppin and Gronostaj, 2012). These sen-
tences were manually selected by lexicographers
from a variety of corpora.

Sentences explicitly considered dependent on a
larger context are less available due to their lack of
usefulness in most application scenarios. Two pre-
vious evaluations of corpus example selection for
Swedish are described in Volodina et al. (2012) and
Pilán et al. (2013), we will refer to these as EVAL1
and EVAL2 respectively. In the former case, eval-
uators including both lexicographers and language
teachers had to provide a score for the appropri-
ateness of about 1800 corpus examples on a three-
point scale. In EVAL2, about 200 corpus examples
selected with two different approaches were rated
by a similar group of experts based on their under-
standability (readability) for language learners, as
well as their appropriateness as exercise items and as
good dictionary examples. The data from both eval-
uations contained human raters’ comments explic-
itly mentioning that certain sentences were context-
dependent. We gathered these instances to create
a negative sample. Since comments were optional,
and context dependence was not the focus of these
evaluations, the amount of sentences collected re-
mained rather small, 92 in total. It is worth noting
that this data contains spontaneously occurring men-
tions based on raters’ intuition, rather than being la-
beled following a description of the phenomenon of
context dependence as it would be customary in an
annotation task.

The sentences from all data sources mentioned
above constituted our development set. The amount
of sentences per data source is presented in Ta-
ble 1, where CIND indicates positive, i.e. context-
independent samples, and CDEP the negative,
context-dependent ones. The suffix -LL stands for
sentences collected from language learning materi-
als while -D represents dictionary examples.

Source Code Nr. sent Total
COCTAILL CIND-LL 1739

SALDO CIND-D 4305 8729
SweFN CIND-D 2685
EVAL1 CDEP 22
EVAL2 CDEP 70 92
Table 1: Number of sentences per source.
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4 Methodology

As the first step in developing the algorithm, we
aimed at understanding the presence or absence of
which linguistic elements make sentences depen-
dent on a larger context by analyzing our nega-
tive sample. Although the number of instances in
the context-independent category was considerably
higher, certain linguistic characteristics of such sen-
tences could have been connected to aspects not rel-
evant to our task. Negative sentences on the other
hand, although modest in number, were explicit
examples of the target phenomenon. Information
about the cultural context may also be relevant for
this task, however, we only concentrated on linguis-
tic factors which can be effectively captured with
NLP tools.

We aimed at covering a wide range of poten-
tial application scenarios, therefore we developed
a method that was independent of: (i) information
from surrounding sentences and (ii) the exact in-
tended use for the selected sentences. The first
choice was motivated by the fact that, even though
most previous related methods (see section 2.2) rely
on information from neighboring sentences as well,
sometimes a larger context might not be available
either due to the nature of the task (e.g. output
of single-sentence summarization systems) or copy-
right issues. Secondly, for a more generalizable ap-
proach, we aimed at assessing sentences based on
whether their information content can be treated as
an autonomous unit rather than according to whether
they provide the appropriate amount and type of
context to, for example, be solved as exercise items
of a certain type. This way the method could serve
as a generic basis to be tailored to specific applica-
tions which may pose additional requirements on the
sentences.

Being that the amount of negative samples was
rather restricted, we opted for the qualitative method
of thematic analysis (Boyatzis, 1998; Braun and
Clarke, 2006) aiming at discovering themes, i.e. cat-
egories, in our negative sample. Once we collected a
set of context-dependent sentences, we started cod-
ing our data, in other words, manually labeling the
instances with codes, a word or a phrase shortly de-
scribing the type of element that inhibited the in-
terpretation of the sentence in isolation (for some

examples see Table 2 on the next page). In the
subsequent phases, we grouped together codes into
themes, i.e. broader categories, according to their
thematic similarity in a mixed deductive-inductive
fashion. We started out with an initial pool of themes
inspired by phenomena proposed in previous litera-
ture relevant to context dependence. Some of the
codes, however, could not be placed in any of these
themes. For part of these we have found a theme
candidate in the literature after the pattern emerged
during the code grouping phase. In other cases, in
absence of an existing category matching some in-
stances of the CDEP data, we created our own theme
labels.

Besides thematic analysis, we carried out also
a quantitative analysis based on the distribution of
part of speech tags in both our positive and nega-
tive sample in order to identify potential differences
that could support and complement the information
emerged in the themes.

In the following step, we implemented a rule-
based algorithm for handling context dependence
using the findings from the qualitative and quanti-
tative analyses. Since most emerged aspects could
be translated into rather easily detectable linguistic
clues, and a sufficiently large dataset annotated with
the different context-dependent phenomena was not
available for Swedish, we opted for a heuristic-based
system. We applied the algorithm and observed its
performance on our development data. Our pri-
mary focus was on evaluating how precisely are
context-dependent elements identified in CDEP, but
we complemented this also with observing the per-
centage of false positives for context dependence in
our positive sample.

Finally, in order to test candidate selection empiri-
cally, a new set of sentences has been retrieved from
different corpora. These sentences were then first
given to our system for assessment, then the subset
of candidates not containing context dependent ele-
ments were given to evaluators for an external vali-
dation.
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Theme ID Nr Example code Example CDEP sentence
Incomplete sentence INCOMPSENT 12 incorrect sent. ” piper hon och alla skrattar .

tokenization ‘” she whines and everyone laughs.’
Implicit anaphora IMPANAPHORA 11 omitted verb Till jul skulle hon [X].

‘For Christmas she should have [X].’
Pronominal anaphora PNANAPHORA 23 pronoun as Eller också sitter den i taket.

subject ‘Or it sits on the roof.’
Adverbial anaphora 1 ADVANAPHORA1 12 locative adverb Då ska folk kunna lämna området .
(Temporal and locative) ‘Then people can leave the area.’
Adverbial anaphora 2 ADVANAPHORA2 22 adv. anaphora Vissa gånger sover hon inte heller.
(Discourse connectives) ‘Sometimes she does not sleep either.’
Structural connectives STRUCTCONN 17 coordinating Men de pratade inte på samma ställe.

conjunction ‘But they did not talk at the same place.’
Answers to closed CEQANSWER 11 yes/no answer Ja, men det är ju jul.
ended questions ‘Yes, but it is of course Christmas.’
Context-depend CDPC 8 unusual noun- Du lämnar planen, tolvan!
properties of concepts noun comb. ‘You leave the field, twelve!’

Table 2: Thematic analysis results.

5 Data Analysis Results

5.1 Qualitative Results Based on Thematic
Analysis

The list of themes collected during our qualitative
analysis is presented in Table 2. For each theme, we
provide an identifier (ID), the number of occurrence
in the CDEP dataset (Nr1) together with an example
code and an example sentence2.

The total number of codes emerged from the data
was 22, which we mapped to 8 themes. Some of
the themes were related to the categories mentioned
in previous literature which we described in section
2. These included pronominal anaphora (Mitkov,
2014), adverbial anaphora (Webber et al., 2003),
connectives (Miltsakaki et al., 2004). Incomplete
sentences (Didakowski et al., 2012) contained in-
correctly tokenized sentences, titles and headings.
Moreover, we distinguished three themes among dif-
ferent anaphoric expressions: pronominal anaphora,
adverbial anaphora (with temporal and locative ad-
verbs) and discourse connectives, i.e. adverbials
expressing logical relations. Under the implicit
anaphora theme we grouped different forms of gap-
ping.

Two themes that emerged from the data during
the thematic analysis were answers to closed ended

1Occasionally sentences included more than one theme.
2Tokens relevant to each theme are in bold and [X] indicates

the position of an omitted element.

questions and context-dependent properties of con-
cepts. In the case of the former category, answers
were mostly of the yes/no type. As for the latter
theme, our data showed that the unexpectedness of
the context of a word (especially if this is short, such
as a sentence) can also play a role in whether a sen-
tence is interpretable in isolation. Previous litera-
ture (Barsalou, 1982) defines this phenomenon as
“context-dependent properties of concepts”. While
the “core meanings” of words are activated “inde-
pendent of contextual relevance”, context-dependent
properties are “only activated by relevant contexts
in which the word appears” (Barsalou, 1982, p.
82). In (1) we provide an example of both context-
independent and context-dependent properties of the
noun tak ‘roof’, from the EVAL2 data.

(1) (a) Troligen berodde olyckan på all snö som
låg på taket.
‘The accident probably depended on all
the snow that covered the roof.’

(b) Fler än hundra levande kunde dras fram
under taket .
‘More than a hundred [people] were
pulled out from under the roof alive.’

Sentence (1b) was considered context-dependent
by human raters, while (1a) was not. Being cov-
ered in snow (1a) appears a more easily interpretable
property of roof without a larger context than having
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something being pulled out from under it. The con-
text that activates the context-dependent property of
roof in (1b) is that the roof had collapsed, which,
however, is missing from the sentence.

Finally, for 7 sentences in our CDEP data, no clear
elements causing context dependence could have
been clearly identified, these are omitted from Table
2, but they have been preserved in the experiments.

5.2 Quantitative Comparison of Positive and
Negative Samples

Besides carrying out a thematic analysis, we com-
pared our positive and negative samples also based
on quantitative linguistic information in search of
additional evidence for the emerged themes and to
detect further aspects that could be potentially worth
targeting. Overall part of speech (POS) frequency
counts showed some major differences between the
CDEP and CINDEP sentences. There was a tendency
towards a nominal content in context-independent
sentences, where 21.6% of all POS tags were nouns.
However, this value was 9% lower for context-
dependent sentences, which would suggest a pref-
erence for a higher density of concepts in context-
independent sentences. Pronouns, on the other hand,
were more frequent in context-dependent sentences
(12.6% in total) than in context-independent ones
(7% less frequent).

The qualitative analysis revealed that elements
responsible for context dependence commonly oc-
curred at the beginning of the sentence. There-
fore, we compared the percentage of POS categories
for this position in the two groups of sentences.
Context-independent sentences showed a strong ten-
dency towards having a noun in sentence-initial po-
sition, almost one fourth of the sentences fit into this
category. On the other hand, only 3% of the posi-
tive examples started with a conjunction, but 16% of
context-depend items belonged to this group.

6 An Algorithm for the Assessment of
Context Dependence

Inspired by the results of the thematic analysis
and the quantitative comparison described above,
we implemented a heuristics-based system for the
automatic detection of context dependence in single
sentences. For retrieving example sentences the

system uses the concordancing API of Korp (Borin
et al., 2012), a corpus-query system giving access
to a large amount of Swedish corpora. All corpora
were annotated for different linguistic aspects
including POS tags and dependency relation tags
which served as a basis for the implementation.
The system scores each sentence based on the
amount of phenomena detected that match an
implemented context dependence theme. Users can
decide whether to filter, i.e. discard sentences that
contain any element indicating context dependence.
Alternatively, sentences can be ranked according to
the amount of context-dependent issues detected:
sentences without any such elements are ranked
highest, followed by instances minimizing these
aspects. All themes have an equal weight of 1
when computing the final ranking score, except for
pronominal anaphora in which case, if pronouns
have antecedent candidates, the weight is reduced
to 0.5. In the followings, we provide a detailed
description of the implementation of the themes
listed in Table 2.

Incomplete sentence. To detect incomplete sen-
tences the algorithm scans instances for the presence
of an identified dependency root, the absence of
which is considered to cause context dependence.
Moreover, orthographic clues denoting sentence
beginning and end are inspected. Sentence begin-
nings are checked for the presence of a capital letter
optionally preceded by a parenthesis, quotation
mark or a dash, frequent in dialogues. Sentences
beginning with a digit are also permitted. Sentence
end is checked for the presence of major sentence
delimiters (e.g. period, exclamation mark).

Implicit anaphora. Candidate sentences are
checked for gapping, in other words, omitted ele-
ments. Our system categorizes as gapped (elliptic) a
sentence which either lacks a finite verb or a subject.
Finite verbs are all verbs that are not infinite, supine
or participle. Modal verbs are considered finite
in case they form a verb group with another verb.
Subjects include also logical subjects, and in the
case of a verb in imperative mode, no subject is
required.
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Explicit pronominal anaphora. We considered
in this category the third person singular pronouns
den ‘it’ (common gender) and det ‘it’ (neuter gen-
der) as well as demonstrative pronouns (e.g. denna
‘this’, sådan ‘such’ etc.). We did not include here
the animate third person pronouns han ‘he’ and
hon ‘she’ since corpus-based evidence suggests that
these are often used in isolated sentences in course-
books (Scherrer and Lindemalm, 2007) as well as
in conversation (Mitkov, 2014). Similarly to the En-
glish pronoun it, the Swedish equivalent det can also
be used non-anaphorically in expositions, clefts and
expressions describing a local situation, such as time
and weather (Holmes and Hinchliffe, 2003; Li et al.,
2009; Gundel et al., 2005) as the examples in (2)
show.

(2) (a) det with weather-related verbs
Det regnar.
‘It is raining.’

(b) Cleft
Det är sommaren (som) jag älskar.
‘It is the summer (that) I like.’

(c) Exposition
Det är viktigt att du kommer.
‘It is important that you come.’

Our system treats as non-anaphoric the pronoun
det if it is expletive (pleonastic) syntactically accord-
ing to the output of the dependency parser which
covers expositions and clefts. To handle cases like
(2a), weather-related verbs have been collected from
lexical resources. The list currently comprises 14
items. First, verbs related to the class Weather in the
Simple+ lexicon (Kokkinakis et al., 2000) have been
collected. Then for each of these, the child nodes
from the SALDO lexicon have been added. Finally,
the list has been complemented with a few manual
additions.

For potentially anaphoric pronouns, the system
tries to identify antecedent candidates in a similar
way to the robust pronoun resolution algorithm
proposed in Mitkov (1998). We count proper names
and nouns occurring with the same gender and
number to the left of the anaphora. This is comple-
mented with an infinitive marker headed by a verb
as potential candidate for det. Since certain types of
information useful for antecedent disambiguation

were not available through our annotation pipeline
or lexical resources for Swedish (e.g. gender for
named entities, animacy), the final step for scoring
and choosing candidates is not applied in this initial
version of the algorithm. Lastly, pronouns followed
by a relative clause introduced by som ‘which’ were
considered non-anaphoric.

Explicit adverbial anaphora. Adverbs emerged
as an undesirable category during both EVAL1
and EVAL2. However, a deeper analysis of our
development data revealed that not all adverbs have
equal weight when determining the suitability of
a sentence. Some are more anaphoric then others.
We collected a list of anaphoric adverbs based on
Teleman et al. (1999). Certain time and place adver-
bials, also referred to as demonstrative pronominal
adverbs (Webber et al., 2003) are used anaphorically
(e.g. där ‘there’, då ‘then’). Sentences containing
these adverbs are considered context-independent
only when: (i) they are the head of an adverbial
of the same type that further specifies them, e.g.
där på landet ‘there on the countryside’; (ii) they
appear with a determiner, which in Swedish builds
up a demonstrative pronoun, e.g. det där huset ‘that
house’.

Discourse connectives. Discourse connectives, i.e.
adverbs expressing logical relations, fall usually into
the syntactic category of conjunctional adverbials
in the dependency parser output. Several conjunc-
tional adverbials appear in the context-dependent
sentences from EVAL1 and EVAL2. Our system
categorizes a sentence containing a conjuctional ad-
verb context-independent when a sentence contains:
(i) at least 2 coordinate clauses; (ii) coordination or
subordination at the same dependency depth or a
level higher, that is, a sibling node that is either a
conjunction or a subjunction.

Structural connectives. Sentences with conjunc-
tions as dependency roots are considered context-
dependent unless they are paired conjunctions with
both elements included (e.g. antingen ... eller ‘either
... or’). Conjunctions in sentence initial position are
also treated as an indication of context dependence
except when there are at least two clauses or con-
juncts in the sentence.
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Answers to closed ended questions. To identify
sentences that are answers to closed ended ques-
tions, the algorithm tries to match POS-tag patterns
of sentence-initial interjections (e.g. ja ‘yes’, nej
‘no’) and adverbs surrounded by minor delimiters
(e.g. dash), the initial delimiter being optional in the
case of interjections.

Context-dependent properties of concepts. Apart
from the theme implementations described above,
we are currently investigating the usefulness of
word co-occurrence information for this theme. The
corpus query tool Korp for instance offers an API
providing mutual information scores. The intuition
behind this idea is that the frequency of words
appearing together is positively correlated with the
unexpectedness of the association between them.

7 Performance on the Datasets

We evaluated our system both on the hand-coded
negative example sentences collected from EVAL1
and EVAL2 (CDEP) and the positive samples com-
prised of the good dictionary examples (CINDEP-D)
and the coursebook sentences (CINDEP-LL). The
performance when predicting different aspects of
context dependence is presented in Table 3.

Theme Precision Recall F1
INCOMPSENT 0.75 0.5 0.6

IMPANAPHORA 0.33 0.36 0.35
PNANAPHORA 0.75 0.78 0.77

ADVANAPHORA1 0.91 0.83 0.87
ADVANAPHORA2 0.87 0.59 0.70

STRUCTCONN 0.7 0.82 0.76
CEQANSWER 1.0 0.55 0.71

Average 0.76 0.63 0.60
Table 3: Theme prediction performance in CDEP sentences.

We focused on maximizing precision, i.e. on cor-
rectly identifying as many themes as possible in the
hand-coded CDEP sentences, recall values were of
lower importance since we aimed at avoiding ev-
ery context-dependent sentence rather than retriev-
ing them all. Most themes were correctly identified,
all themes except one was predicted with a preci-
sion of at least 0.7 and above. The only theme that
yielded a lower result was that of implicit anaphoras.
The error analysis revealed that these cases were

mostly connected to an incorrect dependency parse
of the sentences, mainly subjects tagged as objects in
sentences with an inverted (predicate-subject) word
order.

As mentioned previously, we strived for minimiz-
ing sub-optimal sentences in terms of context de-
pendence, while trying to avoid being excessively
selective to maintain a varied set of examples. To
assess performance with respect to this latter aspect,
we inspected also the percentage of sentences iden-
tified as context-dependent in dictionary examples
(CIND-D) and coursebook sentences (CIND-LL).
The percentage of predicted themes per dataset is
shown in Table 4 where Total stands for the percent-
age of sentences with at least one predicted theme.

Theme CIND-D CIND-LL
IncompSent 2.37 3.39

ImpAnaphora 4.61 5.80
PNAnaphora 9.39 11.0

AdvAnaphora1 3.59 2.93
AdvAnaphora2 9.95 3.74

StructConn 3.70 0.92
CEQAnswer 0.37 2.59

Total 33.35 26.74
Table 4: Percentage of sentences with a predicted theme in the

CIND datasets.

We can observe that even though all sentences
are expected to be context-independent, our sys-
tem labeled as context-dependent about three out
of ten good dictionary examples and coursebook
sentences. The error analysis revealed that some
of these instances did indeed contain context-
dependent elements, e.g. the conjunction men ‘but’
in sentence-initial position. In CIND-LL in the case
of some sentences containing anaphoric pronouns an
image provided the missing context in the course-
book, thus not all predicted cases were actual false
positives, but rather, they indicated some noise in the
data. As for dictionary examples, the presence of
such sentences may also suggest that the criterion of
context dependence can vary somewhat depending
on the type of lexicon or lexicographers’ individual
decisions.

Some sentences exhibited more than one phe-
nomenon connected to context dependence. Mul-
tiple themes were predicted in 30.43% of the CDEP

sentences, but only 6.54% and 7.25 of the CIND-D
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and CIND-LL sentences respectively.

8 User-based Evaluation Results

The algorithm was tested also empirically during
an evaluation of automatic candidate sentence se-
lection for the purposes of learning Swedish as a
second language. The evaluation data consisted of
3383 sentences retrieved from a variety of mod-
ern Swedish corpora and classified as not contain-
ing context dependence themes according to our al-
gorithm (with the exception of 4 control sentences
that were context-dependent). These were all un-
seen sentences not present in the datasets described
in section 3. In the evaluation setup, all implemented
themes were used as filters, i.e. sentences containing
any recognized element connected to context depen-
dence, described in section 6, were discarded. Be-
sides context dependence, the evaluated system in-
corporated also other selection criteria (e.g. read-
ability), but for reasons of relevance and space these
aspects and the associated results are not discussed
here.

The selected sentences were given for evaluation
to 5 language teachers who assessed the suitabil-
ity of these sentences based on 3 criteria: (i) their
degree of being independent of context, (ii) their
CEFR4 level and (iii) their overall suitability for lan-
guage learners. Teachers were required to assess this
latter aspect without a specific exercise type in mind,
but considering a learner reading the sentence in-
stead. Sentences were divided into two subsets, each
being rated by at least 2 evaluators. Teachers had to
assign a score between 1 to 4 to each sentence ac-
cording to the scale definition in Table 5.

The sentence...
1 ... doesn’t satisfy the criterion.
2 ... satisfies the criterion to a smaller extent.
3 ... satisfies the criterion to a larger extent.
4 ... satisfies the criterion entirely.

Table 5: Evaluation scale.

The results were promising, the average score
3We excluded 8 sentences with incomplete evaluator scores

during the calculation of the results.
4The Common European Framework of Reference for Lan-

guages (CEFR) is a scale describing proficiency levels for sec-
ond language learning (Council of Europe, 2001).

over all evaluators and sentences for context inde-
pendence was 3.05, and for overall suitability 3.23.
For context-independence, 61% of the sentences re-
ceived score 3 or 4 (completely satisfying the crite-
rion) from at least half of the evaluators, and 80% of
the sentences received an average score higher than
2.5. This latter improves significantly on the per-
centage of context-dependent sentences that we re-
ported previously in Pilán et al. (2013), where about
36% of all selected sentences were explicitly consid-
ered context-dependent by evaluators.

Furthermore, we computed the Spearman corre-
lation coefficient for teachers’ scores of overall suit-
ability and context dependence to gain insight into
how strongly associated these two aspects were ac-
cording to our evaluation data. The correlation
over all sentences was ρ=0.53, which indicates that
not being context-dependent is positively associated
with overall suitability. Therefore, context depen-
dence is worth targeting when selecting carrier sen-
tences.

9 Conclusion and Future Work

We described a number of criteria that influence con-
text dependence in corpus examples when presented
in isolation. Based on the thematic analysis of a set
of context-dependent sentences, we implemented a
rule-based algorithm for the automatic assessment
of this aspect which has been evaluated not only on
our datasets but also with the help of language teach-
ers with very positive results.

About 76% of themes were correctly identified in
context-dependent sentences, while the amount of
false positives in the context-independent data was
maintained rather low. Approximately 80% of can-
didate sentences selected with a system incorporat-
ing the presented algorithm were deemed context-
independent in our user-based evaluation. The re-
sults also showed a positive correlation between sen-
tences being context-independent and overall suit-
able for language learners.

In the future, we are planning to explore the ex-
tension of the algorithm to other languages as well
as to experiment with machine learning approaches
for this task using, among others, the resources men-
tioned in this paper.
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Abstract

The goal of the Automatic Evaluation of Sci-
entific Writing (AESW) Shared Task 2016
is to identify sentences in scientific articles
which need editing to improve their correct-
ness and readability or to make them better fit
within the genre at hand. We encode many dif-
ferent types of errors occurring in the dataset
by linguistic features. We use logistic regres-
sion to assign a probability indicating whether
a sentence needs to be edited. We participate
in both tracks at AESW 2016: binary pre-
diction and probabilistic estimation. In the
former track, our model (HITS) gets the fifth
place and in the latter one, it ranks first accord-
ing to the evaluation metric.

1 Introduction

The AESW 2016 Shared Task is about predicting
if a given sentence in a scientific article needs lan-
guage editing. It can therefore be pictured as a bi-
nary classification task. Two types of prediction are
evaluated: binary prediction (false or true) and prob-
abilistic estimation (between 0 and 1). These types
of prediction form the two tracks of the shared task,
both of which we participate in.

We solve both problems by applying a logistic
regression model. We design a variety of features
based on a thorough analysis of the training data.
We choose the set of features that yields the highest
performance on training and development sets.

Accounting for the imbalance of numbers of
wrong and correct sentences in the training data dur-
ing feature selection we obtain a model for the prob-
abilistic task that outranks our competitors’ systems.

However, a detailed analysis of the results shows
that the model takes advantage of the evaluation
metric and that our less informed system produces
results that are, although not yielding a top evalua-
tion score, more meaningful.

In the course of a profound analysis of the train-
ing data we encounter both linguistic errors, which
likely occur in diverse genres, and such errors
that are intrinsic to scientific writing and thus rank
among the major challenges of this task. As pointed
out on the AESW 2016 webpage1, correcting prob-
lems concerning diction and style is a matter of opin-
ion. It depends on factors that are not necessarily
deducible from linguistic properties. Common ab-
breviations are an example. There are cases where
they are accepted by an editor, and there are cases
where they are corrected. That is, sometimes e.g. is
left as is and sometimes it is changed to for instance
or for example without any obvious reason. There
are even words that are corrected in opposite direc-
tions. For example, the first letter of the name prefix
van has been corrected to be uppercase in some sen-
tences and also has been corrected to be lowercase
in other sentences. Especially abbreviations that are
not common within one particular domain, but are
used in isolated documents are problematic. This is
due to limitations of the dataset, which provides only
paragraphs, but not documents as contexts for sen-
tences. For example, we may assume that R-G has
been introduced as a technical term at some point in
a document. But since we do not know which para-
graphs belong to this document, we cannot be sure
that this is the case.

1http://textmining.lt/aesw/index.html
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Section 2 gives an overview of the types of errors
we encountered. In Section 3 we introduce our sys-
tem design, detail on how we derive features from
our data analysis, what kinds of language models we
apply, give a short outline on logistic regression and
describe the implementation of our system. In Sec-
tion 4 we describe our training steps, followed by re-
porting results in Section 5, a discussion of lessons
learned in Section 6 and related work in Section 7.

2 Data Analysis2

2.1 Simple Errors

SPELLING ERRORS are frequent and many con-
cern using hyphens in compounds. Another com-
mon error is the wrong usage of ARTICLES. Def-
inite articles are missing or unnecessarily inserted
before generic nouns, (for instance over the for-
mula REF ). Indefinite articles are erroneous
with respect to the subsequent phoneme, (e.g. a
open neighborhood). Some errors concern descrip-
tions of REFERENCES, which are usually capital-
ized (table REF or figures REF and REF ).
NUMERALS are spelled out when they should not
be, and vice-versa (2 or seventy-three). It is
correct to spell numerals out if they are smaller
than 10, otherwise they are often spelled in dig-
its. CONTRACTIONS, such as doesn’t and what’s,
are considered too colloquial for scientific writ-
ing. Dots behind ABBREVIATIONS are omitted, and
also common abbreviations such as e.g., i.e. and
vs. are written wrongly. Other errors include in-
correct PLURALIZATION of decades (1980’s), reg-
ular past tense generation of IRREGULAR VERBS

(lighted) and the modification of words by the
wrong PREPOSITION (very different to the correc-
tion). Words are unnecessarily REPEATED some-
times (The the).

2.2 Complex Errors

All errors described above can easily be categorized
by means of simple patterns. Other errors are harder
to capture, for example wrong word order or miss-
ing words. The most common errors that we come
across are mistakes in the PUNCTUATION of a sen-
tence, especially unnecessary or missing commas.

2All examples in this section have been drawn from the
training data.

NUMBER DISAGREEMENT is a common gram-
matical error. It occurs in passive or active clauses
(e.g. the system are assumed to be the following
form and the counter variables goes on changing)
and in nominal phrases (e.g. Three class of boundary
conditions and these new set of Lyapunov terms).

WORK-SPECIFIC ABBREVIATIONS such as the
insertion of R-G for the compound recombination-
generation are errors that occur in individual situa-
tions. Detecting issues with DICTION AND STYLE is
probably the most intricate problem in this task.

3 System Design

3.1 Formally Capturing Error Types

Simple errors can mostly be captured by binary fea-
tures that formalize rules. For example, if a sentence
contains an incorrect ABBREVIATION of id est, such
as ie., then it needs correction. Similar rules can
be applied to the spelling mode of cardinal numbers
and the CONTRACTION of auxiliary words, such as
’s, ’ve, etc. Also, when finding a four digit num-
ber starting with 1 and ending with 0, it is likely to
denote a decade. If it is directly followed by ’s, an
incorrect PLURALIZATION is detected.

Some rules formulated that way need additional
information. To assert that seventeen should not
be spelled out the system must be aware that it de-
notes a NUMERAL greater than 10. This informa-
tion can be made available through appropriate map-
pings. Lists of wrongly generated past tense forms
of IRREGULAR VERBS can be created with man-
agable effort, just like lists of common abbrevia-
tions.

SPELLING ERRORS can be detected by looking up
words in a dictionary. Whether or not a compound
requires being joined by a hyphen cannot be deter-
mined that way. Compounds can be created produc-
tively and are not necessarily in a dictionary.

NUMBER DISAGREEMENTS are easy to detect by
means of dependencies between head and modifiers
within phrases and part-of-speech tags, which often
carry information about the number of words. How-
ever, that means that recognizing these errors heav-
ily depends on the correctness of the dependency
trees and the part-of-speech tags.

Other error types are ascertainable by lan-
guage modeling. PREPOSITIONS often occur in
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combination with the same words. Thus an appro-
priately trained language model learns that the word
different occurs with from much more frequently
than with to. Classic n-gram models account for un-
usual sequences of words and faulty word orderings.
Language models based on co-occurrences of con-
stituents in syntax trees can reveal grammatical er-
rors and indicate positions where a comma or article
is likely to be inserted.

3.2 Language Models
To capture more complex errors we use a variety of
language models that we compute on correct sen-
tences in the training data.

The n-gram probability of the ith linguistic unit
of a sentence li, being a token w or a part-of-speech
tag t, given its n− 1 predecessors is defined as

p(li | li−1
i−n+1) =

c(lii−n+1)

c(li−1
i−n+1)

,

where c(x) is the number of occurrences of x
throughout the dataset (Jurafsky and Martin, 2009,
pp. 117–147).

Language modeling is not limited to a language
unit and its direct predecessors. The probability of
the occurrence of a word or part-of-speech tag can
be computed depending on whatever might be ap-
propriate to model a linguistic phenomenon. There-
fore we compute the probability of a linguistic unit
given the subsequent n− 1 linguistic units:

p(li | li+n−1
i+1 ) =

c(li+n−1
i )

c(li+n−1
i+1 )

.

The following formula for the probability of a word
w accounts for the relation between part-of-speech
tags and lexicals:

p(wi | ti) =
c(wi, ti)
c(ti)

.

In order to identify words that are typically preceded
by a particular part-of-speech, we compute

p(ti | wi+1) =
c(ti, wi+1)
c(wi+1)

.

Given a syntax tree, let succ(g) be the right sibling
of a node g, let pred(g) be the left sibling of a node

g, and let child(g) be the set of children of a node g.
We define:

p(pred(h) = g | h) =
c(pred(h) = g)∑

g′∈C c(pred(h) = g′)
,

p(succ(h) = g | h) =
c(succ(h) = g)∑

g′∈C c(pred(h) = g′)
,

p(g ∈ child(h) | h) =
c(g ∈ child(h))∑

g′∈C c(g′ ∈ child(h))
,

where C is the set of constituents.
Other sets of features address the probability of

prepositional phrases as modifiers of words. Let
nmod(v) be a preposition that modifies a word v:

p(nmod(v) = w) =
c(nmod(v) = w)∑

w′∈V c(nmod(v) = w′)
.

Smoothing: Since the purpose of our language
models is to identify unusual combinations and or-
derings of words, part-of-speech tags, and chunks,
we go without strong smoothing measures and leave
it to machine learning to reveal the point where
a language construct qualifies as unacceptably im-
probable. Also, we do not prune the vocabulary, be-
cause technical terms which are limited to very spe-
cific scientific fields or even to only few documents
are characteristic for scientific writing. For practi-
cal reasons we apply the very basic add-δ smooth-
ing (Jurafsky and Martin, 2009, p. 134), choosing
δ = 0.1 in order to prevent zero-division.

3.3 Features
We implement a total of 82 features based on the
data analysis described in Section 2. These fea-
tures can be classified into three sets, depending on
their range. Features 1–14 (see Table 1) are integer-
valued, features 15–55 (see Table 2) are binary, and
features 56–82 (see Table 3) are real-valued.

Most of the integer-valued features originate in
readability research and address the coherence of
documents, but they may also be helpful to assess
sentence quality (Pitler and Nenkova, 2008). It is
plausible that long sentences or sentences with a
very high parse tree should be shortened or split
into more sentences in order to simplify their syntax.
Thus they account for those cases where phrases are
deleted in favor of conciseness. Many occurrences
of constituents such as VP, SBAR or NP are likely to
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ID Definition
1 number of definite articles (token the with POS-tag DT)
2 number of pronouns (tokens with POS-tag PRP)
3 number of SBAR (subtrees of syntax tree with root SBAR)
4 number of VP (subtrees of syntax tree with root VP)
5 number of NP (subtrees of syntax tree with root NP)
6 sentence length (number of tokens)
7 parse tree height (edges on the longest path between the root and a leaf of the syntax tree)
8 number of constituents (subtrees of the syntax tree)
9 number of words not in vocabulary (tokens never seen in training)
10 number of words unknown to WordNet (ignores stop words, compounds with hyphens, tokens with digits)
11 number of words unknown to pyenchant-package using en US-dictionary

(ignores stop words, compounds with hyphen, tokens with digits)
12 maximal number of verb forms in a row (longest row of POS-tags starting with ‘VB’)
13 number of dots (ignores period at the end of a sentence)
14 number of abbreviations in paragraph (feature 13, summed over all sentences of a paragraph)

Table 1: Integer-valued features.

occur in too complex sentences. Many pronouns are
indicative for ambiguity, since it is more difficult to
identify the corresponding antecedents.

The binary features are mostly designed for spe-
cific error types, looking for patterns or exact strings
found to be frequently corrected in the training data.

Abbreviations sometimes are and sometimes are
not accepted (Section 2). In order to capture more
information on their usage we added Features 13 and
14. They count the number of abbreviations in the
sentence and in the whole paragraph respectively.
The general idea is that if an author has a tendency
to use abbreviations, an editor does not perceive an
individual abbreviation as inconsistent.

Features 47–55 recognize domain-related errors.
Although the domain is unlikely to be directly de-
cisive for distinguishing correct from incorrect sen-
tences, some kinds of errors might coincide with in-
dividual domains. Our model does not take into ac-
count dependencies between features (Jurafsky and
Martin, 2009, p. 238). However we examine their
impact on the model’s performance. They could be
beneficial for other machine learning algorithms.

In order to detect spelling errors, some of the bi-
nary features check if all words in a sentence are
present within specific sets, such as the vocabu-
lary used in the correct training data, an American
English dictionary3, or WordNet4. We implement

3We used the pyenchant package:
http://pythonhosted.org/pyenchant/

4https://wordnet.princeton.edu/

integer-valued counterparts for these features, be-
cause an absolute decision might be too restrictive.

Most of the real-valued features consist of proba-
bilities computed in our language models. We com-
pute maximum likelihood estimates of sentences
based on different models. We use part-of-speech
n-grams and token n-grams for n ∈ {1, 2, 3} and
a Hidden Markov Model. We also capture those
n-grams in a sentence that yield the lowest proba-
bility compared to all other n-grams. Furthermore
there are features that detect the position where a
comma is most likely to be inserted with respect
to the preceding and succeeding tokens and part-
of-speech tags as well as the preceding, succeed-
ing and superordinate constituents in the syntax tree.
The same is done for inserting and deleting articles
and substituting prepositions by other prepositions.
Mostly we do not compute an isolated probability,
but rather connect it with comparative probabilities.
For instance, feature 82 does not only compute the
probability of a comma before a pair of words, but
returns the factor by which a comma is more likely
than the word actually preceding the pair. That way
the feature does depend on the subsequent word pair
and also on the word to be substituted.

3.4 Machine Learning Approach

We participate in the binary and the probabilistic
track using a logistic regression model. Logistic re-
gression is capable of performing both probabilis-
tic estimation and binary classification. Its training
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ID Definition
15 contains Van
16 contains van
17 contains n’t
18 contains is or us contraction (where’s, what’s, that’s, it’s, let’s)
19 contains ’ve
20 contains ’d
21 first word not capitalized
22 dot after MATH or MATHDISP
23 wrong decade pluralization (1**0’s)
24 reference description not capitalized (token table, figure, lemma, etc. before token REF)
25 abbreviation without dot (token Tab, Fig, Figs, Eq, etc. not ended or followed by .)
26 contains word unknown to pyenchant-package (binary version of Feature 11)
27 contains word not in vocabulary (binary version of Feature 9)
28 contains word unknown to WordNet (binary version of Feature 10)
29 two nouns connected by hyphen (parts of compound are all in WordNet as nouns)
30 contains small cardinal number in digits (e.g. 2)
31 contains high cardinal number in letters (e.g. seventeen, thirty)
32 contains two cardinal numbers in letters, joined by a hyphen (e.g. seventy-three)
33 contains two cardinal numbers in letters in a row (e.g. fifty two, one zero)
34 wrong first letter after indefinite article

(to a limited extent recognizes excepions: an honest, a one-dimensional space, an SVM, etc.)
35 contains the same token twice in a row (e.g. The the)
36 number mismatch between passive auxiliary verb and subject

(number of nsubjpass and number of auxpass of a verb do not match according to the POS-tags.)
37 number mismatch between verb and subject

(number of verb and nsubj do not match according to the POS-tags.)
38 number mismatch between article and head of a noun phrase
39 number mismatch between number modifier and head of a noun phrase
40 contains vs (not followed by .)
41 contains vs (ended with or followed by .)
42 contains ie or ie.
43 contains i.e.
44 contains eg or eg.
45 contains irregular verb with regular suffix (lighted, builded, etc.)
46 contains token based not followed by on
47–55 occurs in domains: Astrophysics, Chemistry, Computer Science, Economics/Management,

Engineering, Human Sciences, Mathematics, Physics, Statistics
Table 2: Binary Features

phase is also not very time-consuming, which is ben-
eficial for our feature selection procedure. It derives
the probability of an observation x to belong to a
particular class y from a linear combination of the
observed feature vector f and a weight vector w (Ju-
rafsky and Martin, 2009, pp. 231–239). It applies
a logistic function to map the result of this linear
combination to lie between 0 and 1. In the train-
ing phase the parameters in w are chosen to maxi-
mize the probability of the observed y values. Dur-
ing testing unseen samples are classified according
to their probability computed by linearly combining

their feature vectors with the very weight vector w
that was determined in training.

3.5 Implementation

Our system is based on an object-oriented data
model that provides information on the different
datasets. Sentence objects comprise every piece
of information at hand, including the actual tagged
data and supplementary information such as lists of
tokens and part-of-speech tags, a graph-like struc-
ture implementing the syntax tree, and a dictionary
mapping tuples of indices in the token list to the
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ID Definition
56 average word length
57 max. gain of changing a preposition (nmod(w) denotes preposition that modifies w):

max(
{ pmodify(w′,wi)

pmodify(nmod(wi),wi)
: 1 ≤ i ≤ |S| AND w′ ∈ V AND ∃j[1 ≤ j ≤ |S| ∧ nmod(wi) = wj

]}
),

58 max. gain of swapping the case of a first letter (swap(w) is w with case of first letter swapped)):
max(

{pngram(wi−2,wi−1,swap(wi))
pngram(wi−2,wi−1,wi)

: 1 ≤ i ≤ |S| }),
59 maximum likelihood estimate (token unigrams):

∏
1≤i≤|S| p(wi)

60 maximum likelihood estimate (POS-tag unigrams):
∏

1≤i≤|S| p(ti)
61 maximum likelihood estimate (token bigrams):

∏
1≤i≤|S| p(wi | wi−1)

62 maximum likelihood estimate (POS-tag bigrams):
∏

1≤i≤|S| p(ti | ti−1)
63 maximum likelihood estimate (token trigrams):

∏
1≤i≤|S| p(wi | wi−2wi−1)

64 maximum likelihood estimate (POS-tag trigrams):
∏

1≤i≤|S| p(ti | ti−2ti−1)
65 maximum likelihood estimate (Hidden Markov Model):

∏
1≤i≤|S| p(ti | ti−1) · p(wi | ti)

66 min. probability of any POS-tag trigram: min(
{
p(ti | ti−2ti−1) : 1 ≤ i ≤ |S|})

67 min. probability of any POS-tag bigram: min(
{
p(ti | ti−1) : 1 ≤ i ≤ |S|})

68 min. probability of any POS-tag unigram: min(
{
p(ti) : 1 ≤ i ≤ |S|})

69 min. probability of any token trigram: min(
{
p(wi | wi−2wi−1) : 1 ≤ i ≤ |S|})

70 min. probability of any token bigram: min(
{
p(wi | wi−1) : 1 ≤ i ≤ |S|})

71 min. probability of any token unigram: min(
{
p(wi) : 1 ≤ i ≤ |S|})

72 min. lexical probability of any token: min(
{
p(wi | ti) : 1 ≤ i ≤ |S|})

73 fraction of tokens that are commas: |{i:wi=,:1≤i≤|S|}|
|S|

74 max. gain of inserting comma after chunk: max(
{
p(succ(g) = , | g) : g ∈ Tree(S) AND succ(g) 6= ,

}
)

75 max. gain of inserting comma before chunk: max(
{
p(pred(g) = , | g) : g ∈ Tree(S) AND pred(g) 6= ,

}
)

76 max. gain of inserting comma within subtree: max(
{
p(, ∈ g | g) : g ∈ Tree(S) AND , /∈ child(g)})

77 max. gain of inserting article: max(
{ p(DT | wi)

p(ti−1,wi)
: 1 ≤ i ≤ |S| AND ti−1 6= DT

}
)

78 max. gain of deleting article: max(
{p(ti−2,wi)

p(DT | wi)
: 1 ≤ i ≤ |S| AND ti−1 = DT

}
)

79 max. gain of inserting comma after pair of POS-tags: max(
{ p(, | ti−2ti−1)

p(ti | ti−2ti−1)
: 1 ≤ i ≤ |S|})

80 max. gain of inserting comma after pair of words: max(
{ p(, | wi−2wi−1)

p(wi | wi−2,wi−1)
: 1 ≤ i ≤ |S|})

81 max. gain of inserting comma before pair of POS-tags: max(
{ p(, | ti+1ti+2)

p(ti | ti+1ti+2)
: 1 ≤ i ≤ |S|})

82 max. gain of inserting comma before pair of words: max(
{ p(, | wi+1wi+2)

p(wi | wi+1wi+2)
: 1 ≤ i ≤ |S|})

Table 3: Real-valued features

dependency relation between the corresponding to-
kens. The object can hold both its correct and its
incorrect versions. The Sentence class also imple-
ments all features and methods needed for data anal-
ysis. The purpose of the Corpus class is to gather
and manipulate sentence information and transfer it
to convenient output formats. It also holds a static
object that encapsulates all functionality regarding
language modeling.

Each step on the way to the final system is then
implemented in a seperate script that accesses the
data model described above. These steps can be
combined to form a closed system or be extended to
do further data analysis or to use machine learning
approaches other than logistic regression.

For machine learning we used the

scikit-learn5 implementation of logistic
regression.

4 Training

All sentences in the training set are used for train-
ing, that is, a sentence that needs correction enters
the training set with both its original and its cor-
rected version and thus introduces two samples with
different labels to the training data, namely −1 for
the correct version and +1 for the wrong version.
Sentences that do not need modification have the
label −1. To prevent single features from being
predominant we scale all feature vectors using the
scikit-learn MaxAbsScaler. It maps all our

5http://scikit-learn.org/stable/
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values to lie between 0 and 1 by dividing by the
largest absolute value that occurs in each feature dur-
ing training. That way binary features and 0 values
remain unaffected. Note that test data samples can
still end up with feature values greater than 1, but all
features will still be cut to reasonable sizes.

4.1 Feature Selection
In order to determine which of the features are help-
ful in an actual system, we first extract a small sub-
set of binary features that all yield a high precision
when classifying sentences of the development set
solely based on their value. Seven of the features
yield a precision of more than 90%, namely 17, 18,
19, 22, 23, 32, and 42. We train a logistic regres-
sion model using only these features. We evaluate
the predictions of the model using the F1-scores for
both tracks of the shared task, as defined in (Dau-
daravičius, 2015). Then we add each of the remain-
ing features and keep the one that improves the F1-
score most. We repeat that process until none of
the features improves the score anymore. We per-
form this process on both training and development
data seperately. Note that we do not include the fea-
tures which encode the domain of a sentence. In-
stead, their combined impact is tested at the end of
the procedure. If and only if adding them all yields
an improvement, they are kept in the final model.

After having determined the most informative
features, we account for distributional properties of
our training set by adjusting some parameters. The
training set is heavily biased towards correct sen-
tences, because for each sentence (even with error)
there is a correct version, but there is not neces-
sarily a wrong version for each sentence. In or-
der to make up for this imbalance we set the class
weights inversely proportional to their respective
proportions in the training data, as suggested by the
scikit-learn-documentation6. Applying L1 reg-
ularization instead of L2 regularization gives us a
minor performance boost, too. Table 4 shows the
feature sets determined by the feature selection pro-
cess along with the performances of the models on
the different datasets with weighted classes and us-
ing L1 regularization.

6http://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html

Model precision recall F1
prob.u.L2 0.6655 0.7889 0.722
prob.w.L1 0.9333 0.7491 0.8311
bool.w.L1 0.3765 0.9480 0.5389

Table 6: Results on test data

Seeing how setting the right parameters can im-
prove the performance of logistic regression, we do
another feature selection on the development data.
This time we weight the classes as described above
and apply L1 regularization from the outset. That
way we obtain the feature sets reported in Table 5.

5 Results

Since the results in Table 5 yield very promising
results on the development data, we apply the two
models to the test data, which yields comparable re-
sults (see models bool.w.L1 and prob.w.L1 in Ta-
ble 6). Taking a closer look at the individual out-
comes, however, reveals that they are by no means
expressive. In the binary task our system almost al-
ways assigns true and thereby ensures the high re-
call. The precision on the other hand is relatively
low and roughly matches the proportion of spurious
sentences in the data. Hence our system would be
outperformed by one that assigns true to all samples.

Our results on the probabilistic track look similar.
Apart from a few instances to which our model as-
signs a probability around 95%, the estimations are
always very close to 50%.

In order to examine the effects of a larger set of
features we also apply the model resulting from fea-
ture selection on the training data to the test data
for the probabilistic task. We expect that thanks to
the multitude of features this model (prob.u.L2) will
eventuate in a more diverse result. Despite the fact
that as reported in Table 6 the F1-score drops by
11 points compared to our other system, the indi-
vidual outcomes in fact seem to be much more ex-
pressive. The results still have a tendency to range
around 50% but there are considerably more outliers
and a lot more probabilities greater than 95%.

6 Discussion

6.1 Lessons learned

It is noticeable that we end up with very few fea-
tures when performing the feature selection process
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features F1-score
bool: training data 1, 7, 8, 9, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 34, 0.4251

40, 42, 43, 44, 45, 46, 57, 58, 73, 77, 78, 79, 81, 82
prob: training data 7, 9, 11, 14, 17, 18, 19, 22, 23, 32, 42, 47, 48, 49, 50, 51, 52, 53, 54, 0.7500

55, 56, 60, 66, 67, 69, 70, 73, 74, 75
bool: development data 1, 3, 8, 9, 13, 14, 17, 18, 19, 22, 23, 24, 25, 30, 31, 32, 34, 35, 41, 42 0.5264

43, 45, 46, 57, 58, 77, 82
prob: development data 11, 14, 17, 18, 19, 22, 23, 26, 30, 32, 39, 42, 56, 66, 67, 69, 70, 74, 75 0.7547

Table 4: F1-scores resulting from feature selection, weighting classes and applying L1 regularization afterwards

features F1-score
bool: development data 17, 18, 19, 22, 23, 32, 42, 69, 79 0.5701
prob: development data 17, 18, 19, 22, 23, 32, 42, 44, 72 0.8477

Table 5: F1-scores resulting from feature selection with classes weighted and L1 regularization applied from the outset

weighting the classes beforehand. By weighting the
classes inversely proportional to their proportions
in the training data, the system is immediately bi-
ased towards high probabilities for true labels, trying
to compensate the superior number of false labels
in the training data. Starting the feature selection
process with high-precision features, the probabil-
ity spikes whenever these features are 1. So both the
model for the boolean track and the one for the prob-
abilistic track start out with very high precisions.
Due to the strong true-bias, all other probabilities
are close to but still smaller than 50%, yielding a rel-
atively high recall in the probabilistic system, which
results in a very good performance according to the
provided evaluation metric. The boolean system, on
the other hand, has a very low recall, so in order to
increase its F1-score, the precision is sacrificed dur-
ing feature selection in favor of a better recall.

The feature selection processes show which fea-
tures are more useful than others. We see that
most of the integer-valued features that are valuable
for readability assessment are never chosen for any
model. A possible reason is that readability ease in
scientific writing is not as important as in other do-
mains, since the target readers are highly educated.
A high linguistic complexity is rather characteristic
for scientific writing and is possibly not perceived as
a deficiency as much.

Interestingly the WordNet features (10, 28) do
not work well, in contrast to the features using the
pyenchant-package (11, 26).

The number of abbreviations in a paragraph (14)
is chosen by every model so it is possible that an

author’s writing style throughout the rest of a doc-
ument affects the editor’s acceptance of individual
sentences. It is worth considering to design more
features that account for consistency in a paragraph.

Binary features often manage to improve the
models, except for features 15 and 16, which is not
surprising, given the fact that they denote exactly op-
posite properties and the model is not able to account
for dependencies between features. Features 36–39
try to detect number disagreements and seem to per-
form poorly. Being based on both dependency trees
and part-of-speech tags, these features rely on the
correctness of the supplementary data, which in this
case has been generated automatically, and hence
cannot be guaranteed to be correct.

Our results also show that the domain-related fea-
tures are not very helpful in combination with logis-
tic regression. We can report that they only make a
minor difference in the one model they entered.

Especially the models for probabilistic estimation
are improved by features 66, 67 and 69, which are
supposed to detect the most unlikely n-grams in a
sentence. They are better in detecting local discrep-
ancies in a sentence than the maximum likelihood
estimation features 59–65, because an unlikely n-
gram does not have much impact on the likelihood
estimation of a sentence, so even a major error re-
flected in a very low n-gram probability can possi-
bly go unnoticed. That cannot happen in the features
66–72.

The remaining features, dealing with the effects
of insertion, deletion, and substitution of commas,
articles, and prepositions, have positive impact on
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some of the models, which is why we are confident
that language modeling is the key to other helpful
features yet to be found.

6.2 Evaluation Metric

The evaluation score works well for a system whose
only purpose is the identification of erroneous sen-
tences, so for the binary classification task the F1-
score is perfectly suitable. However, it may be worth
considering whether the information that a sentence
is fine could be valuable, too. That might be the
case whenever sentences must be further processed.
In that case the accuracy metric might be the bet-
ter choice, because it takes all correct classifications
into account, whereas the F1-score does not reward
instances correctly classified as false.

As for the probabilistic task, our results show that
the evaluation score is not strict enough, and that it
is prone to misjudge the expressiveness of the re-
sults. In fact, correctly assigning 1.0 to only one
faulty sentence and 0.5 to all other sentences yields
a score of 0.8571. The result is not as extreme if pre-
cision and recall are computed based on the mean
absolute error, which results in 0.6667. This, still,
clearly overestimates the quality of the results.

7 Related Work

As Daudaravičius (2015) states, a lot of scientists
authoring scientific papers are nonnative English
speakers. This insight suggests a relation of auto-
matic evaluation of scientific writing to the field of
language learner systems. Gamon (2010) mainly ad-
dresses article and preposition errors, which have
shown to be frequent errors in the dataset provided
for the AESW 2016 Shared Task, too. He uses lan-
guage models on both a lexical and a syntactical
level to find more likely alternatives for prepositions
and articles with respect to the linguistic environ-
ment they occur in. He also bases some features on
ratios of language model outcomes, rather than on
individual probabilities, which is an approach that
underlies many of our real-valued features.

Tetreault et al. (2010) examine how helpful parser
output features are when modeling preposition us-
age. They present several phrase structure and
dependency-based features, including left and right
contexts of constituents in parse trees and the

lexicals modified by a prepositional phrase.
For our features we extract those ideas from these

works that seem the most promising for the chal-
lenge we encounter. But they both hold inspiration
for even more features than those we implement in
the course of our participation in the shared task and
will be reconsidered in future work.

8 Conclusions

To detect spurious sentences in scientific writing we
trained a logistic regression model. After a thor-
ough data analysis, which gave us some profound
insight into the types of errors occurring in scien-
tific writing, we designed a number of features to
detect these errors. We identified the most mean-
ingful features by performing an incremental feature
selection. Some of the resulting features show that
corrections which seemed arbitrary might be justi-
fied by means of consistency of a text. We also
used the probabilities of sentences according to lan-
guage models as features, which our feature selec-
tion process determined to be helpful. Using the
selected features our regression model achieved re-
spectable results compared to our competitors’ sys-
tems. Weighting our classes during the feature se-
lection procedure, we accomplished a score to rank
highest according to the evaluation metric in the
probabilistic track of the task. However, we dis-
covered that these results are very homogeneous and
thus not expressive enough for a real life system. For
future improvements of our system, we plan on de-
veloping an evaluation metric that takes the diversity
of result data into account.
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Abstract

Cloze tests, also known as gap-fill exercises,
are a popular tool for acquiring and evaluat-
ing language proficiency. A major challenge
in the way of automating scoring of cloze tests
is the yet unsolved problem of gap filler ambi-
guity. To address this challenge, we present
the concept of bundled gap filling, along with
(1) an efficient computational model for au-
tomatically generating unambiguous gap bun-
dle exercises, and (2) a disambiguation mea-
sure for guiding the construction of the exer-
cises and validating their level of ambiguity.
Our evaluation shows that our proposed exer-
cises achieve a dramatic reduction in gap filler
ambiguity, while our disambiguation measure
can be effectively used to discard exercises
that are nevertheless too ambiguous.

1 Introduction

Cloze-tests (or gap-fill tasks) (Taylor, 1953) are a
frequently used exercise type, where a target word
in a sentence is hidden and replaced with a gap.
The learner is then asked to figure out the hidden
word based on its context. While gap-fill tasks are
quite easy to generate, automated scoring is difficult
as gaps are often significantly ambiguous (Chavez-
Oller et al., 1985). For example, in the sentence ‘The
students have to the test’ most people would ac-
cept do, take, or pass as valid gap-fillers. However,
for reasons of practicability, in common test scenar-
ios this ambiguity is often ignored, which may result
in high error-rates even when testing native speakers
(Klein-Braley and Raatz, 1982).

The ambiguity of gap-fill tasks can be countered
by providing a set of answer candidates for the
learner to choose from. The candidates include a

single correct solution and a set of incorrect distrac-
tors that are –in theory– used to control the difficulty
of the task. However, providing answer candidates
encourages guessing and changes the nature of the
task from producing a solution to recognizing a so-
lution (Wesche and Paribakht, 1994).

Furthermore, in practice, it is far from trivial to
find good distractors and to resolve the trade-off be-
tween task difficulty and task ambiguity. Distractors
that have little relatedness with the sentential context
of a gap are easy to reject and therefore usually yield
unambiguous but very easy tasks. Alternatively, dis-
tractors that fit well into the gap are hard to tell from
the correct solution, but may be in fact also valid
solutions themselves, resulting in an ambiguous ex-
ercise with more than one correct answer.

In this paper, we propose a new paradigm for ad-
dressing the ambiguity problem in gap-fill exercises,
which we call bundled gap filling. A gap bundle is a
set of gaps in different sentences, all hiding the ex-
act same single word. In a gap bundle exercise, the
learner is presented with all of the gaps in a bundle
at the same time and asked to find the single word
behind all of them. Figure 1 illustrates this approach
(last row) in comparison to the traditional ones (up-
per rows).

As generating gap bundle exercises manually
would be tedious, we propose a probabilistic gap
bundle disambiguation measure based on language
models (Chen and Goodman, 1999). Guided by this
measure, we can both automatically generate gap
bundle exercises, such that ambiguity is minimized,
and discard the ones that are nevertheless too am-
biguous.

Proficient English speakers are expected to get
(near) perfect scores in non-ambiguous gap fill ex-
ercises, but much lower scores in ambiguous exer-
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Figure 1: Comparison of three types of gap-fill exercises: (a) gap-fill, (b) gap-fill + distractors, (c) bundled gap-fill

cises. In our empirical evaluation, native and near-
native English speakers achieved a mean success
rate of .78 on bundled gap exercises compared to
.27 on single gap exercises in an identical setting.
This suggests that indeed the ambiguity of our gap
bundles is dramatically lower than that of traditional
single gaps.

2 Bundled Gap Filling Exercises

In this section, we describe (i) our proposed bundled
gap filling exercises, (ii) a probabilistic model for es-
timating their level of ambiguity, and (iii) a scheme
to automatically construct exercises, such that ambi-
guity is minimized.

2.1 Motivation

For a gap-fill exercise to be unambiguous, we wish
to ensure that any word other than the given target
word would be considered a highly unlikely solution
by a proficient speaker under a common-sense inter-
pretation. Unfortunately, as previously mentioned,
this is commonly not the case for a single gap, e.g.
‘The students have to the test’ has multiple so-
lutions including take and do. Similarly, take is not
the only valid gap filler in the sentence ‘All passen-
gers should their seats’. However, in this case
do would not be considered as a likely alternative,
while find would. Therefore, when asked to find
a single word that fits both gaps, a skilled speaker
would probably be able to reject both do and find.
In bundled gap filling exercises, we wish to take ad-

vantage of this variance in the ambiguity patterns of
gaps.

2.2 General Approach

We make the following approximated assumptions
regarding the reader of the gap-fill exercise. First, in
the mind of the reader there exists some probabilis-
tic distribution of the likely solutions of any given
gap. The more ambiguous the gap, the wider this
distribution is. Second, when asked to find a single
word that fits two or more gaps bundled together, the
reader attempts to ‘compute’ the joint distribution,
which is the likelihood of any word to be a gap filler
for all of these gaps at the same time. For a skilled
reader, if the likelihood of the original target word
in this joint distribution is significantly higher than
any other word, then this bundled gap filling exercise
in unambiguous. While impossible to predict pre-
cisely, we approximate the likelihood distribution in
a speaker’s mind using an n-gram language model,
which predicts the likelihood of a gap-filler based on
similar word sequences statistics observed in a large
corpus.

To construct a gap bundle for a given target word,
we start with a random seed sentence containing a
gap hiding this word. We compute an approximation
for the probabilistic distribution of its most likely
gap-fillers, and then we iteratively add more sen-
tences with gaps hiding the same target word to the
bundle to make the bundle less ambiguous. To do
this effectively, at each step we try to add the gap that
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would make the original target word stand out most
in the resulting joint distribution of the gap bundle.

2.3 Probabilistic Modeling of Gap Ambiguity
We denote the probabilistic distribution for gap-filler
words of a single gap in a sentence as:

Pw∈V (F (g) = w) = pg(w) (1)

∑
w∈V

pg(w) = 1 (2)

where V is the vocabulary containing all words, w
is a single word, and F (g) is the gap filler for gap g.
This distribution can be estimated using a language
model as we show later in Section 2.5.

Next, we make the following approximation for
the joint probabilistic distribution of the word w fill-
ing the gaps in a gap bundle, given that it must be
the same word filling all of these gaps:

Pw∈V (F (b) = w)
= Pw∈V (g1 = w, ..., gn = w)

∝
∏

i∈1..n

pgi(w),
(3)

where b is a gap bundle that comprises the gaps
{g1, ..., gn}.

Finally, we define our measure D(b) for the dis-
ambiguation level of a gap bundle b, as the log of
the ratio between the probability of the target word t
and the probability of the most likely word w other
than t:

D(b) = log
P (F (b) = t)

max
w∈V \{t}

P (F (b) = w)
(4)

The greater this ratio, the more likely the target
word compared to any other word, and accordingly
we consider the gap bundle less ambiguous.1 Based
on this formalization, in the next section, we pro-
pose a scheme that can automatically construct gap
bundles with high disambiguation measure values.

Figure 2 illustrates the log probability distribu-
tions of gap-filler words for two single gaps hiding
the target word take, as well as the joint distribution

1We use the log of the ratio for convenience and arithmetic
stability.

of the gap bundle comprising these two gaps. The
ambiguity measure is illustrated as the difference be-
tween the log probability of the word take and the
other most probable word in the distribution. As can
be seen, the combination of the two gaps in a bundle
yields a much higher disambiguation level than each
of its constituents.

2.4 Constructing Disambiguated Gap Bundles
We next describe a scheme to automatically con-
struct disambiguated gap bundles based on our
model. As input to this process we assume the fol-
lowing: (1) for each desired gap bundle, a given ran-
dom seed sentence with a gap, g1, hiding some target
word t; (2) a given size m for the desired gap bun-
dle; and (3) a corpus G, where Gt is the set of gaps
in G hiding the target word t.

A straightforward approach to construct a disam-
biguated gap bundle for g1 would be to evaluate all
possible gap bundles that include g1 and (m−1) ad-
ditional gaps from Gt, and choose the one with the
highest disambiguation measure. By restricting the
bundle to gaps only from Gt, we make sure that t is a
correct answer to the exercise (i.e. a valid gap filler),
and by optimizing our disambiguation measure we
wish to increase the chances of a skilled speaker to
identify t as the only correct answer.

Unfortunately, the exhaustive search described
above is not useful from a practical point of view
as it would require O(m|Gt| · |V |) computations. We
therefore propose instead a greedy algorithm with
complexity O(m · |Gt| · |V |) that successively se-
lects the next gap to be added to the bundle, such
that its ambiguity is reduced the most:

gi+1 = arg max
g∈Gt\bi

(D(bi ∪ g)), (5)

where bi is the gap bundle after step i, and gi+1 is
the gap to be added in step (i + 1).

Finally, a threshold on the disambiguation level of
the resulting gap bundle can be used to discard bun-
dles for which our algorithm failed to reach a satis-
factory level of disambiguation.

2.5 Estimating Gap-filler Distributions
A critical element of our proposed approach is the
ability to efficiently estimate the distribution of gap-
filler words for a given gap in a sentence. Probably
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Figure 2: Two single gaps (top) combined into a gap bundle (bottom) for the target word take. The diagrams illustrate the

respective gap-filler words log probability distributions. D(g0) and D(g1) are the disambiguation measures of the single gaps -

note that D(g1) has a negative value. D(b) is the improved disambiguation measure of the gap bundle.

the most natural choice to do this is by using prob-
abilistic language modeling techniques, widely used
in NLP for various applications (Chen and Good-
man, 1999). Language models are learned from
large corpora of text and used to estimate the prob-
ability of a given sequence of words, such as a sen-
tence.

A straightforward approach to use a language
model to estimate the gap-filler distribution is to fill
the gap in a sentence with every possible word in the
vocabulary and use the language model to estimate
the probability of each resulting sentence. The prob-
ability of the gap-filler would be proportional to the
probability of its respective sentence.

The problem with the above approach is that it be-
comes computationally intensive with large vocabu-
laries, which may include hundreds of thousands of
words. Therefore, we use instead the FASTSUBS
tool (Yuret, 2012), which can efficiently compute a
pruned distribution of the top-k most probable gap
fillers, using an n-gram language model. The proba-
bility of all the words below the top-k is considered
to be zero. For this computation to be efficient, k
needs to be much smaller than the size of the vocab-
ulary. However, in practice gap fillers not in the top
1000 are usually estimated with near-zero probabili-
ties anyway. Using pruned distributions, also brings

down the complexity of our gap bundle construction
algorithm from O(m · |Gt| · |V |) to O(m · |Gt| · k).

The main risk with pruning the distributions as de-
scribed above, is that once a word is assigned with
zero probability in a given gap, it will have a zero
probability estimate in any bundle containing this
gap, no matter how probable it is in the other gaps in
the bundle. This is because the joint probability is a
product of single gap probabilities. To mitigate this
we use a simple form of additive smoothing (Chen
and Goodman, 1999), that adds the probability mass
of the k-th gap-filler to all words in the vocabulary
including the ones in the top-k.2

3 Exercise Generation Settings

When actually generating exercises following our
proposed scheme, one needs to make a few practi-
cal choices, including: (1) the corpus C for training
the language model, (2) the corpus G from which the
gaps are sampled, (3) the set of target words T , and
(4) the number of gaps (or sentences) in a bundle.

Note that C and G can be the same, but C would
preferably be a very large corpus in order to derive a
high quality language model, and G would be a pos-
sibly smaller, higher quality corpus containing sen-

2We do not normalize the probability distributions as for our
purposes we are only interested in probability ratios.
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tences that are more suitable for learners.
In this section we describe some considerations

related to these choice, as well as the settings used
for generating the exercises in our experiments.

3.1 Language Model
Melamud et al. (2015) used gap-filler distributions
(also known as substitute vectors), which are based
on a language model, achieving state-of-the-art per-
formance in lexical substitution tasks. Following
their settings, we trained a 5-gram language model
using the KenLM toolkit3 (Heafield et al., 2013)
with modified Kneser-Ney smoothing on the two
billion word ukWaC English web corpus (Baroni et
al., 2009). We then used this language model with
the FASTSUBS tool4 (Yuret, 2012) to generate the
probability distribution of gap-filler words, pruned
to the top 1000 most probable gap fillers.

Using a large web corpus, such as ukWaC, entails
good coverage of diverse language styles for our lan-
guage model, at some acceptable cost of noisy low
quality texts.

3.2 Gap Bundle Corpus
While our algorithm can generate bundles given any
set of input sentences, the quality of the exercises
might vary strongly according to the corpus, from
which the sentences are selected.

By selecting a corpus focused on a certain do-
main, a teacher may tune the generated bundles to
the desired learning goals. For example, Sasaki
(2000) show that participants perform better in a
cloze exercise if it contains familiar cultural issues.

The corpus should be sufficiently large to offer
enough distinct gaps for each target word to choose
from. In contrast, if the corpus exceeds a certain
size, it makes computation expensive without adding
much value. In addition, the quality of exercises
depends on the length of the sentences in the bun-
dle. Short sentences provide little context for disam-
biguating the gap, while too long sentences are hard
to parse for the learner.

As an example for a gap bundle corpus, we select
the GUM corpus5 (Zeldes, 2016) that is sufficiently
large (44,000 tokens) and contains a good variety of

3http://kheafield.com/code/
4https://github.com/denizyuret/fastsubs-googlecode
5https://github.com/amir-zeldes/gum

topics. The corpus is created from 54 articles ex-
tracted from the collaboration platforms Wikinews,
Wikivoyage, and wikiHow. The articles contain in-
terviews, news-articles, travel guides and ‘how-to’
instructions, and represent a good trade-off between
formal and everyday language.

3.3 Target Words
In principle, our algorithm works with any target
word. However, as with the choice of the gap bundle
corpus, the selection of target words will influence
the nature of the resulting exercises.

According to Abraham and Chapelle (1992) the
difficulty of a gap is influenced by whether the omit-
ted word is a function word or a content word. In
this work we choose to focus on content words.

Another major influencing factor is the frequency
of the selected target words (Kobayashi, 2002). For
our study, we select words from the middle of the
frequency distribution avoiding the extreme ends.
For very infrequent words our gap corpus will not
contain enough gaps to choose from. Very frequent
words are mostly function words, which may behave
differently and are out of scope.

As there might still be frequency effects, we
sample the target words from different frequency
classes. We compute the frequency class f̂ of a word
w in a given vocabulary V by using:

f̂(w) = b0.5− log2(
f(w)

fmax(V )
)c,

where fmax(V ) is the frequency count of the most
frequent word in V . Table 1 shows the selected tar-
get words and their frequency classes.

There are additional attributes that influence the
resulting gaps. For example, longer target words re-
sult in increased difficulty in traditional gap-fill tasks
(Abraham and Chapelle, 1992; Brown, 1989). We
leave the examination of such factors to future work.

3.4 Gap Bundle Size
We hypothesize that generally the more sentences
with gaps we add to a bundle the less ambiguous it
would be. However, larger bundle sizes may result
in cognitive overload or shift the nature of the task
towards a test of working memory capacity. Previ-
ous work investigating multiple-choice gap-fill exer-
cises has shown that three distractors plus the correct
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Target Words Frequency Class Word Class

new 5

Adjectivesbest 6
full 7
final 8

people 5

Nounslanguage 6
information 7
room 8

make 5

Verbswant 6
add 7
give 8

Table 1: List of target words

answer is the optimal number to provide (Graesser
and Wisher, 2001). Therefore, in this work we con-
sider gap bundles that include up to four sentences.

4 User Study

We conducted the user study described in this sec-
tion to evaluate our hypothesis that bundled gap ex-
ercises are less ambiguous than the traditional single
sentence cloze items. We note that the evaluation
of other educational aspects, such as learner profi-
ciency level discrimination, were left to future work.

Gap-fill exercises are typically used with lan-
guage learners, such as non-native speakers or chil-
dren. However, the premise behind our study is that
fully proficient speakers should be able to achieve
(near) perfect scores on such exercises, provided that
they are not ambiguous, i.e. that the correct answer
is much more likely than any other possible solution.
Accordingly, we consider high scores for proficient
speakers as evidence for low levels of ambiguity in
gap-fill exercises and vice versa.

4.1 Setup

We implement the user study using an online sur-
vey with 35 participants (20 female). To ensure a
high level of language proficiency, participants ei-
ther have to be native speakers of English or report
a high self-assessment score (e.g. C2 CEFR level).

To measure the impact of bundle size, for each
target word, we start with a single seed sentence (as
in the traditional cloze test scenario) and then suc-
cessively present the next sentence, chosen by our

Average Average
Success Disambiguation

Rate Measure

Single Gap .27 -0.50
Bundle2 .59 4.00
Bundle3 .68 7.75
Bundle4 .78 11.06

Table 2: Comparison of average success rate and our estimated

disambiguation measure D(b) for different bundle sizes.

automatic algorithm for the bundle, until we reach a
bundle size of four. In each step, the participant is
asked to provide a single word which fits best to all
of the gaps presented thus far. This setup is exempli-
fied in Figure 3, where we show the four test steps
for the target word new. Overall, we test this for all
12 target words (see Table 1).

For each test step, we measure average success
rate as the ratio of participants that provided the
correct target word, out of all participants. As we
conducted this study with highly proficient speakers,
we assume that participants who fail to provide the
correct answer, have a competing answer in mind,
which is also valid.

4.2 Results
We now report and discuss the results of the user
study. We address the two major points: (1) how
well gap-fill bundles resolve the ambiguity of cloze
tasks, and (2) whether we can automatically discard
low-quality gap bundles for quality assurance.

Exercise Ambiguity Our main finding is that the
average success rate for single sentence cloze items
is .27, while it steadily rises with every added sen-
tence reaching .78 for a four sentence bundle - see
Table 2. We also find that our average disambigua-
tion measure grows with the size of the bundle and
the success rate. These results suggests that our ap-
proach is extremely effective in reducing the ambi-
guity of cloze items. Still, even with four-sentence
bundles we observe a non-negligible (.22) error rate.
Part of this could be attributed to human perfor-
mance errors, but it could also be the case that some
of the bundles are still somewhat ambiguous even
with four sentences.

To get more insights into this phenomenon, we
conducted a detailed analysis of success rate per
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Figure 3: Example of the setup of the user study for the target word new. In the first step we present a regular single sentence cloze

item, which was randomly selected. Then, we successively present larger bundles to reduce ambiguity. The subsequent sentences

are selected by our algorithm.

item and bundle size - see Figure 4. On average, the
biggest impact on success rate of about 30 points is
observed between the single gap and the first bun-
dle with two sentences. For some targets (best, peo-
ple, add, and new) this improvement exceeds even
50 points. On the other hand, there are a few ex-
ceptions to the monotonous growth in success rate
for some targets (e.g. give, best and final), where
we observe a decline for an increased bundle size.
Nevertheless, this decline is only local and does not
exceed 11 points. The target give is particularly ex-
traordinary as it has very high success rate across
all bundle sizes. A deeper analysis shows that its
randomly selected seed sentence uses the target in
a quite idiomatic way (“whales come to these pro-
tected waters to give birth.”), which makes the gap
unambiguous right from the start.

A further notable exception is the target word fi-
nal, for which our algorithm does not manage to
significantly dissolve the ambiguity (the overall im-
provement is just 12 points). An analysis of the vari-
ety of answers given by the study participants shows
that they tended to include more adjectives that are
highly related to final (e.g. last or first) when pre-
sented with the larger bundles. Here, the algorithm
fails to provide a sentence that removes this ambigu-
ity. We manually checked all sentences containing
the word final in the gap bundle corpus and found
that none of them could be used to really rule out
last or first. This could indicate that our gap sen-

tence corpus is not diverse enough, as it doesn’t in-
clude a sentence, such as: “This is the last and final
call for flight 123 to San Diego”. However, we must
also acknowledge that some words may have very
close synonyms (as in final and last) that could be
very hard to distinguish. In such cases, where our
algorithm generates an ambiguous exercise, we wish
to be able to automatically detect and discard it for
quality assurance, as discussed next.

Quality Assurance In this analysis, we try to an-
swer the question whether it is possible to automati-
cally reject gap bundles that are likely to yield a low
success rate due to ambiguity. We propose to use a
threshold on our ambiguity measure D(b) and ana-
lyze our study results to estimate the threshold value.

In Figure 5, we visualize the relationship between
success rate in a given exercise and our model’s cor-
responding disambiguation estimate D(b). The es-
timated correlation between these two variables is
decent (r = 0.66) though not perfect. However, a
nice property with respect to thresholding is that our
measure is rather conservative and does not overes-
timate the ambiguity reduction. This means that, for
example, by discarding all items with D(b) < 4.0
we can remove almost all items with success rate be-
low 50%, while keeping more than 80% of the items
with success rate above 50%. This suggests that we
are able to guarantee high-quality gap bundles, as
long as we are allowed to reject some items (e.g. by
flagging the teacher that for a certain seed sentence

178



ne
w

pe
op

le

m
ak

e

la
ng

ua
ge

be
st

w
an

t

fu
ll

in
fo

rm
at

io
n

ad
d

ro
omfin

al

gi
ve

av
er

ag
e

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

ne
w

pe
op

le
mak

e

lan
gu

ag
e

be
st

wan
t

ful
l

inf
orm

ati
on ad

d
roo

m
fina

l
giv

e

av
era

ge
−5

0

5

10

15

20

D
is

am
bi

gu
at

io
n

M
ea

su
re

D
(b

)

Single Gap Bundle2 Bundle3 Bundle4

Figure 4: Success rate and disambiguation measure per item.

no good gap bundle can be generated).

5 Related Work

To the best of our knowledge, bundled gap filling is
introduced in this work for the first time. Therefore,
there is no directly related previous work.

However, in a broader sense, our work contin-
ues research on automated handling of ambiguity in
cloze tests. Horsmann and Zesch (2014) control for
ambiguity of cloze tests by selecting low ambiguity
sentences based on a series of (dis-)ambiguity indi-
cators. However, they fail to reduce the ambiguity to
a sufficient degree and limit the practical relevance,
as a user is limited to a narrow set of gaps that fit
their approach.

As mentioned before, probably the most popular
method for resolving ambiguity is to use a multiple-
choice format, providing a set of distractors that may
be generated automatically. These distractors may

be generated from common confusions (Lee and
Seneff, 2007), typical learner errors (Sakaguchi et
al., 2013) or by selecting words with the same word-
class or frequency in a reference corpus (Hoshino
and Nakagawa, 2007).

A major problem of gap-fill exercises with dis-
tractors is that they are often too easy – especially
for advanced learners –, as the generated distractors
do not make sense in the context of the gap. There-
fore, some approaches go one step further consid-
ering distractor candidates that are highly compat-
ible with the context of the gaps. Then they need
to automatically judge that such distractors are not
in fact correct answers themselves, e.g. by consider-
ing collocations of targets and distractors (Pino and
Eskenazi, 2009; Smith et al., 2010; Sumita et al., ).
For example, Sumita et al. () check whether replac-
ing the target with the distractor results in a sentence
that exists on the web. If so, they conclude that the
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distractor is invalid. However, their approach seems
to be limited, as it relies on finding exact matches of
sentences which even on the web is rather unlikely.
Zesch and Melamud (2014) generate distractors that
are semantically similar to the target word in some
sense, but not in the particular sense induced by the
gap-fill context. While their approach points in a
promising direction it fails to model a sufficiently
large difficulty continuum, especially when target-
ing a group with high level of language proficiency.

Ultimately, a disadvantage of gap-fill tests with
distractors is that the test is a recognition task rather
than a production task and therefore considerably
easier. In contrast, our bundled gap-filling approach
has the advantage that there is no recognition stimuli
and therefore the test remains a production task.

6 Conclusions & Future Work

In this work, we presented bundled gap-filling ex-
ercises and an efficient algorithm for automatically
generating them. Our evaluation provides evidence
that gap bundles are significantly less ambiguous
than regular gap-fill exercises. This gives our ap-
proach the important advantage of supporting high
automation for both generation and scoring of the
exercises.

We see two main directions of research for future
work. First, we want to improve the quality of the

generated exercises by optimizing different parame-
ters of the model. For example, we expect that using
a larger gap sentence base or using a better language
model, such as a recurrent neural network (RNN)
language model, could improve the results. Second,
although our bundled gap filling test is basically still
a cloze test, the format change might alter the nature
of the required knowledge. Consequently, we want
to determine what kind of knowledge the gap bun-
dles are actually measuring by applying it to real-
life testing scenarios and examining the relations to
other established measures of language proficiency.
Thereby, we also want to examine the test’s abil-
ity to discriminate learners with different proficiency
levels by considering relations to other established
measures of language proficiency and variations of
the cloze test paradigm.
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Abstract

Evaluating student answers often requires
contextual information, such as previous utter-
ances in conversational tutoring systems. For
example, students use coreferences and write
elliptical responses, i.e. incomplete but can
be interpreted in context. The DT-Grade cor-
pus which we present in this paper consists of
short constructed answers extracted from tuto-
rial dialogues between students and an Intelli-
gent Tutoring System and annotated for their
correctness in the given context and whether
the contextual information was useful. The
dataset contains 900 answers (of which about
25% required contextual information to prop-
erly interpret them). We also present a base-
line system developed to predict the correct-
ness label (such as correct, correct but incom-
plete) in which weights for the words are as-
signed based on context.

1 Introduction

Constructed short answers are responses produced
by students to questions, e.g. in a test or in the
middle of a tutorial dialogue. Such constructed an-
swers are very different form answers to multiple
choice questions where students just choose an op-
tion from the given list of choices. In this paper,
we present a corpus called DT-Grade1 which con-
tains constructed short answers generated during in-
teraction with a state-of-the-art conversational Intel-
ligent Tutoring System (ITS) called DeepTutor (Rus
et al., 2013; Rus et al., 2015). The main instruc-
tional task during tutoring was conceptual problem

1Available at http://language.memphis.edu/dt-grade

solving in the area of Newtonian physics. The an-
swers in our data set are shorter than 100 words. We
annotated the instances, i.e. the student generated
responses, for correctness using one of the follow-
ing labels: correct, correct-but-incomplete, contra-
dictory, or incorrect. The student answers were eval-
uated with respect to target/ideal answers provided
by Physics experts while also considering the con-
text of the student-tutor interaction which consists
of the Physics problem description and the dialogue
history related to that problem. In fact, during an-
notation we only limited our context to the immedi-
ately preceding tutor question and problem descrip-
tion. This decision was based on previous work by
Niraula and colleagues (2014) that showed that most
of the referring expressions can be resolved by look-
ing at the past utterance; that is, looking at just the
previous utterance could be sufficient for our task as
considering the full dialogue context would be com-
putationally very expensive.

Automatic answer assessment systems typically
assess student responses by measuring how much of
the targeted concept is present in the student answer.
To this end, subject matter experts create target (or
reference) answers to questions that students will be
prompted to answer. Almost always, the student re-
sponses depend on the context (at least broadly on
the context of a particular domain) but it is more
prominent in some situations. Particularly in conver-
sational tutoring systems, the meanings of students’
responses often depend on the dialogue context and
problem/task description. For example, students fre-
quently use pronouns, such as they, he, she, and it, in
their response to tutors’ questions or other prompts.
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In an analysis of tutorial conversation logs, Niraula
et al. (2014) found that 68% of the pronouns used by
students were referring to entities in the previous ut-
terances or in the problem description. In addition to
anaphora, complex coreferences are also employed
by students.

Also, in tutorial dialogues students react often
with very short answers which are easily interpreted
by human tutors as the dialogue context offers sup-
port to fill-in the blanks or untold parts. Such ellip-
tical utterances are common in conversations even
when the speakers are instructed to produce more
syntactically and semantically complete utterances
(Carbonell, 1983). By analyzing 900 student re-
sponses given to DeepTutor tutoring systems, we
have found that about 25% of the answers require
some contextual information to properly interpret
them.

Problem description: A car windshield collides
with a mosquito, squashing it.
Tutor question: How do the amounts of the force
exerted on the windshield by the mosquito and the
force exerted on the mosquito by the windshield
compare?
Reference answer:
The force exerted by the windshield on the
mosquito and the force exerted by the mosquito
on the windshield are an action-reaction pair.
Student answers:
A1. Equal
A2. The force of the bug hitting the window is
much less than the force that the window exerts
on the bug
A3. they are equal and opposite in direction
A4. equal and opposite

Table 1: A problem and student answers to the given question.

As illustrated in the Table 1, the student answers
may vary greatly. For instance, answer A1 is ellip-
tical. The “bug” in A2 is referring to the mosquito
and “they” in A3 is referring to the amount of forces
exerted to each other.

In order to foster research in automatic answer as-
sessment in context (also in general), we have anno-
tated 900 student responses gathered from an exper-
iment with the DeepTutor intelligent tutoring system
(Rus et al., 2013). Each response was annotated for:

(a) their correctness, (b) whether the contextual in-
formation was helpful in understanding the student
answer, and (c) whether the student answer contains
important extra information. The annotation labels,
which are similar to the ones proposed by Dzikovska
et al. (2013), were chosen such that there is a bal-
ance between the level of specificity and the amount
of effort required for the annotation.

We also developed a baseline system using se-
mantic similarity approach with word weighting
scheme utilizing contextual information.

2 Related Work
Nielsen et al. (2008) described a representation
for reference answers, breaking them into detailed
facets and annotating their relationships to the learn-
ers answer at finer level. They annotated a corpus
(called SCIENTSBANK corpus) containing student
answers to assessment questions in 15 different sci-
ence domains. Sukkarieh and Bolge (2010) intro-
duced an ETS-built test suite towards establishing a
benchmark. In the dataset, each target answer is di-
vided into a set of main points (called content) and
recommended rubric for assigning score points.

Mohler and Mihalcea (2009) published a col-
lection of short student answers and grades for
a course in Computer Science. Most recently, a
Semantic Evaluation (SemEval) shared task called
Joint Student Response Analysis and 8th Recog-
nizing Textual Entailment Challenge was organized
(Dzikovska et al., 2013) to promote and streamline
research in this area. The corpus used in the shared
task consists of two distinct subsets: BEETLE data,
based on transcripts of students interacting with
BEETLE II tutorial dialogue system (Dzikovska et
al., 2010), and SCIENTSBANK data. Student an-
swers, accompanied with their corresponding ques-
tions and reference answers are labeled using five
different categories. Basu et al. (2013) created a
dataset called Powergrading-1.0 which contains re-
sponses from hundreds of Mechanical Turk workers
to each of 20 questions from the 100 questions pub-
lished by the USCIS as preparation for the citizen-
ship test.

Our work differs in several important ways from
previous work. Our dataset is annotated paying spe-
cial attention to context. In addition to the tutor
question, we have provided the problem description
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as well which provides a greater amount of con-
textual information and we have explicitly marked
whether the contextual information was important
to properly interpret/annotate the answer. Further-
more, we have annotated whether the student answer
contains important extra information. This informa-
tion is also very useful in building and evaluating
natural language tools for automatic answer assess-
ment.

3 Data Collection and Annotation

Data Collection: We created the DT-Grade dataset
by extracting student answers from logged tutorial
interactions between 40 junior level college students
and the DeepTutor system (Rus et al., 2013).
During the interactions, each student solved 9
conceptual physics problems and the interactions
were in the form of purely natural language dia-
logues, i.e., with no mathematical expressions and
special symbols. Each problem contained multiple
questions including gap-fill questions and short
constructed answer questions. As we focused on
creating constructed answer assessment dataset
with sentential input, we filtered out other types
of questions and corresponding student answers.
We randomly picked 900 answers for the annotation.

Annotation: The annotation was conducted
by a group of graduate students and researchers who
were first trained before being asked to annotate
the data. The annotators had access to an annota-
tion manual for their reference. Each annotation
example (see Figure 1) contained the following
information: (a) problem description (describes the
scenario or context), (b) tutor question, (c) student
answer in its natural form (i.e., without correcting
spelling errors and grammatical errors), (d) list of
reference answers for the question. The annotators
were asked to read the problem and question to
understand the context and to assess the correctness
of the student answer with respect to reference
answers. Each of the answers has been assigned one
of the following labels.

Correct: Answer is fully correct in the context.
Extra information, if any, in the answer is not con-
tradicting with the answer.

Correct-but-incomplete: Whatever the student

provided is correct but something is missing, i.e. it is
not complete. If the answer contains some incorrect
part also, the answer is treated as incorrect.

Contradictory: Answer is opposite or is very
contrasting to the reference answer. For example,
“equal”, “less”, and “greater” are contradictory to
each other. However, Newton’s first law and New-
ton’s second law are not treated as contradictory
since there are many commonalities between these
two laws despite their names.

Incorrect: Incorrect in general, i.e. none of the
above three judgments is applicable. Contradictory
answers can be included in the incorrect set if we
want to find all kinds of incorrect answers.

Figure 1: An annotation example.

As shown in Figure 1, annotators were asked to as-
sign one of the mutually exclusive labels - correct,
correct-but-incomplete, contradictory, or incorrect.
Also, annotators were told to mark whether contex-
tual information was really important to fully under-
stand a student answer. For instance, the student
answer in the Figure 1 contains the phrase “both
forces” which is referring to the force of windshield
and the force of mosquito in problem description.
Therefore, contextual information is useful to fully
understand what both forces the student is referring
to. As shown in Table 1 (in Section 1), a student
answer could be an elliptical sentence (i.e., does not
contain complete information on its own). In such
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Parameter Value
All 900
Correct 365 (40.55%)
Correct but incomplete 209 (23.22%)
Contradictory 84 (9.33%)
Incorrect 242 (26.88%)
Requiring context 223 (24.77%)
Containing extra info 102 (11.33%)

Table 2: Summary of DT-Grade dataset.

cases, annotators were asked to judge the student re-
sponse based on the available contextual informa-
tion and reference answers and nothing more; that
is, they were explicitly told not to use their own sci-
ence knowledge to fill-in the missing parts.

If a student response contained extra information
(i.e., more information than in the reference/ideal
answer provided by experts), we asked annotators
to ignore the extra parts unless it expressed a mis-
conception. However, we told annotator to indicate
whether the student answer contains some additional
important information such as a detailed explanation
of their answer. The annotators were encouraged to
write comments and asked to set the ‘watch’ flag
whenever they felt a particular student response was
special/different. Such ‘to watch’ instances were
considered for further discussions with the entire
team to either improve the annotation guidelines or
to gain more insights regarding the student assess-
ment task.

The dataset was divided equally among 6 anno-
tators who then annotated independently. In order
to reach a good level of inter-annotator agreement
in annotation, 30 examples were randomly picked
from each annotation subset and reviewed by a
supervisor, i.e. one of the creators of the annotation
guidelines. The agreements (in terms of Cohen’s
kappa) in assigning correctness label, identifying
whether the context was useful, and identifying
whether the student answer contained extra infor-
mation were 0.891, 0.78, and 0.82 respectively. In
another words, there were significant agreements
in all components of the annotation. The main
disagreement was on how to use the contextual
information. The disagreements were discussed
among the annotators team and the annotations
were revised in few cases.

The Dataset: We have annotated 900 answers.
Table 2 offers summary statistics about the dataset.
The 40.55% of total answers are correct whereas
59.45% are less than perfect. We can see that
approximately 1 in every 4 answers required
contextual information to properly evaluate them.

4 Alignment Based Similarity and Word
Weighting Approach

Approach: Once the dataset was finalized we
wanted to get a sense of its difficulty level. We de-
veloped a semantic similarity approach in order to
assess the correctness of student answers. Specif-
ically, we applied optimal word alignment based
method (Banjade et al., 2015; Rus and Lintean,
2012) to calculate the similarity between student an-
swer and the reference answer and then used that
score to predict the correctness label using a classi-
fier. In fact, the alignment based systems have been
the top performing systems in semantic evaluation
challenges on semantic textual similarity (Han et al.,
2013; Agirre et al., 2014; Sultan et al., 2015; Agirre
et al., 2015).

The challenge is to address the linguistic phenom-
ena such as ellipsis and coreferences. An approach
can be to use off-the-shelf tools, such as corefer-
ence resolution tool included in Stanford CoreNLP
Toolkit (Manning et al., 2014). However, we believe
that such NLP tools that are developed and evaluated
in standard dataset potentially introduce errors in the
NLP pipeline where the input texts, such as question
answering data, are different from literary style or
standard written texts.

As an alternative approach, we assigned a weight
for each word based on the context: we gave a low
weight to words in the student answer that were also
found in the previous utterance, e.g. the tutoring sys-
tems question, and more weight to new content. This
approach gives less weight to answers that simply
repeat the content of the tutors question and more
weight to the answers that add the new, asked-for in-
formation; as a special case, the approach provides
more weight to concise answers (see A1 and A2 in
Table 1). The same word can have different weight
based on the context. Also, it partially addresses the
impact of coreferences in answer grading because
the same answer with and without coreferences will
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be more likely to get comparable scores. The refer-
ence answers are usually self contained, i.e. without
using coreferring expressions and only those student
answers which are also self-contained and similar to
reference answer will get higher score. On the other
hand, answers using coreferences (such as: they, it)
will get lower score unless they are resolved and the
student answer becomes similar to reference answer.
Giving lower weights to the words, if present in the
student answer, for which student could use corefer-
rences makes these two types of answers somewhat
equivalent.

Finally, the similarity score was calculated as:

sim(A, R) = 2 ∗
∑

(a,r)∈OA wa ∗ wr ∗ sim(a, r)∑
a∈A wa +

∑
r∈R wr

Where A/R refers to student/reference answer and
a/r is a token in it. The sim(a, r) referes to the
similarity score between a and r calculated using
word2vec model (Mikolov et al., 2013). OA is
optimal alignment of words between A and R
obtained using Hungarian algorithm as described
in Banjade et al. (2015). The 0 ≤ wa ≤ 1 and
0 ≤ wr ≤ 1 refer to weight of the word in A and R
respectively.

Experiments and Results: In order to avoid
noisy alignments, the word-to-word similarity
score below 0.4 was set to 0.0 (empirically set).
The sim(A, R) was then used with Multinomial
Logistic Regression (in Weka) to predict the
correctness label. If there were more than one
reference answers, we chose one with the highest
similarity score with the student answer. We then
set different weights (from 1.0 to 0.0) for the words
found in tutor utterance (we considered a word was
found in the previous utterance if its base form or
the synonym found in WordNet 3.0 (Miller, 1995)
matched with any of the words in the previous
utterance). We changed the weight in the student
answer as well as in the reference answer and
the impact of weight change in the classification
results were assessed using 10-fold cross validation
approach. The changes in classification accuracy
with changing weights are presented in Figure 2.

Giving weight of 1.0 to each word is equivalent to
aligning words in student answer with the reference

Figure 2: Classification accuracy and weight of the words that

are found in the last utterance.

answer without looking at the context. But we can
see the improvement in classification accuracy after
reducing word weights up to 0.4 (accuracy 49.33%;
kappa = 0.22) for the words found in the previous
utterance and then decreases. It indicates that the
words found in previous utterance should get some
weight but new words should get more importance.
This approach is somewhat intuitive. But deeper
semantic understanding is required in order to im-
prove the performance. For instance, sometimes this
word weighting approach infers more information
and gives higher weight to the incomplete utterance
where students true understanding of the context is
hard to predict. Furthermore, it is non-trivial to use
additional context, such as problem description in-
cluding assumptions and graphical illustrations.

5 Conclusion
We presented a corpus called DT-Grade which con-
tains student answers given to the intelligent tutoring
system and annotated for their correctness in con-
text. We explicitly marked whether the contextual
information was required to properly understand the
student answer. We also annotated whether the an-
swer contains extra information. That additional in-
formation can be correct or incorrect as there is no
specific reference to compare with but the answer
grading systems should be able to handle them.

We also presented a baseline system in which
we used semantic similarity generated using optimal
alignment with contextual word weighting as fea-
ture in the classifier for predicting the correctness
label. However, there is enough room for the im-
provements and using additional features in the clas-
sifier or developing a joint inference model such as
Markov Logic Network incorporating different lin-
guistic phenomena can be two future directions.
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Abstract

How can second language teachers retrieve
texts that are rich in terms of the grammati-
cal constructions to be taught, but also address
the content of interest to the learners? We de-
veloped an Information Retrieval system that
identifies the 87 grammatical constructions
spelled out in the official English language
curriculum of schools in Baden-Württemberg
(Germany) and reranks the search results
based on the selected (de)prioritization of
grammatical forms. In combination with
a visualization of the characteristics of the
search results, the approach effectively sup-
ports teachers in prioritizing those texts that
provide the targeted forms.

The approach facilitates systematic input en-
richment for language learners as a comple-
ment to the established notion of input en-
hancement: while input enrichment aims at
richly representing the selected forms and cat-
egories in a text, input enhancement targets
their presentation to make them more salient
and support noticing.

1 Introduction

Acquisition of a language directly depends on the
learner’s exposure to it. Hence, the importance of
input in second language (L2) learning is system-
atically emphasized in Second Language Acquisi-
tion (SLA) research (Krashen, 1977; Swain, 1985;
Gass and Varonis, 1994). Krashen even proposed
the input hypothesis arguing that exposing learn-
ers to language input containing target structures is
the single most important component of both first

and second language learning. While later SLA ap-
proaches are more balanced in terms of consider-
ing input, output, and interaction (as well as implicit
and explicit learning), they also further advanced our
understanding of the role of input in terms of the
frequency and perceptual salience of constructions
needed for L2 learners to acquire a second language
(e.g., Slobin, 1985; Schmidt, 1990).

We will refer to a method ensuring that a targeted
structure is frequently represented in a text as in-
put enrichment. While the isolated positive effect on
L2 acquisition of the related notion of input flooding
(Trahey and White, 1993) remains to be empirically
substantiated (Reinders and Ellis, 2009; Loewen et
al., 2009), input enrichment clearly is a meaningful
component of the repertoire of language teachers. At
the same time, manually searching for such reading
material takes a lot of time and effort so that teach-
ers often fall back on schoolbook texts designed to
introduce the relevant constructions. This limits the
choice of texts, and schoolbook texts typically are
less up-to-date and in line with student interests than
other authentic texts could be.

We therefore investigated how we can support
teachers in selecting reading material that is (i) at
the learner’s level of language proficiency, (ii) in
line with the teacher’s pedagogical goal, and (iii)
offers content of interest to the learner. The pa-
per motivates input enrichment and presents FLAIR1

(Form-focused Linguistically Aware Information
Retrieval), a web search system striving to provide
a balance of form and content in the search for ap-
propriate reading material.

1http://purl.org/icall/flair
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In terms of envisaged use cases, in the most
straightforward case, FLAIR helps the teacher iden-
tify reading materials appropriate for a class or indi-
vidual students in terms of form, content, and read-
ing level. The system can also feed into platforms
providing input enhancement such as WERTi (Meur-
ers et al., 2010) or generating exercises from text
such as Language MuseSM (Burstein et al., 2012),
ensuring that the form targeted by enhancement or
exercise generation is as richly represented as possi-
ble given the text base used.

In scenarios putting more value on learner au-
tonomy or data-driven learning, FLAIR makes it
possible to distribute the specification of the form
and content criteria between teacher and the learner:
The teacher uses their pedagogical background in
foreign language teaching and learning and their
knowledge of the learner’s abilities and needs to
configure FLAIR in a way that prioritizes (i.e.,
reranks highly) the texts that best satisfy these form
specifications. Using the teacher-configured FLAIR,
the learner then takes control and enters search
queries in line with their personal interests or in-
formation needs. The outcome is a collection of
documents that was retrieved based on the learner’s
search query, with the results ranked according to
the pedagogical language learning needs defined by
the teacher.

2 FLAIR Architecture

The FLAIR functionality is realized using a pipeline
architecture with four modules, the Web Searcher,
the Text Extractor, the Parser and the Ranker:

1. The Web Crawler utilizes Microsoft Bing search
engine2 to retrieve the top N results given a query.

2. The Text Extractor integrates the HttpURLCon-
nection Java library3 to retrieve the full html code
of each page and take care of redirects. The Boil-
erpipe library4 then extracts plain text from it.

The choice of Boilerpipe is motivated by the high
performance of the library compared to other text
extraction techniques (Kohlschütter et al., 2010).
2http://www.bing.com
3http://docs.oracle.com/javase/7/docs/

api/java/net/HttpURLConnection.html
4https://code.google.com/p/boilerpipe/

It provides several algorithms for the extraction
of the main textual content from different types
of web pages. We tested the DefaultExtractor,
the ArticleExtractor and the LargestContentEx-
tractor on a development collection of 50 docu-
ments, which established DefaultExtractor as the
best choice for our task; the other two options ex-
tracted too little text in some cases when the main
content was divided into several parts.

3. The Parser module employs Stanford CoreNLP5

(Manning et al., 2014) to identify numerous lin-
guistic forms using the syntactic category and de-
pendency information obtained from it. We dis-
cuss this step further in the next section. Long
sentences are quite frequent in web texts, so
we employed the Stanford Shift-Reduce Parser,
which is less sensitive to sentence length. The
parser has also been reported to outperform the
older Stanford constituency parsers.

4. The Ranker is responsible for reranking the top
N results based on the statistical analysis of the
data received from the previous modules. We
chose the classical IR algorithm BM25 (Robert-
son and Walker, 1994) as the basis for our ranking
model. An advantage of BM25 is the fact that it
allows for any normalization unit and readily bal-
ances a multitude of query components. The final
score of each document determining its place in
the ranking is calculated as

G(q, d) =
P

t2q\d
(k+1)⇥tft,d

tft,d+k⇥(1�b+b⇥ |d|
avdl

)
⇥ log N+1

dft

where q is a FLAIR query containing one or more
linguistic forms, t is a linguistic form, d is a doc-
ument, tft,d is the number of occurrences of t in d,
|d| is document length, avdl is the average doc-
ument length in the collection, and b and k are
free parameters we set to 0 and 1.7 respectively.
The free parameter b specifies the importance of
the document length. We used it to give the user
control over the importance of document length
(implemented in the interface using a slider that
can take values from 0 to 1).

5http://nlp.stanford.edu/software/
corenlp.shtml
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3 Identification of Linguistic Forms

We based the identification of linguistic forms on
the official school curriculum for English in the state
of Baden-Württemberg (Germany).6 The taxonomy
of topics in the official curriculum defines the lan-
guage skills and knowledge that the pupils are ex-
pected to acquire in the course of their studies at
school; it is not tailored to one particular textbook
or approach. Overall, we implemented the identifi-
cation of 87 grammatical constructions integrating
a broad range of morphological, lexical and syntac-
tic properties – the full set of constructions is listed
in Appendix A. As constructions motivated by lan-
guage teaching and learning, they do not necessar-
ily map directly to the standard categories that NLP
tools typically identify and are evaluated on. How
the two worlds were linked is discussed next.

3.1 Between shallow and deep analysis
NLP makes use of different approaches for charac-
terizing language data, from shallow matching to
deep grammar formalisms, which are equally well-
motivated in language learning as application do-
main (Meurers, 2015, sec. 3.2). While string match-
ing can work for some basic cases (e.g., identifi-
cation of articles), the detection of other construc-
tions requires analyses going well beyond the sur-
face level, such as an analysis based on syntactic
dependencies. Even for the seemingly simple case
of distinguishing different types and cases of pro-
nouns to retrieve subjective, objective, reflexive as
well as possessive pronouns, a lexical look-up has
to be supplemented with dependency parsing in or-
der to distinguish the subjective from the objective
you or the objective from the possessive her.

Taking things one step further, consider what is
needed to detect the used to construction referring
to a habitual action in the past. After making sure
that the following word is a to-infinitive, and thus,
excluding the option of misidentifying the different
constructions to be used to doing and to get used to
doing, one is still left with an ambiguous structure
that can be either interpreted as the target construc-
tion, as in (1), or as a passive structure, as in (2):

6The curricula for grades 2, 4, 6, 8, and 10 are accessible on
the education portal website of the state of Baden-Württemberg:
http://www.bildung-staerkt-menschen.de

(1) I used to come here every day.

(2) It is used to build rockets.

This ambiguity can be resolved by checking which
POS tag was assigned to the verb used.

While some of the 87 grammatical construc-
tions in the English language curriculum of
Baden-Württemberg support relatively straightfor-
ward characterizations based on the syntactic analy-
sis provided by the Stanford CoreNLP, others turned
out to require more thought, so that we illustrate
some of those in the next section.

3.2 Challenges and solutions
The identification of conditional sentences offers
some interesting challenges. Narayanan et al. (2009)
discuss a POS-based approach for identifying con-
ditional types for the task of Sentiment Analysis. It
mapped sequences of POS tags to tenses (VBD +
VBN = Past Perfect) and further to conditional types
(If + Past perfect, MD + Present Perfect = Third
Conditional). However, two different types of con-
ditionals can be used in the same sentence, produc-
ing a mixed conditional sentence, a common type
not covered by this taxonomy. Puente and Olivas
(2008) proposed a more granular classification of
conditional sentences and an algorithm for detecting
them. However, they point out that authentic texts
containing conditionals pose a challenge since some
retrieved sentences do not conform to their taxon-
omy. In order to be able to classify every condi-
tional sentence, FLAIR limits itself to distinguishing
two broad classes relevant for the curriculum, real
and unreal conditionals.

Where two constructions are identical in form, ad-
ditional analysis of the target form in context can be
required. For instance, Meurers et al. (2010) em-
ploy about 100 Constraint Grammar rules to disam-
biguate gerunds and participles, posing a challenge
both for English language learners and parsers.

Real conditionals (3) and answers to indirect
questions (4) are another example of ambiguity.

(3) I don’t come if he is coming.

(4) (Do you know if he is coming?)
I don’t know if he is coming.

In terms of the constituency and dependency struc-
ture provided by the parser, the two cannot be distin-
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guished. A simple solution based on a list of verbs
followed by an if -clause (e.g., know) can help tackle
this case but will not generalize to other ambiguous
cases, such as different usages of Present Progres-
sive demonstrated in (5) and (6).

(5) We are waiting for you.

(6) We are leaving next week.

Considering these two sentences, one may assume
that a temporal phrase should be an indicator of the
time, as in (6). There can be sentential time expres-
sions (7), though a clause introduced by when will
not always be a future marker (8).

(7) We are leaving when you are done.

(8) You are constantly complaining when things
go poorly.

Richer NLP analyses are evidently needed to
properly distinguish such cases. Either one tar-
gets relevant distinctions with specialized Con-
straint Grammars or supervised machine-learning
approaches (e.g., Boyd et al., 2005), or one attempts
a more global analysis using a linguistically rich
grammar (HPSG, LFG, TAG, . . . ).

In the education context, not differentiating be-
tween such ambiguous structures can mean exposing
the learner to unfamiliar constructions far beyond
their current level. According to the English curricu-
lum we targeted, Present Progressive is introduced
in the second grade, while it is only six years later, in
the eighth grade, that school children are expected to
use this linguistic form to express an arranged action
in the future. The same applies to real conditionals
as opposed to answers to indirect questions (Grades
6 and 8), adjectives and quantifiers (Grades 2 and
6), or different parts of speech ending in -ing, such
as gerunds and present participle forms (Grades 2,
8 and 10). The FLAIR interface includes a reading
view shown in Figure 1 that highlights and identi-
fies the targeted constructions in a given text, so that
at least for the teacher it is possible to judge on a
case-by-case basis, which of the uses of an ambigu-
ous form is part of a given text and whether it there-
fore requires additional explanation – or choice of
another text for the envisaged audience.

3.3 Pilot evaluation of target identification
Before evaluating the identification of the linguis-
tic target forms, we inspected the performance of
the Stanford Shift-Reduce Parser for the construc-
tions our patterns depend on. Among the biggest
challenges were gerunds that got annotated as either
nouns (NN) or gerunds/present participles (VBG).
Phrasal verbs, such as settle in, also turned out to
be difficult for the parser.

Turning to the target form identification per-
formed by FLAIR on the basis of the parsed output,
we conducted a pilot study using news articles as a
common type of data analyzed by FLAIR. We sub-
mitting three search queries and saved the top three
results for each of them, obtaining nine news arti-
cles with an average length of 28 sentences. Table 1
shows the precision, recall, and F-measure for se-
lected linguistic constructions identified by FLAIR
and the medians and means across the 81 construc-
tions, for which details are included in Appendix A.

Linguistic target Prec. Rec. F1

Yes/no questions 1.00 1.00 1.00
Irregular verbs 1.00 0.96 0.98
used to 0.83 1.00 0.91
Phrasal verbs 1.00 0.61 0.76
Tenses (Present Simple, ...) 0.95 0.84 0.88
Conditionals (real, unreal) 0.65 0.83 0.73
Mean (81 targets) 0.94 0.90 0.91
Median (81 targets) 1.00 0.97 0.95

Table 1: Evaluating identification of targets by FLAIR

As the numbers show, some constructions are
easily detectable (yes/no questions) while others
are less reliably identified by the parser (phrasal
verbs). There are different reasons for lower per-
formance: the ambiguity of the construction (real
conditionals) and problems of the Stanford Parser
(-ing verb forms) discussed above, as well as prob-
lematic output of the text extractor module and some
limitations of the FLAIR patterns used for identifica-
tion (unreal conditionals). Conditionals were iden-
tified with an average low F score of 0.73 due to the
difficulty of their disambiguation partially discussed
in section 3.2 and a particular choice we made: In or-
der to avoid exposing learners to an unknown gram-
matical construction, we disambiguated all unclear
cases of conditionals as the one appearing later in
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Figure 1: FLAIR interface: the settings panel, the list of results and the reading interface.

the curriculum, unreal conditionals (Grade 8). This
way, any potential instances of this construction in
texts at a lower level can be avoided (e.g., in Grade
6, when real conditionals are introduced).

4 Exploring FLAIR in use

Let us start with an example for the kind of distri-
bution of grammatical patterns detected by FLAIR
when analyzing the top 55 web search results re-
turned for the query term “2016 US presidential
elections”. Figure 2 shows a heat map with se-
lected constructions sorted in the ascending order
by variance in their frequencies across the top 55
web search results. The figure showcases the high
variability with which many of the grammatical con-
structions occur, which is in line with the result re-
ported in Vajjala and Meurers Vajjala and Meurers
(2013) that top web search results also differ signif-
icantly in terms of readability. This confirms that it
is meaningful to rerank the top web search results
in order to ensure a rich representation of specific
constructions or prioritize a particular reading level.

For a more systematic exploration of the distribu-
tion of linguistic forms in web documents, we re-
trieved the top 60 documents for each of 40 queries
using the Bing interface. In total, 2400 documents
were retrieved and run through FLAIR. Among the
most frequent constructions were prepositions, reg-
ular and irregular verbs, and the simple verb aspect,
all of which appeared in more than 98% of the doc-

Figure 2: A heat map showing the distribution of grammatical

construction across the top 55 results for the query “2016 US

presidential elections” (normalization unit: document length)
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Figure 3: Interactive visualization in FLAIR with each line representing a document and vertical axes showing characteristics

uments. The least frequent linguistic constructions
were tag questions (0.8%), Past Perfect Progressive
(2.6%), and imperatives (3.2%).

Turning to a particular use case, it is a common
teaching practice to not only expose the learners to
one linguistic form but to contrast it with another
one in the same context, e.g., regular vs. irregular
verbs. We therefore selected 70 pairs of grammatical
constructions from the book English in Use (Mur-
phy, 2012) that are known to be challenging for En-
glish learners. We then calculated the document fre-
quency for their pairwise co-occurrence in the col-
lection of 2400 web texts. Among the most frequent
construction pairs (i.e., where both forms occurred
in many documents) were the following ones: adjec-
tives vs. adverbs (96.7%), the definite article vs. the
indefinite article (95.7%), irregular verbs vs. regu-
lar verbs (95.2%), and Present Simple vs. Past Sim-
ple (93.2%). Some construction pairs are not so
easily found within the top retrieved results – ei-
ther because of the low frequency of at least one
of them or due to the fact that they occur in differ-
ent documents. Among such construction pairs that
had a document frequency of less than 10% were
degrees of comparison of adverbs, real condition-
als vs. unreal conditionals, and wh- questions vs.
yes/no questions. The highest scoring pair of modal
verbs, can vs. could, appeared in 20% of documents,
with other modal pairs scoring significantly lower.7

7A more detailed analysis going beyond the space available
here could use odds ratios to quantify how strongly the presence
and absence of constructions are associated.

4.1 Interactive visualization

The FLAIR tool includes an interactive visual com-
ponent that makes it possible to inspect and further
select documents based on the multi-faceted nature
of the retrieved documents. The interface illustrated
in Figure 3 is based on the visualization technique
of parallel coordinates used for visualizing multi-
variate data. Vertical axes represent parameters:
any linguistic forms selected by the user, the num-
ber of sentences, the number of words and a global
readability score. Each polyline stands for a docu-
ment and records its linguistic characteristics by go-
ing through different points on the parameter axes.
The interface supports mouse interaction allowing
the user to restrict the range of values permitted for
particular parameters, with other documents becom-
ing greyed out in the interface and removed from the
search results. In the figure, only documents with a
non-zero frequency for both Past Simple and Present
Perfect are selected. The numbers on the vertical
axes for the grammatical constructions correspond
to their relative frequencies in documents. Once the
Apply button is selected, the search result list is re-
stricted to those documents satisfying the constraints
specified in the visualization module.

The visualization makes it possible to get an
overview of the distribution of linguistic character-
istics in the set of documents to be reranked. The
interface also supports interaction with the visual-
ization, providing fine-grained control over a user-
selected set of linguistic characteristics. Users can
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Figure 4: Strategies for input enrichment of an already existing corpus or during web search. The font size of the more common

strategies is larger than that of the less common ones.

select a range of values for one or more construc-
tions to precisely identify and retrieve documents.

4.2 Towards evaluating FLAIR in practice
Depending on a number of parameters, from the in-
ternet connection to the nature of the retrieved doc-
uments, the current FLAIR version takes 10 to 45
seconds to retrieve and analyze 20 web documents,
making real-life use possible. Web crawling, text
extraction, and NLP analysis are performed on the
server in parallel for several documents, depending
on the available memory and CPU power. It takes
more than half of the total time (from entering the
query till displaying a list of results) to fetch the re-
sults and extract the text. 20-30% of the total time
are used for the NLP. Ranking is performed on the
client side and takes 10-20% of the time.

As a pilot exploring whether FLAIR can support
teachers in real-life scenarios, we asked three for-
eign language teachers to rank a list of six short doc-
uments taking into account the occurrences of two
target forms, the definite article and phrasal verbs.
We selected the documents by searching for news
about the Pulitzer Prize, and we made sure that the
distribution of the target constructions was different
in each document. The teachers were completing
this task on paper and did not have access to FLAIR.

Our assumption, in line with the common IR prac-
tice, was that high-ranked documents should balance
the occurrences of all the items in the search query.
That is, the most relevant document would ideally
contain the same number of occurrences of all query
items. Documents containing all query items but
considerably more instances of one than the others
would be ranked lower. Finally, the documents con-
taining only one item, even if the number of occur-
rences is higher than in any other document, would

be considered the least relevant.

In the pilot exploration with the three teachers,
the general preferences of each of them confirmed
these assumptions underlying the scoring algorithm
implemented in FLAIR. For the Pulitzer Prize query
results, the teachers agreed on the most relevant doc-
ument, which was also ranked highly by FLAIR. In
future work, we plan to follow up on this pilot with
a study of FLAIR being used by teachers of English
as a foreign language at the university level.

5 Input Enrichment Strategies

The analyses in section 4 confirmed a high vari-
ability in the occurrence of many of the targeted
structures in the web documents retrieved, making
a search reranking approach promising. At the same
time, we also found that some (combinations of)
constructions do not commonly occur in web doc-
uments. Figure 4 spells out a spectrum of input
enrichment strategies for ensuring sufficient repre-
sentation of the targeted linguistic forms in reading
material. As an input enrichment tool originally de-
signed with web search in mind, FLAIR can equally
well be used to search through Project Gutenberg8,
the oldest digital library containing more than 50
thousand books, or in hand-curated text reposito-
ries for children or serving as resources for language
teachers such as Time for Kid9, BBC Bitesize10,
Newsela11, or OneStopEnglish12.

8https://www.gutenberg.org
9http://www.timeforkids.com/news

10http://www.bbc.co.uk/bitesize
11https://newsela.com
12http://onestopenglish.com
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REAP (Brown and
Eskenazi, 2004)

TextFinder
(Bennöhr, 2005)

LAWSE (Ott and
Meurers, 2011)

FLAIR

Database offline offline Web Web

Third party tools AltaVista Lucene Lucene Bing API, Boilerpipe,
Stanford Parser

Learner model + + � �
Reading interface + � � +

Text complexity + + + +

Vocabulary load + � + +/�
Grammar � +/� � +

Coverage of curriculum � � � +

Stated future work grammar,
cohesiveness

readability
formula

syntactic features,
grammar

vocabulary,
large-scale testing

Table 2: Comparison of Information Retrieval systems for language learning.

6 Related Work

The computational linguistic research targeting the
provision of reading material to learners has gen-
erally focused on vocabulary and lexical properties
or readability (Miltsakaki and Troutt, 2008; Collins-
Thompson et al., 2011; Vajjala and Meurers, 2014),
with some of the researchers mentioning the integra-
tion of grammar modules as future work (Brown and
Eskenazi, 2004; Ott and Meurers, 2011).

Table 2 puts our FLAIR approach into the context
of three learner-oriented IR systems: REAP (Brown
and Eskenazi, 2004), TextFinder (Bennöhr, 2005),
and LAWSE (Ott and Meurers, 2011). While each
of the four systems implements a text complexity
module, they differ in how they treat vocabulary
and grammar. Vocabulary models are built using ei-
ther word lists (LAWSE) or the information from the
learner model (REAP). Grammar is given little atten-
tion, apart from Bennöhr (2005) taking into account
the complexity of different conjunctions as an aspect
related to discourse coherence that she directly inte-
grates into her readability formula.

A distinguishing feature of FLAIR aimed at mak-
ing it usable in real-life language teaching and learn-
ing is the comprehensive coverage of the grammat-
ical phenomena contained in a complete curricu-
lum of English, as spelled out in the real-life En-
glish curriculum for schools in the state of Baden-

Württemberg (Germany).
Finally, most of the IR tools delegate full con-

trol over the reading material to one user – either
the learner or the educator. This can also be justi-
fied for language test developers (cf., SourceFinder;
Sheehan et al., 2007), but many language learn-
ing contexts include more of a mixture of teacher-
led and learner-driven, data-driven learning. FLAIR
addresses this issue by allowing teachers to con-
figure the linguistic form preferences determining
the reranking, while letting the learner enter queries
based on their content interests to identify the base
set of texts being reranked.

7 Conclusion and Outlook

The paper presented FLAIR, a linguistically aware
IR approach supporting automatic input enrichment
maximizing exposure of language learners to con-
structions currently being taught or likely to be
learned next. The FLAIR tool can be characterized
in terms of (i) the coverage of 87 linguistic con-
structions implemented to meet the requirements of
the official curriculum for the English language in
German schools, (ii) the use of efficient IR meth-
ods for the retrieval and reranking of relevant docu-
ments based on the occurrences of selected linguis-
tic constructions in them, and (iii) the option to pre-
configure the settings to direct rather than control
learners’ choice of reading material.
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While in this paper we have mainly focused on
supporting language teachers in their search for
reading material richly representing the forms to be
taught, what a language learner is likely to learn next
is heavily researched in Second Language Acqui-
sition Research in terms of Krashen’s i + 1, Vy-
gotsky’s Zone of Proximal Development, or Piene-
mann’s Teachability, so that future research could
explore combining input enrichment with learner
models determining the construction to be enriched.

Based on the feedback obtained from the foreign
language teachers taking part in the discussed pilot
studies, we identified several strands for future de-
velopment. Teachers requested expanding the func-
tionality of the tool to include more linguistic, cul-
tural and social text characteristics that would help
them get a more complete grasp of each text re-
trieved by FLAIR. Such factors as a language vari-
ety, text register, and the use of formulaic language
were prominently mentioned. As a first step, we will
integrate a vocabulary module: Integration of the
Academic Word List (Coxhead, 2000) is currently
being implemented to estimate aspects of text reg-
ister. An alternative approach we are considering
is to check the percentage of words from the core
general vocabulary (Brezina and Gablasova, 2013).
Yet another type of word list functionality, in line
with Krashen’s (1977) input hypothesis and similar
to the learner model implemented in the REAP sys-
tem (Brown and Eskenazi, 2004), could keep track
of the words that the learner has already encountered
and take this into account in ranking the retrieved
documents.

Full user studies with language teachers and
learners will be necessary to evaluate the overall ap-
proach as well as the effectiveness of distinct com-
ponents of FLAIR, including what the interactive vi-
sualization offers to the teacher. On the technical
side, it would be worthwhile to explore other IR al-
gorithms that could be more directly linked to the
lexical and grammatical aspects of the linguistic sys-
tem we are focusing on. On the quantitative side,
the analysis of linguistic forms identified by FLAIR
could be taken one step further by running large
text corpora through the parsing module of our sys-
tem. Analyzing texts in Project Gutenberg, for in-
stance, could show whether it is possible to identify
appropriate reading passages from its collection of

thousands of books and shed light on the linguistic
nature of such collections. Considering FLAIR in
the broader research context, the system also holds
promise for conducting SLA research on input en-
richment and input enhancement.
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Cristina Puente and José A Olivas. 2008. Analysis, de-
tection and classification of certain conditional sen-
tences in text documents. In Proceedings of the 12th
International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based
Systems, IPMU, volume 8, pages 1097–1104.

Hayo Reinders and Rod Ellis. 2009. The effects of two
types of input on intake and the acquisition of implicit
and explicit knowledge. Implicit and explicit knowl-
edge in second language learning, testing and teach-
ing, pages 281–302.

Stephen E Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In Proceed-
ings of the 17th annual international ACM SIGIR con-
ference on Research and development in information
retrieval, pages 232–241. Springer-Verlag New York,
Inc.

Richard W Schmidt. 1990. The role of consciousness
in second language learning1. Applied linguistics,
11(2):129–158.

M Kathleen Sheehan, Irene Kostin, and Yoko Futagi.
2007. Sourcefinder: a construct-driven approach for
locating appropriately targeted reading comprehension
source texts. In SLaTE, pages 80–83. Citeseer.

Dan I Slobin. 1985. Crosslinguistic evidence for the
language-making capacity. The crosslinguistic study
of language acquisition, 2:1157–1256.

Merrill Swain. 1985. Communicative competence:
Some roles of comprehensible input and comprehen-
sible output in its development. Input in second lan-
guage acquisition, 15:165–179.

Martha Trahey and Lydia White. 1993. Positive evidence
and preemption in the second language classroom.
Studies in second language acquisition, 15(02):181–
204.

Sowmya Vajjala and Detmar Meurers. 2013. On the ap-
plicability of readability models to web texts. In Pro-
ceedings of the Second Workshop on Predicting and
Improving Text Readability for Target Reader Popula-
tions, pages 59–68.

Sowmya Vajjala and Detmar Meurers. 2014. Assessing
the relative reading level of sentence pairs for text sim-
plification. In Proceedings of the 14th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL-14), Gothenburg, Sweden.
Association for Computational Linguistics.

Lev Semenovich Vygotsky. 1986. Thought and Lan-
guage. MIT Press, Cambridge, MA.

197



A Evaluation of the identification of the 87
linguistic constructions

Linguistic form P R F1

to- infinitives 1.00 0.98 0.99
simple prepositions (in, at, on, with, after) 1.00 0.97 0.98
copular verbs 1.00 0.97 0.98
auxiliary verbs 1.00 0.96 0.98
irregular verbs (past participle) 1.00 0.96 0.98
advanced modals (might, ought to,able, etc.) 1.00 0.94 0.97
regular plural nouns (cats) 0.99 0.94 0.96
comparative d. of short adj. (nicer) 0.71 1.43 0.95
positive d. of adv. (fast) 0.91 1.00 0.95
Past Simple Tense 1.00 0.90 0.95
Past Time 1.00 0.90 0.95
existential there 0.90 1.00 0.95
regular verbs (past participle) 0.98 0.91 0.94
positive d. of adj. (nice) 0.94 0.93 0.94
full verb forms (am, have, etc.) 0.88 1.00 0.94
direct object 0.91 0.93 0.92
advanced prepositions (during, through, etc.) 0.90 0.93 0.91
used to 0.83 1.00 0.91
Present Simple Tense 0.94 0.87 0.90
wh- questions 0.92 0.88 0.90
Past Perfect Tense 0.82 1.00 0.90
complex sentences (with subordinate clauses) 0.85 0.95 0.90
Present Time 0.97 0.83 0.90
-ing verb forms (gerund and pr. participle) 0.86 0.92 0.89
be- questions 0.80 1.00 0.89
subjective pronouns (I, you) 1.00 0.79 0.88
subordinate clauses reduced 0.83 0.94 0.88
Simple Aspect 0.85 0.92 0.88
ing- noun forms 0.90 0.82 0.86
Past Progressive Tense 1.00 0.75 0.86
comparative d. of long adv. (more often) 1.00 0.75 0.86
Progressive Aspect 1.00 0.73 0.84
adverbial clauses 0.83 0.83 0.83
Present Progressive Tense 1.00 0.71 0.83
superlative d. of long adv. (most often) 1.00 0.71 0.83
incomplete sentences 1.00 0.67 0.80
imperative verb forms 1.00 0.67 0.80
have- questions 0.67 1.00 0.80
real conditionals 0.68 0.96 0.79
passive voice 1.00 0.64 0.78
absolute possessive pronouns 1.00 0.63 0.77
relative clauses 0.71 0.83 0.77
Perfect Aspect 0.89 0.67 0.76
phrasal verbs 1.00 0.61 0.76
Present Perfect Tense 0.88 0.64 0.74
complex prepositions (according to, etc.) 0.56 0.83 0.67
comparative d. of short adv. (faster) 1.00 0.50 0.67
indirect object 1.00 0.50 0.67
unreal conditionals 0.63 0.71 0.67
comparative d. of long adj. (more interesting) 1.00 0.40 0.57
simple sentences 0.80 0.44 0.57

Degrees of comparison (adj) 0.93 0.95 0.89
Tenses 0.95 0.84 0.88
Conditionals 0.65 0.84 0.73

Mean (81 targets) 0.94 0.90 0.91
Median (81 targets) 1.00 0.97 0.95

Data: nine news articles with an average length
of 28 sentences.

28 constructions with F1 of 1:
questions, do- questions, yes-no questions, tag

questions, Future Simple Tense, Future Time, going
to, irregular plural of nouns (children), emphatic do,
contracted verb forms, simple modals (can, must,
need, may), short negation (no, not, never, n’t),
partial negation (hardly, barely), simple conjunc-
tions (and, but, or), advanced conjunctions, objec-
tive pronouns, possessive pronouns, reflexive pro-
nouns, some, any, many, much, a, an, the, superla-
tive form of short adjectives (nicest), superlative
form of long adjectives (most interesting), superla-
tive form of short adverbs (fastest).

As the texts for the evaluation were selected ran-
domly, we found few to no instances of the follow-
ing six constructions:

Present Perfect Progressive Tense, Past Per-
fect Progressive Tense, Future Perfect Progressive
Tense, Perfect Progressive Tense, Future Progres-
sive Tense, Future Perfect Tense.
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Abstract

We present, to our knowledge, the first experi-
ments on using NLP to measure the extent to
which a writing sample expresses the writer’s
utility value from studying a STEM subject.
Studies in social psychology have shown that a
writing intervention where a STEM student is
asked to reflect on the value of the STEM sub-
ject in their personal and social life is effective
for improving motivation and retention of stu-
dents in STEM in college. Automated assess-
ment of UV in student writing would allow
scaling the intervention up, opening access to
its benefits to multitudes of college students.
Our results on biology data suggest that ex-
pression of utility value can be measured with
reasonable accuracy using automated means,
especially in personal essays.

1 Introduction

Motivational factors, such as goals, confidence, in-
terest and values have been shown to be important
in supporting continuing engagement and success in
academic pursuits at all age levels (Pintrich, 2003).

In recent years a number of promising interven-
tions have been developed in the field of empiri-
cal social psychology to promote student motiva-
tion. Among the most successful of these interven-
tions in college classes is the Utility Value Interven-
tion (UVI) (Harackiewicz et al., 2014; Harackiewicz
et al., 2015). Grounded in Eccles’ Expectancy-
Value Theory (Eccles et al., 1983; Eccles, 2009), the
UVI, in which students write about the personal rel-
evance of course material, helps students discover
connections between course topics and their lives –

in their own terms. Discovering these connections
helps students appreciate the value of their course
work, leading to a deeper level of engagement with
course topics that, in turn, improves performance.
The effectiveness of these UVI writing assignments
has been demonstrated with experimental laboratory
studies and field experiments in college and high
school (Canning and Harackiewicz, 2015; Harack-
iewicz et al., 2015; Gaspard et al., 2015; Hulleman
et al., 2010; Hulleman and Harackiewicz, 2009).
These UVIs are most effective for promoting mo-
tivation among those most at risk for dropping out
(Harackiewicz et al., 2015; Hulleman and Harack-
iewicz, 2009; Hulleman et al., 2010).

A large-scale application of UVI in college and
other school contexts is hindered by the need to train
and employ humans to score students’ writing sam-
ples for utility value. Our goal is to assess the poten-
tial of NLP to provide an automated UV evaluation
that could, in turn, support scaling up the UVIs to
reach many more struggling college freshmen. An
automatically delivered and scored UVI would al-
low STEM faculty to assign UVI as homework; the
automatic scores would be delivered to faculty, and
students whose writing samples had insufficient ex-
pression of utility would be routed to a one-on-one
session with the instructor or a teaching assistant, to
discuss their plans and values to help find personal
utility in studying STEM.

2 Data

Materials used in our experiments come from the
study by Harackiewicz et al. (2015).1 They col-

1For data contact Prof. Harackiewicz, jmharack@wisc.edu.
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lected writing samples from first-year students en-
rolled in introductory biology courses at Univer-
sity of Wisconsin, Madison, 2012-2014. Students
were asked to pose a question related to the recently
studied module and answer it while incorporating
utility value (UV), that is, explaining how the biol-
ogy topic was related to their own or other people’s
lives. Six different biology topics are covered in the
dataset (e.g., cell biology, ecology).

The utility value and control writing assignments
were coded by research assistants for the level of uti-
lity value articulated in each essay, on a scale of 0-4,
based on how specific and personal the utility value
connection was to the individual. A “0” on this scale
indicates no utility; a “1” indicates general utility
applied to humans generically; a “2” indicates uti-
lity that is general enough to apply to anyone, but is
applied to the individual; a “3” indicates utility that
is specific to the individual; and a “4” indicates a
strong, specific connection to the individual that in-
cludes a deeper appreciation or future application of
the material. Inter-rater reliability with this coding
rubric was high, with two independent coders pro-
viding the same score on 91% of essays. Disagree-
ments were resolved by discussion.

Students were given 5 days to complete the as-
signment. Each student contributed 3 writing sam-
ples, in same or different genres, as described below.

Genre Variation
Students were assigned one of the following four

genres, or given a choice (usually between Essay
and Letter). The Essay, Letter, and Society genres
are UVI genres, in that they request reference to uti-
lity value, whereas Summary is a control genre that
only asks for a summary of the course material.

Assignment (common to all genres): Select a con-
cept or issue that was covered in lecture and formu-
late a question.

Letter Write a 1-2 page letter to a family member or
close friend, addressing this question and dis-
cuss the relevance of this specific concept or
issue to this other person. Be sure to include
some concrete information that was covered in
this unit, explaining why the information is rel-
evant to this person’s life, or useful for this per-
son. Be sure to explain how the information
applies to this person and give examples.

Essay Write an essay addressing this question and
discuss the relevance of the concept or issue to
your own life. Be sure to include some con-
crete information that was covered in this unit,
explaining why this specific information is rel-
evant to your life or useful for you. Be sure
to explain how the information applies to you
personally and give examples.

Society Write an essay addressing this question and
discuss the relevance of the concept or issue to
people or society. Be sure to include some con-
crete information that was covered in this unit,
explaining why this specific information is rel-
evant to people’s lives and/or useful for society
and how the information applies to humans. Be
sure to give examples.

Summary Select the relevant information from
class notes and the textbook, and write a 1-2
page response to your question. You should at-
tempt to organize the material in a meaningful
way, rather than simply listing the main facts or
research findings. Remember to summarize the
material in your own words. You do not need
to provide citations.

To exemplify UV-rich writing, consider the fol-
lowing excerpt from a Letter on Ecology:

I heard that you are coming back to Amer-
ica after retirement and are planning on
starting a winery. I am offering my help in
choosing where to live that would promote
the growth of grapes the best. Grapes are
best grown in climates that receive large
amounts of sunlight during the growing
season, get moderate to low amounts of
water, and have relatively warm summers.
I highly recommend that you move to the
west coast, and specifically the middle of
the coast in California, to maximize the ef-
ficiency of your winery. Letter, Ecology

Table 1 shows data partition sizes and average es-
say length per genre. We note that the test set con-
tains writing samples from unseen students.2 Table 2
shows the UV score distributions in the training data.

2not unseen essays from students who contributed another
writing sample to the train set
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Genre Number of Samples Av. Length
TRAIN DEV TEST (words)

Essay 2,766 840 329 508
Letter 2,457 867 266 508
Society 273 84 44 492
Summary 3,353 1,160 345 486

Table 1: Summary of data, by genre

Genre UV Score
0 1 2 3 4

Essay .04 .15 .09 .38 .34
Letter .02 .03 .04 .32 .59
Society .03 .75 .02 .16 .04
Summary .59 .38 .00 .02 .01

Table 2: Distributions of utility value score, by genre

3 Features

For measuring utility value in a writing sample, we
developed a set of features that address the form and
the content of personalized writing.

3.1 Pronouns

We expect grammatical categories that signal refer-
ence to self, addressee, or other humans to occur
frequently in UV-rich writing. We calculate log fre-
quency per 1,000 words for the following categories:

• PRO SG1: First person singular pronouns

• PRO PL1: First person plural pronouns

• PRO 2: Second person pronouns

• DET POS: Possessive determiners (e.g., their)

• PRO INDEF: Indefinite pronouns (e.g., anyone)

3.2 General Vocabulary

Since expression of UV is likely to refer to everyday
concerns and activities, we expect essays rich in UV
to be less technical, on average, than essays that only
summarize the technical content of a biology course,
and therefore use shorter, more common, and more
concrete words, as well as a larger variety of words.
We define the following:

• WORDLN: Average word length (in letters)

• WF MEDIAN: Median word frequency

• ACADEMICWL: Proportion of academic words
(Coxhead, 2000) in content words in the essay

• CONCRETE: Log frequency per 1,000 words
of words from the MRC concreteness database
(Coltheart, 1981)

• TYPES: # of different words (types count)

3.3 Genre-Topic Vocabulary
We define a feature that captures use of language
that is common for the given genre in the given
topic, under the assumption that, for example, dif-
ferent personal essays on ecology might pick simi-
lar subtopics in ecology and also possibly present
similar UV statements. For a given writing sample
in genre G on topic T, we identify words that are
typical of the genre G for the topic T (genre-topic
words). A word is typical of genre G for the topic
T if it occurs more frequently in genre G on topic T
than in all other genres taken together on topic T.3

The estimation of typical genre-topic vocabulary is
done on training and development data.

• GENREVOC: Log type proportion of genre-
topic words.

3.4 Argumentative and Narrative Elements
While summaries of technical biology material are
likely to be written in an expository, informational
style, one might expect the UV elements to be more
argumentative, as the writer needs to put forward a
claim regarding the relationship between their own
or other people’s lives and biology knowledge, along
with necessary qualifications. We therefore defined
lists of expressions that could serve to develop an
argument (based on Burstein et al. (1998)) and a list
of expressions that qualify or enhance a claim (based
on Aull and Lancaster (2014)). The features use log
token count for each category.

• ARGDEV: Words that could serve to de-
velop an argument, such as plausibly, just as,
not enough, specifically, for instance, unfortu-
nately, doubtless, for sure, supposing, what if.

3This is similar to Lin and Hovy (2000) topic signatures
approach (or, rather, genre-topic signatures here), without the
transformation that supports significance thresholds. This sim-
pler approach was found to be effective in our work on topicality
for essay scoring (Beigman Klebanov et al., 2016).
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• HEDGEBOOST: Hedging and boosting expres-
sions, such as: perhaps, probably, to some
extent, not entirely true, less likely, roughly
(hedges); naturally, can never, inevitably, only
way, vital that (boosters).

In addition, in order to connect the biology con-
tent to the writer’s own life, the writer might need
to provide a personal mini-narrative – background
with details about the events in his or her life that
motivate the particular UV statement. Since heavier
reliance on verbs is a hallmark of narrativity, we de-
fine the following features (using log frequency per
1,000 words):

• COMVERBS: Common verbs (get, go, know,
put, think, want)

• PASTTENSEVERBS: VBD part-of-speech tags

3.5 Likely UV content
Building on our observations of common UV con-
tent in the training data and on previous work by
Harackiewicz et al. (2015), we capture specific con-
tent and attitude using dictionaries from LIWC (Pen-
nebaker et al., 2007). In particular, UV statements
often mention the benefit of scientific knowledge for
improving understanding and for avoiding unneces-
sary harm and risk; specific themes often include
considerations of health and diet. For each category,
we use log proportion of words belonging to the cat-
egory in the given writing sample as a feature.

• AFFECT: Words expressing positive and nega-
tive affect, such as love, nice, sweet and hurt,
ugly, nasty, respectively.

• SOCIAL PROCESSES: Words expressing social
relations and interactions, such as talk, mate,
share, child, as well as words in the LIWC cat-
egories of Family, Friends, and Humans.

• INSIGHT: Words that signify cognitive engage-
ment, such as think, know, consider.

• HEALTH: Words that refer to matters of health
and disease, such as clinic, flu, pill.

• RISK: Dangers and things to avoid.

• INGESTION: Example words: eat, dish, pizza.

4 Evaluation

4.1 Feature Families

We evaluated each of the five feature families on
its own for predicting the UV score, as well as the
added value of each feature family over the com-
bination of all the other families. On the develop-
ment set, we experimented with a number of ma-
chine learning algorithms using scikit-learn toolkit
(Pedregosa et al., 2011) via SKLL:4 random forest
regressor, elastic net regressor, linear regression, lin-
ear support vector regression, ridge regression, sup-
port vector regression with RBF kernel. Random
forest was selected as it showed the best average per-
formance across the four genres. Pearson correlation
(r) is the objective function. Table 3 presents the re-
sults on the development set: The first 5 rows show
each feature family on its own, followed by ALL (all
families together) and by models where one family
was ablated at a time.

Feature Family Essay Letter Soc. Sum.
Pronouns .759 .442 .527 .544
General Voc .302 .200 .165 .260
GenreVoc .219 .378 .186 .377
ArgNarr .289 .286 .249 .195
UV content .306 .313 .025 .318
ALL .784 .543 .527 .622
– Pronouns .451 .450 .309 .450
– General Voc .777 .536 .527 .611
– GenreVoc .787 .500 .527 .586
– ArgNarr .774 .529 .527 .622
– UV content .768 .542 .527 .622

Table 3: Pearson correlations with UV score for various feature

families. Italicized correlations are not significant (p > 0.05).

We observe that all feature families attained sta-
tistically significant correlations with utility value
scores in Essay, Letter, and Summary genres. With
a single exception (GenreVoc in Essay), the correla-
tion attained by the feature set that contains all the
families (ALL) was the same or higher than in cases
where a feature family was ablated. For Society, all
features apart from Pronouns are quite weak, though
not detrimental to performance. We decided to keep
all features for the benchmark evaluation.

4https://github.com/EducationalTestingService/skll, version
1.1.1.
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4.2 Benchmark Evaluations

We compare the effectiveness of our feature set de-
signed specifically for this task with word ngrams
(n=1,2,3) baseline. Using the development data, we
evaluated ngrams using the same set of machine
learning algorithms as for the experimental features
(see section 4.1), and selected elastic net regression
due to best average performance across the genres.
Table 4 shows the performance of the experimental
system and the baseline, on the blind test set, per
genre. The experimental feature set (containing the
total of 21 features) is on par with the baseline, on
average, while showing worse performance on Let-
ters, and better performance on Society, the dataset
with the smallest number of instances.

Next, we combined the baseline and the experi-
mental feature sets, using the elastic net regressor.
Table 4 row Baseline+Exp shows the performance
of the combined feature set on test data. The com-
bination yields an average relative improvement of
4% over the baseline and 5.7% – over the experi-
mental system. Generally, the combination matches
the better performance between baseline and expe-
rimental features on Essay, Summary, and Society
genres, and improves over the best performance in
the most difficult Letters genre (6.8% relative im-
provement over baseline).

System Essay Letter Soc. Sum. Av.
Baseline .788 .437 .731 .662 .655
Experimental .786 .358 .799 .633 .644
Baseline+Exp .798 .467 .796 .663 .681

Table 4: Evaluation vs ngrams baseline on test data.

5 Related Work

Harackiewicz et al. (2015) performed an exploratory
analysis of UV writing versus control (Summary)
writing, using a subset of categories from LIWC.
They found that the categories of personal pronouns,
words referencing family, friends, and other hu-
mans, as well as words describing social processes
were used in significantly higher proportions in UV
writing. They also found that words of cognitive in-
volvement and insight are used more in UV writing.

In recent years, NLP techniques have increasingly
been applied to studying a variety of social and psy-
chological phenomena. In particular, NLP research

has been used to detect language that reflects cer-
tain traits of the authors’ disposition or thinking,
such as detection of deception, sentiment and af-
fect, flirtation, ideological orientation, depression,
and suicidal tendencies (Mihalcea and Strapparava,
2009; Abouelenien et al., 2014; Hu and Liu, 2004;
Ranganath et al., 2009; Neviarouskaya et al., 2010;
Beigman Klebanov et al., 2010; Greene and Resnik,
2009; Pedersen, 2015; Resnik et al., 2013; Mulhol-
land and Quinn, 2013). Such studies have a tremen-
dous potential to help measure, understand, and ul-
timately enhance personal and societal well being.
We believe that the line of inquiry initiated by the
current study that is focused on motivation in col-
lege likewise promises important potential benefits.

6 Conclusion & Future Work

We presented the first experiments, to our know-
ledge, on using NLP to measure the extent to which
a writing sample contains expression of the writer’s
utility value from studying a STEM subject. Studies
in social psychology have shown that a writing in-
tervention where a STEM student is asked to reflect
on the value of the STEM subject in their personal
and social lives is effective for improving motivation
and retention of students in STEM subjects in col-
lege. However, the need for a trained human reader
to score the writing samples has so far hindered an
application of the intervention on a large scale. Our
results on biology data are encouraging, suggesting
that utility value can be measured with reasonable
accuracy using automated means, especially in per-
sonal essays.

A direction of future work that would enable fur-
ther progress in scaling up the UV writing interven-
tion involves development of a support system for
scaffolding the process of writing about UV. In par-
ticular, once the automated measurement has deter-
mined that a draft of an essay lacks sufficient expres-
sion of UV, more specific feedback and dedicated
writing activities could be automatically suggested
to facilitate the student’s thinking and writing about
the utility value of the STEM subject, which would
help boost the student’s motivation and success in
STEM education.
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Abstract

In this paper, we describe the development
of a morphological analyzer for learner Hun-
garian, outlining extensions to a resource-
light system that can be developed by differ-
ent types of experts. Specifically, we discuss
linguistic rule writing, resource creation, and
different system settings, and our evaluation
showcases the amount of improvement one
gets for differing levels and kinds of effort,
enabling other researchers to spend their time
and energy as effectively as possible.

1 Introduction

There is much work on developing technology
and corpora for lesser-resourced languages (LRLs),
involving varying assumptions about the amount
of available data (e.g., Feldman and Hana, 2010;
Duong et al., 2015; McDonald et al., 2011; Gar-
rette et al., 2013; Garrette and Baldridge, 2013;
Lynn et al., 2013; Smith and Dickinson, 2014). To
our knowledge, though, there has been very lit-
tle work focusing on tools for automatically ana-
lyzing learner language. Yet LRLs present many
challenges and opportunities, not least of which is
the chance, through language learning, to increase
awareness and usage of the language. In that light,
we build from our work in Ledbetter and Dickin-
son (2015) to develop a morphological analyzer for
learner Hungarian in a resource-light way, extending
the framework to handle a wider range of phenom-
ena and to increase accuracy, addressing the trade-
offs between effort and performance.

Part of the purpose in Ledbetter and Dickinson
(2015) is to push for the automatic analysis of
learner language beyond English, incorporating a
wider range of linguistic and error patterns. But
there is little indication about how much effort is
required to build a system of sufficient accuracy.
Garrette and Baldridge (2013) point out exactly the
time spent in annotation, and we follow in that vein
of estimating time costs, here for analyzing learner
language, to foster resource-light development (cf.
Smith and Dickinson, 2014).

Indeed, there is a convenient connection between
LRLs and the automatic analysis of learner lan-
guage, one enabling a rule-based approach. In a
low-resourced setting, there is a lack of data for data-
driven modeling, and one can write rules in a short
amount of time; because such rules are linguisti-
cally motivated, they are relatively easy to connect to
tasks such as providing feedback on learner input or
modeling learner behavior, i.e., tasks requiring lin-
guistic analysis. Systems for learner language are
also amenable to low-resource development in that
the vocabulary is often restricted and the require-
ment for high precision dovetails nicely with using
linguistic rules. Such an approach allows for quick,
transparent development, helping identify parts of
the linguistic system that the tool gets (in)correct.

Given the need to interact with NLP researchers,
educators, and learners, this linguistic transparency
is a key property (cf. Loukina et al., 2015). In this
work, we propose a number of different kinds of
extensions to a system, appropriate for different as-
pects of analysis. The system is rule-based, which—
in addition to being appropriate for Hungarian mor-
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phology in a resource-light setting—makes it feasi-
ble to plug in different components and thus allows
one to test the effect of different extensions. We
envision different kinds of experts (linguists, teach-
ers, NLP researchers, etc.) being able to contribute
within such a paradigm, thus broadening the range
of who can contribute to successful analyzer design.

Corresponding to different types of knowledge,
we propose four kinds of system improvements: 1)
writing linguistic rules (e.g., exception marking); 2)
creating resources (e.g., name dictionary); 3) op-
timizing system settings (e.g., automatic ranking);
and 4) analyzing system output. Seeing the effects of
these improvements can help contribute to a broader
discussion of which components are most in need
of development for learner data (cf. constraint re-
laxation (Reuer, 2003; Schwind, 1995)). The main
contribution of this work is thus to outline and iden-
tify the benefits of different kinds of resources for
building a transparent analyzer, highlighting the best
gains for the amount of time one has available.

In section 2 we cover the basics of Hungarian,
turning to learner Hungarian and the general frame-
work in section 3. In section 4 we outline the types
of improvement, detailing specific modifications to
the system and the amount of effort involved in each
one. Section 5 then shows the results for tagging ac-
curacy, and we provide general advice on prioritiz-
ing effort in section 6. Although our current results
are below the state-of-the-art, we have spent little
time in getting a workable system. We do not ad-
dress in this paper how accurate an analyzer needs
to be in order to be deployed for providing learner
feedback, but it is important to note: a) we highlight
starting points for development, not a finished prod-
uct; and b) for some purposes—such as assisting
in the semi-automatic annotation of a learner cor-
pus or targeting subparts of the grammar (for which
the system is more accurate) for learner modeling—
even the current system can be of benefit.

2 Hungarian

Hungarian is a Finno-Ugric language known for its
rich agglutinative morphology, in which words are
formed by joining morphemes together, as shown in
(1). Morphemes convey information such as num-

ber and case (e.g., INESSive) for nouns (1a), num-
ber, person, tense, and definiteness for verbs (1b), or
changes to part-of-speech (1c). Hungarian also ex-
hibits vowel harmony, which requires that the back-
ness of vowels (represented by the feature [+/-BK])
matches during affixation (Törkenczy, 2008); e.g.,
the front vowel variant -ben is inappropriate for (1a).

(1) a. fá
tree[+BK]

-k
-PL

-ban
-INESS[+BK]

‘in trees’
b. felejt

forget[-BK]
-ett
-PST[-BK]

-em
-1SG.INDEF[-BK]

‘I forgot’
c. álm

sleep[+BK]
-atlan
-NEG.ADJ[+BK]

-ság
-NOM[+BK]

‘sleeplessness/insomnia’

3 Framework

We build from the analyzer in Ledbetter and Dick-
inson (2015). Given the nature of Hungarian, the
morphological analyzer follows in the tradition of
rule-based approaches (Prószéky and Kis, 1999;
Megyesi, 1999; Trón et al., 2005, 2006), as a statis-
tical approach relying on large amounts of data for
training would be more challenging in a resource-
light setting. Data sparsity, common with agglu-
tinative languages in which a given wordform ap-
pears few times in training data, compounds this
problem. The amount and type of resources neces-
sary for our work is comparable to other research on
morphologically-rich languages in low-resource set-
tings, e.g. for some Indian languages (Singh et al.,
2006; Shrivastava and Bhattacharyya, 2008; Alfter,
2014). Details of the system are in section 3.2.

3.1 Data

To develop and evaluate a system, we rely on both
native language and learner data. The corpus of
learner data was collected from L1 English students
of Hungarian, divided into three levels of proficiency
(Beginner, Intermediate, Advanced) as determined
by course placement in one of three two-semester
sequences. The corpus consists of journal entries,
each a minimum of ten sentences in length on a
topic selected by the student. The data and error an-
notation are described in Dickinson and Ledbetter
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(2012). For native data, we use the Szeged Corpus
of Hungarian (Csendes et al., 2004).

For development of all our improvements, we use
the same 1000 words of native data and 1024 words
of learner data that were used in Ledbetter and Dick-
inson (2015). The native data is taken from compo-
sitions, so as to be relatively comparable to the jour-
nal entries found in the learner corpus. For evalua-
tion (section 5), we use new approximately same-
sized (1000, 1032) sections of data, i.e., the test
sets are comprised of new compositions never before
seen by the analyzer. Note that there is no training
data, as we are assuming a small set of resources.

3.2 Morphological analyzer

The morphological analyzer is affix-driven and
works simply by using a small set of known affixes
to derive a final analysis. For example, with a suf-
fix -at in the grammar that takes a noun stem (N) to
the left to derive a cased noun phrase (KP)—notated
KP\N—the word házat (‘house+ACC’) obtains a KP
analysis, segmented as ház+at.

The analyzer supports using features, too, e.g.,
KP\N {vh:bk} to indicate that vowel harmony (vh)
requires back (bk) vowels here. Error detection can
thus be performed on top of morphological analysis
simply by allowing for and storing feature clashes
(instead of requiring feature unification). In this pa-
per, we focus on providing correct morphological
tags, as this is the tool’s most primary function.

The baseline performance of the morphological
analyzer assumes the minimum of resources re-
quired to function: a knowledge base of grammatical
affixes and the analyzer (i.e., rule compiler) itself. In
section 5, we report two baseline scores, with 10 and
then with 50 affixes. Although Ledbetter and Dick-
inson (2015) also start with a dictionary, we assume
no other resources for our baseline; with only af-
fixes, the resulting scores are accordingly low. Each
improvement to the analyzer (section 4) is then eval-
uated separately with respect to this baseline.

Since we are concerned about time, we should
note that the rule compiler is around 3000-4000 lines
of Python code (depending on how one counts com-
ments, data handling, printing of intermediate out-
put, system-internal checks, etc.). We estimate it

would take 1–2 months for someone to build, but
as it relies on a CYK parser (see details in Ledbet-
ter and Dickinson, 2015) and as one may choose
different kinds of rule compilers for the same ef-
fect (e.g., a constraint grammar compiler (Didriksen,
2016) or an FST-based system (Hulden, 2009)), this
time could be significantly less.

4 Improvements

The morphological analyzer is designed with low-
resource scenarios in mind, starting with as little as
a rule compiler and however much grammatical in-
formation one has time to specify in rules (i.e., af-
fixes). We want to improve beyond this simple de-
sign, but we need to determine the best ways to im-
prove. Ideal improvements: a) require little time
to implement; b) contribute (significantly) to better
performance; and c) are as transparent as possible.

As mentioned in section 1, improvements to the
analyzer are divided into four categories. For ease
of implementation and development, each category
can represent a different person or team, based on
the resources and expertise available.

In each subsection below, we discuss a series of
related improvements we have completed and es-
timate the time required to implement them to the
same degree we have. We assume 1 day = 8 hours
of work for one person. For these estimates, we do
not strictly follow our own experience, as we did
not precisely log the time and, more importantly,
we expect future users to require less time to choose
and implement changes. We also assume someone
of moderate expertise in the area for which the im-
provements need to be made—e.g., someone famil-
iar with Hungarian linguistics enriching the knowl-
edge base (section 4.1) vs. someone familiar with
corpus linguistics extracting a most frequent word
list (section 4.2). The improvements in section 4.4
are more likely than any other to involve discussion
and cooperation among the different people, as it in-
volves incremental changes in the other areas.

4.1 Linguistic rule writing

The first set of improvements involves writing rules
that correspond to linguistic generalizations. These
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come in different levels of granularity, e.g., general
rules (#1) vs. exceptions (#3).

1. Enrich the knowledge base (KB): The mor-
phological analyzer relies primarily on grammatical
rules encoded in the knowledge base (KB) of af-
fixes, all of which can be obtained from a traditional
grammar reference or language textbook. The size
of the KB can vary, and the system’s performance
increases with richer and more complete grammat-
ical information. The baseline systems detailed in
section 3.2 assume a modest base of either 10 or 50
affixes.

Although we experiment with small KBs, it is
possible to obtain over 200 affixes for Hungarian us-
ing a grammar reference (Törkenczy, 2008), such as
the derivational suffix in (2). Here, the affix -ság
creates a noun (N) when combined with an adjec-
tive (A) to its left. Furthermore, the adjective stem
must contain back vowels to match the harmoniz-
ing suffix (indicated by the feature vh and its re-
quired value bk in braces). An example word can
be found in (3). The adjective boldog (‘happy’) can
combine with the nominalizing suffix ság because it
contains back vowels, as specified in the knowledge
base. Thus, the completed derivation is the noun
boldogság (‘happiness’). Time estimate: 2 days.

(2) -ság: N\A{vh:bk}

(3) boldog
A{vh:bk}

-ság
N\A{vh:bk}

“happiness” (N)

2. Modify knowledge base features: The KB
can be augmented with grammatical features, used
to constrain, i.e., eliminate certain combinations of
morphemes. (In the case of learner language, fea-
tures may only disfavor analyses—see the Free set-
ting in section 4.3.) As seen in (2), the feature
vh constrains a derivation based on vowel harmony.
Features also supply key information during deriva-
tion to increase the accuracy of morphological tags.
In (4), the feature k indicates that the noun stem (N)
suffixed with -t will become a cased noun phrase
(KP) in the accusative case (acc).

(4) -t: KP{k:acc}\N

Note that modifications to grammatical features
are included in all results presented in section 5, as
removing a single feature from each entry in the KB
to measure its effectiveness would take a long time
and provide little in the way of guidance for future
researchers. Time estimate: 1-2 days.

3. Encode exceptions (Except): Any target lan-
guage will have exceptions to grammatical rules.
A list of the most frequent grammatical exceptions
(even as few as 5–10), including handling of irregu-
lars, may provide a boon to performance. In Hungar-
ian, irregular stem changes during verb conjugation,
for example, can mask the relatedness of different
forms in the paradigm, and only one stem will be
found in a dictionary (when a dictionary is used).
Forms like those in (5) can be linked to a single
stem—the dictionary form of ‘to be,’ van—to facil-
itate a complete paradigm. The analyzer makes use
of only five such cases, targeting the most frequent
irregular verb stem changes. Time estimate: 1 day.

(5) a. vagy
be

-ok
-1SG

‘[I] am.’

b. van
be

-nak
-3PL

‘[they] are.’

4.2 Resource creation

The next improvements involve building resources,
generally corresponding to finding data that fits the
context under which the language is being produced
(e.g., learners with a first language (L1) of English).

1. Obtain a language dictionary (Dict): A
dictionary of attested target language words is a
straightforward improvement. If available digitally,
a target language dictionary is simple to add; oth-
erwise, one must be built by hand or via transcrip-
tion. In the latter case, a minimal list of words
can be obtained from a grammar reference or lan-
guage textbook and then digitized. Our analyzer ac-
cesses an English-Hungarian dictionary of 161,000
entries (Vonyó, 1998) with words only (i.e., no part-
of-speech or other grammatical information). Time
estimate: 1 day (electronic resource).

2. Obtain a list of common names (Names):
A common problem for morphological analysis is
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the treatment of unknown words. A list of names
common to the source (when known) and target
languages is often easy to acquire or create and
could alleviate a frequent cause of unknown words.
The analyzer has access to a list of 400 common
first names, 200 from English (L1 in our data)
and 200 from Hungarian (L2), obtained from be-
hindthename.com. Time estimate: 1 day.

3. Obtain a list of the most frequent words
(Freq): A small number of words (e.g., function
words) appear very frequently in written data, inde-
pendent of domain, while the vast majority of words
appear only a few times. With access to corpus
data, a list of the most frequent words in the lan-
guage with the proper morphological tags (added by
hand) can ensure that the analyzer is accurate for
a large amount of written data. Of the 100 most
frequent words in the Hungarian National Corpus
(Oravecz et al., 2014), 50 were selected and placed
in a database for the analyzer along with the appro-
priate morphological tags. Selection proceeded one
word at a time, beginning with the most frequent,
using several criteria, including familiarity to learn-
ers, opaque rather than transparent morphology, and
appropriateness to genre. Time estimate: 1 day.

4.3 System settings

The third set of improvements focus on implementa-
tion, deriving ways to obtain the best analysis from
among many possible ones or in cases where little-
to-no information is known.

1. Devise a method to rank analyses (Rank):
Morphological analysis for learner data must be
more flexible than similar methods for native lan-
guage data. Misspelled words, clashes of gram-
matical features, and a non-targetlike distribution of
morphological affixes can all cause failure for rules
designed to analyze the standard target language.
Overgeneration is accordingly a significant problem
for any system that attempts to account for such dif-
ferences. A method for prioritizing one possible
analysis over another is essential for reducing ambi-
guity, which in turn has a direct effect on precision.

We created a simple method to rank analyses in
the output of the analyzer. First, any analysis that

makes use of a stem found in the dictionary is ranked
higher than one that doesn’t. Second, an analysis
is ranked higher than another if it exhibits fewer
clashes of grammatical features during derivation
(section 3.2). If neither of the above rules applies,
analyses are ranked in the order they were created.
Future work can explore more sophisticated meth-
ods of ranking. Time estimate: 1 week.

2. Determine a default tag for unknown words
(Def): As indicated earlier, unknown words can
reduce accuracy during analysis, and learners are
prone to innovate new forms. This problem can
be minimized by assigning a default analysis to un-
known words. Our analyzer proposes a single tag
Nc-sn (noun: common, singular, nominative case)
when it fails to produce a derivation. Following stan-
dard practice in POS tagging, this default tag specif-
ically targets the most likely open class of words.
Time estimate: 1 day.

3. Hypothesize roots (Hyp): The design of the
analyzer emphasizes flexibility to account for the
differences between learner data and standard target
language data. In order to make the system more ro-
bust, a derivation can hypothesize a potential stem
after an affix from the knowledge base has been rec-
ognized. This allows for non-standard roots (e.g.,
those that have been misspelled) during derivation,
even if the system is relying on dictionary lookup.

(6) *haz
house

-ban
-INESSIVE

‘in [a] house.’

In (6), for example, a system built to analyze stan-
dard Hungarian may not recognize haz as part of a
valid word, as ház (‘house’) is the likely intended
form. By completing a derivation when possible, on
the basis of the suffix (e.g., Nhyp + KP\N), the ana-
lyzer can be more robust—though, it can also over-
posit analyses. Time estimate: 2 days.

4. Relax constraints (Free): Another method for
introducing flexibility into the analyzer involves the
features associated with the affixes in the KB. When
analyzing target language data, the features of stems
and affixes should unify, resulting in a complete
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derivation. In learner data, on the other hand, we
expect feature clashes as learners have not yet mas-
tered the rules of the target language grammar. By
relaxing the unification of features to allow clashes,
we can more often obtain complete derivations.

(7) *ház
house

-ben{vh:fr}
-INESSIVE

‘in [a] house.’

Consider the example in (7). The suffix -ben re-
quires a stem with front vowels (the value of the fea-
ture vh must be fr), but the stem ház contains back
vowels. With the appropriate setting, our analyzer
permits the derivation and provides the correct mor-
phological tag. Time estimate: 2 days.

The last two modifications (Hyp, Free) are pro-
posed in Ledbetter and Dickinson (2015), but need
to be evaluated within the space of other settings.

4.4 System analysis

The improvement in this section is relevant to the
whole system, relying on other settings and not eas-
ily isolated to a single area of expertise. No evalu-
ation of this improvement is provided, as it was un-
dertaken at several stages during development.

1. Perform a system/error analysis: Time can be
spent on an analysis of system performance, using a
small set of (annotated) development data. At any
stage of development, it is useful to inspect the out-
put of the analyzer and investigate potential mistakes
in rules, affixes, features, improvements, or the un-
derlying code itself. Thus, creating a small set of
annotated data is important for this stage.

Indeed, some of the time for the other improve-
ments is “hidden” in this task. In our experience, we
were able to identify a number of ways in which the
system was not functioning as expected. We iden-
tified affixes omitted from the KB, discovered new
features to restrict spurious analyses, and developed
the initial ideas for ranking analyses—in addition,
of course, to debugging the underlying code. Re-
solving each of these led to an increase in accuracy.
Time estimate: 1 month (or more).

5 Evaluation

After devising the improvements on the develop-
ment data, we evaluate the morphological analyzer
first on native Hungarian data and then on learner
data, recording precision, recall, and accuracy mea-
sures. Each improvement to the system is first con-
sidered individually, assessing its value apart from
all others, and then combined with other improve-
ments to determine the overall effectiveness.

The test sets, as mentioned in section 3, are new
excerpts from the target (1000 tokens) and learner
corpora (1032 tokens). The analyzer produces as
output one or more morphological tags for each
word in the input. During evaluation, this list of
output tags is compared to a list of gold standard
tags. For native data, the gold tag list from the
target language corpus contains the correct context-
specific tag as well as a list of possible tags based on
morphology. The annotation of the target language
corpus uses corrected output from the magyarlanc
(Zsibrita et al., 2013) tool. For learner data, we an-
notate a single gold standard tag for each word.

We evaluate how many tags from the analyzer
match possible tags from the gold standard and
whether the correct context-specific tag appears in
the output. Specifically, we report:

• Precision (P): the number of tags in the output
that appear in the gold standard, divided by the
number of tags in the output.

• Recall (R): the number of tags in the output
that appear in the gold standard, divided by the
number of tags in the gold standard.

• Accuracy (A): the number of correctly iden-
tified context-specific tags divided by the total
number of words in the input.

5.1 Individual improvements

The precision, recall, and accuracy measures for
each individual improvement are given in Table 1
for native data and Table 2 for learner data. The
top half of the table, labeled KB-10, indicates that
the analyzer used a knowledge base of ten affixes,
and the lower half of KB-50 indicates 50 affixes. All
other improvements are identified by columns with
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KB-10 ML Base Except Dict Names Freq Rank Def Hyp Free
P 0.970 0.018 0.023 0.107 0.018 0.385 0.018 0.221 0.145 0.018
R 0.413 0.008 0.010 0.051 0.008 0.182 0.008 0.094 0.070 0.008
A 0.930 0.018 0.023 0.089 0.018 0.303 0.018 0.058 0.125 0.018
KB-50 ML Base Except Dict Names Freq Rank Def Hyp Free
P 0.970 0.037 0.041 0.213 0.037 0.401 0.037 0.239 0.221 0.037
R 0.413 0.016 0.018 0.115 0.016 0.190 0.016 0.103 0.146 0.016
A 0.930 0.036 0.041 0.194 0.036 0.321 0.036 0.076 0.245 0.036

Table 1: Evaluation for each improvement (native data)

KB-10 ML Base Except Dict Names Freq Rank Def Hyp Free
P 0.850 0.003 0.016 0.062 0.003 0.290 0.003 0.104 0.079 0.003
R 0.850 0.003 0.016 0.068 0.003 0.311 0.003 0.105 0.091 0.003
A 0.850 0.003 0.016 0.068 0.003 0.311 0.003 0.105 0.091 0.003
KB-50 ML Base Except Dict Names Freq Rank Def Hyp Free
P 0.850 0.011 0.024 0.147 0.011 0.297 0.011 0.112 0.162 0.011
R 0.850 0.011 0.024 0.184 0.011 0.319 0.011 0.112 0.240 0.011
A 0.850 0.011 0.024 0.184 0.011 0.319 0.011 0.112 0.240 0.011

Table 2: Evaluation for each improvement (learner data). Recall (R) = Accuracy (A) since only one gold standard tag is annotated.

labels matching their descriptions in section 4. The
ML column provides a comparison with a native lan-
guage tool, magyarlanc (Zsibrita et al., 2013).

For native data (Table 1), magyarlanc attains
nearly perfect precision and very high accuracy.
This is to be expected, given that the tool was used
in creating the gold standard annotation of the test
corpus. Recall, naturally, is less, as magyarlanc dis-
ambiguates among all the context-independent tags.
These figures provide a rough estimate of the diffi-
culty of morphological analysis for Hungarian. As
expected, the baseline performance of our analyzer
is extremely low, at 2% precision and less than 1%
recall with a meager knowledge base, and about
double that with a slightly richer one.

For every improvement, the size of the knowl-
edge base increases performance. Three different
improvements (Names, Rank, and Free), however,
make no difference in performance as compared to
Base, irrespective of the difference in size of the
KB. By far, the most effective improvement is Freq
(most frequent word list), attaining the highest per-
formance (e.g., precision above 40%) with 50 affixes
in the KB. The Dict, Def, and Hyp improvements
also exhibit noteworthy gains for all three metrics.

There is a slight gain from the addition of Except,
but no more than 1%—unsurprising, given the small
number of encoded cases.

For learner data (Table 2), performance is lower
across the board. The magyarlanc tool loses about
13% in precision and 8% in accuracy, illustrating the
increased difficulty of the task of analyzing learner
language. Our analyzer begins with baseline scores
at 1% or lower for both KB-10 and KB-50. The re-
sults for learner data parallel those for native data:
the Names, Rank, and Free improvements provide
no increase in performance, while Freq provides the
greatest gains, reaching nearly 30% precision and
32% recall and accuracy. Likewise, the Dict, Def,
and Hyp improvements provide noticeable gains,
with Except providing small gains.

While no single improvement on its own results
in very high scores, the evaluation highlights the
most effective improvements. The Freq improve-
ment alone, for example, contributes nearly 40% to
precision for native language data.

5.2 Improvements in combination

We now turn to an evaluation of the system in suc-
cessive iterations, beginning with the baseline sys-
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tem and adding one new improvement each time.
Table 3 shows the results for native data, while Ta-
ble 4 shows the results for learner data. The last
column in each table gives the results of a final test
with all improvements added. In each series of tests,
a knowledge base of 50 affixes is used.

Base +Dict +Freq +Def +Hyp All
P 0.037 0.213 0.497 0.579 0.472 0.451
R 0.016 0.115 0.281 0.323 0.350 0.363
A 0.036 0.194 0.479 0.517 0.567 0.594

Table 3: Evaluation for stepwise improvements in combination,

moving left to right (KB 50, native data)

Base +Dict +Freq +Def +Hyp All
P 0.011 0.147 0.378 0.457 0.384 0.370
R 0.011 0.184 0.492 0.592 0.631 0.661
A 0.011 0.184 0.492 0.592 0.631 0.661

Table 4: Evaluation for stepwise improvements in combination,

moving left to right (KB 50, learner data)

Note that the order of added improvements is
based on both practical concerns and effectiveness
in the individual evaluations discussed above. The
first improvement added to the system is Dict (a tar-
get language dictionary): though this did not pro-
vide the greatest gains in the evaluation metrics, it
is the most central resource and one of the easiest
to obtain. The next improvements (Freq, Def, and
Hyp) were selected for their contributions during in-
dividual evaluations, and each is added in an order
corresponding to its impact on performance. Finally,
the other modules (Except, Names, Rank, Hyp) are
added for the All model.

For native data (Table 3), the system displays a
general trend of increasing precision, recall, and
accuracy as improvements are added. Precision
reaches its peak at 58% with the addition of the de-
fault tag (Def) improvement, while recall and accu-
racy continue to increase. Both recall and accuracy
reach their maximum with all improvements added.
Precision at its maximum remains well below that of
magyarlanc’s 97%, but recall reaches 36% with all
improvements, just 5% short of magyarlanc. The
All model, despite making use of every improve-
ment, exhibits a drop in precision; an inspection of
the data reveals that this is due to the increased num-

ber of proposed analyses. The system is outputting
more tags that are correct (thus, the increase in re-
call), but the number of proposed analyses increases
by a larger margin, and thus precision falls.

For learner data (Table 4), the trends are nearly
identical for the successive improvements. The Dict,
Freq, and Def improvements obtain a precision of
46%, compared to magyarlanc’s 85%, while recall
and accuracy rise to 66% with all improvements
added, about 20% from magyarlanc’s 85%. As with
native data, precision falls with the All model, even
though the number of correct tags is at its highest.
The figures for maximum recall and accuracy are en-
couraging, considering that magyarlanc makes use
of contextual information for disambiguating possi-
ble morphological tags. Our analyzer currently uses
no contextual information, analyzing one word at a
time. With the incorporation of additional informa-
tion such as syntactic frames, the results could be
more competitive with those for native data. It is
also important to note that the magyarlanc tool is
based on the morphdb database (Trón et al., 2006),
which represents years of work, while many of our
system improvements require less than a month.

It may seem surprising that recall and accuracy
for learner data surpass the results for native data.
This stems from the fact that the gold standard an-
notation for learner data has only one correct tag.
Similarly, for the calculation of precision, multiple
analyses proposed by the system adversely affect the
score, even if alternatives may be correct for a word.

Although the evaluation data is different, we can
roughly compare accuracies of 0.594 and 0.661 to
corresponding accuracies of 0.505 and 0.478 in Led-
better and Dickinson (2015). This gain is in spite of
using 205 affixes in the KB in Ledbetter and Dick-
inson (2015) vs. 50 here, highlighting the point
that some improvements (e.g., Freq) are more time-
effective than others (e.g., expanding the KB).

6 Discussion and Outlook

Concerning ourselves with the balance between
improving analyzer accuracy and/or coverage and
spending time to do so, the most valuable improve-
ment for the analysis of L2 Hungarian morphology
is a list of the most frequent words and the corre-
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sponding tags. Other notable improvements include
incorporating a method for hypothesizing stems, a
dictionary of Hungarian words, and a default tag
for analysis. Finally, some rich knowledge base of
grammatical information is essential, and even small
KB sizes can have moderate performance with other
improvements in place.

With the exceptions of enriching the knowledge
base and creating a method for hypothesizing stems,
each improvement is estimated to need only a single
day to implement (to the level we have). Together,
all these improvements would require just over a sin-
gle work week. Additional time, when available,
may be spent on further improvements or system
analysis, as discussed in section 4.4.

The recommended improvements are spread
across several areas of expertise, and many require
at least some existing resources. In some settings,
it may not be possible to implement even these few.
With these restrictions in mind, we propose the fol-
lowing prioritization of improvements:

1. Target language dictionary. While not the
largest improvement, it is hard to envision ad-
equate analysis without a dictionary. For many
languages, the ease of acqusition and wide-
spread availability of this resource make it
quick and effective to obtain. In the absence
of an electronic dictionary, it is possible to ex-
tract some lexicon from a grammar resource or
language textbook; much more time will then
be spend in digitization.

2. Frequent word list. This improvement provides
the greatest benefit for performance, requiring a
moderate amount of target language data to as-
certain the most common words. It may also be
necessary to add morphological information if
the corpus isn’t annotated. If no corpus data is
available, one could also use intuition to derive
something akin to the most common, or most
salient, words in a language.

3. Default tag. One of the simplest methods to im-
prove the analyzer, a default tag requires very
little knowledge of coding to implement.

4. Knowledge base. The size of the knowledge
base directly affects performance, though it

takes longer to implement. We have shown that
as few as 10 affixes may be used to begin anal-
ysis, and 50 shows great promise.

5. Hypothesized stems. This requires knowledge
of the underlying code of the analyzer and may
need fine-tuning for different target languages.

6. System analysis. System analysis should be a
part of every stage of development, but it also
requires the most time of any improvement.

Performance of the system with these improve-
ments does not reach the level of a tool designed
for native language morphological analysis. How-
ever, our work illustrates that significant gains can
be made with fewer resources, most of which are
easily accessible, assuming only a grammar refer-
ence or language textbook to begin. With the priori-
tized list of improvements above, time and energy
can be used efficiently to streamline the develop-
ment of a low-resource morphological analyzer.

There is still much to do to get a better han-
dle on the impact of different improvements to
obtain a better analyzer. We envision exploring
larger knowledge bases and their effect on increas-
ing ambiguity, developing more methods for ranking
analyses—perhaps incorporating trends from any
possible available learner data—and experimenting
with resources (dictionaries, name lists) which are
targeted towards particular domains or learning con-
texts. Additionally, one question has still not been
addressed by our evaluation: how good is good
enough? Utilizing other evaluation measures that
probe into real-world usage, e.g., for error detection
and grammar extraction (Ledbetter and Dickinson,
2015), will be crucial in that respect.
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Abstract

We present preliminary work on automatically
scoring constructed responses elicited as part
of a certification test designed to measure the
effectiveness of the test-taker as a K-12 music
teacher. This content scoring differs from most
previous work in that the responses are rela-
tively long and are written by an adult popula-
tion of generally proficient English writers. We
obtain reasonably good scoring performance
for all the test questions using simple features.
We carry out some initial error analysis and
show that there is still room for improvement.

1 Introduction
In this paper, we examine the feasibility of automati-
cally scoring content-based questions from a teacher
certification test which measures the test-taker’s ef-
fectiveness as a K-12 music teacher. The test was de-
signed by experts with extensive experience in music
education, who consult regularly with music teach-
ers and music education professors throughout the
USA to ensure the appropriateness and validity of
individual test questions.

Specifically, this test measures indicators of the
beginning educator’s professional readiness to teach
K-12 music in each of the three major music edu-
cation specialties: general, instrumental, and vocal
music education. The typical test population consists
of undergraduates who have completed, or nearly
completed, a music education program. Materials
appearing on the test reflect instrumental, vocal, jazz,
and general music instruction specialties across the
K-12 grade range. Note that the test contains a com-
bination of multiple-choice as well as constructed

response (essay-style) questions. A final score for
the test is computed by combining the scores for all
questions and only that score is reported to the test-
takers, not individual question scores. In this paper,
we focus on building automated scoring models for
the essay-style questions.

2 Data
We obtained test-taker responses written between
2013 and 2015 to multiple administrations of the test.
Each student wrote answers to three essay-style ques-
tions. We look at a total of six different essay-style
questions across all test forms. Although we cannot
disclose the actual questions for reasons of test secu-
rity, Figure 1 shows a sample question from the test.
It asks the prospective teacher to examine a given
vocal music sample and answer questions relevant
to teaching the sample to a hypothetical class of stu-
dents. Overall scores are assigned on a 0–3 scale,
based on the degree to which the test-taker accurately
responds to the three subparts of the question. Fig-
ure 3a shows the total number of scored responses
available (N ) for each of the six questions.

The responses to all six questions on the test are
scored by two human experts on a 0–3 scale.1 Fig-
ure 2 shows the distributions of the response lengths
and the scores assigned to the responses by the first
human expert (hereafter referred to as the H1 score).

3 Related Work
The test we examine here has been designed primarily
to elicit content knowledge from prospective teachers
in the context of instruction. Our work can be consid-

1For each response, the two experts are chosen randomly
from a pool of 9 experts.
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Figure 1: A sample question from the music teaching proficiency test. Note that only a part of the entire
music sample included with the question is shown here.

ered similar in spirit to some of the previous work on
short-answer scoring, where the focus is on scoring
content-driven responses to math, biology, or com-
puter science questions (Sukkarieh and Stoyanchev,
2009; Sukkarieh et al., 2011; Mohler et al., 2011;
Dzikovska et al., 2013; Ramachandran et al., 2015;
Sakaguchi et al., 2015; Zhu et al., 2016).2 However,
we claim that there is very little in that body of previ-
ous work that focuses on responses exhibiting all of
the following characteristics:

• The responses we examine are written by a pop-
ulation of adults that are generally proficient
English writers. This is different from most pre-
vious work where the population is generally
composed of middle- and high-school students
with varying levels of English proficiency.

• The average length of these responses is approx-
imately 220 words which is much longer than
the responses considered in much of the previ-
ous work (10-100 words long, on average).

• These responses are from a high-stakes test
(teacher certification) whereas previous work
has focused mostly on responses from low-

2See Table 3 in Burrows et al. (2015) for a comprehensive
list.

to medium-stakes tests (in-class discussions,
homework assignments, placement tests, etc.).

The work that could be considered most similar to
ours is that of Alfonseca and Pérez (2004) (further
described by Pérez-Marı́n and Pascual-Nieto (2011))
which focuses on scoring responses to computer sci-
ence questions (50-130 words long, on average) writ-
ten by undergraduate students. However:

1. Their responses were written to tests that lacked
the instructional context — tests that assessed
content comprehension but not how that content
can best be taught to a class of K-12 students.
Although both types of responses might require
understanding the same concepts, they are
likely to be expressed differently. For example,
the following is an excerpt from a sample
response to the question in Figure 1.

“This example is best suited for a high school mixed chorus.

One performance challenge that would be likely for a HS

chorus performing this work would be the octave leap in

the alto part in measure 3. (This is also found in measure

11.) This passage needs to maintain the legato phrasing

marked throughout and needs to crescendo smoothly

without a loss of tone and without accenting the top E-flat.

Students may tend to restrict their throats in order to
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(a) Distribution of response length.

(b) Distribution of the response scores assigned by the first human expert (H1 scores).

Figure 2: The response length and H1 score distributions of all six questions from the test.

reach the high note. With insufficient breath support, the

crescendo and legato phrasing will not be musical. . . . ”

2. Their responses were scored by comparing to
human-authored reference answers whereas our
scoring approach does not require any reference
answers.

To the best of our knowledge, there has not been
any work that uses a machine-learned model to auto-
matically score questions that measure content-based
teaching ability.

4 Content Scoring Model
We split the data available for each of the questions
into training and test sets with 70% for training and
30% for test. We then build an automated scoring
model for each question separately using the H1 score
as our target. Each scoring model uses support vector
regression (Smola and Schölkopf, 2004) to estimate
a function that predicts human scores from vectors of
binary linguistic features. We use the implementation
from the scikit-learn package (Pedregosa et al., 2011),
with default parameters except for the complexity
parameter, which is tuned using cross-validation on
the data provided for training.

As features in the model, we start with the set of
features that have generally been used for scoring
content-based short answers in the literature:

• lowercased word n-grams (n=1,2), including
punctuation

• lowercased character n-grams (n=2,3,4,5)
• syntactic dependency triples computed using the

ZPar parser (Zhang and Clark, 2011))
• length bins (specifically, whether the log of 1

plus the number of characters in the response,
rounded down to the nearest integer, equals x,
for all possible x from the training set)

A salient characteristic of this test and its con-
stituent questions, as described by its designers, is
that they measure content knowledge from prospec-
tive teachers, but not writing proficiency. There is
a separate test that measures the writing proficiency
of prospective teachers, that is required for all test-
takers taking the music test.

In order to empirically confirm the minimal impact
of writing proficiency, we build a second automated
scoring model for writing proficiency using features
inspired by Attali and Burstein (2006) and train it on
the responses written by the same population of test-
takers for the general writing proficiency test (not the
music teaching proficiency test). Note that this model
is generic, i.e., not question specific. We then use this
trained model to assign scores to the responses from
the music teaching proficiency test. A low agree-
ment of these proficiency scores with the H1 scores
assigned to the music questions should be sufficient
evidence to indicate that the writing proficiency of
the test-takers is not an important factor. There will
obviously be some agreement because good writers
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Q N QWK Adjacent Agreement Exact Agreement
H1-H2 H1-WP H1-CS H1-H2 H1-WP H1-CS H1-H2 H1-WP H1-CS

1 1162 .702 .306 .566 .937 .817 .958 .705 .389 .470
2 1160 .764 .217 .570 .988 .892 1.00 .846 .434 .714
3 1154 .695 .245 .515 .955 .809 .945 .573 .358 .476
4 1272 .647 .253 .500 .959 .854 .962 .665 .398 .530
5 1270 .757 .089 .619 .983 .840 .994 .810 .330 .680
6 1267 .669 .196 .426 .950 .831 .928 .597 .359 .464

(a) Scoring performance on the test set for the six questions. N indicates the total number of responses available for each
question, with 70% used to train the content scoring model, the H1-H2 columns denote the agreements between the two experts,
the H1-WP columns denote the agreements between the H1 scores and those assigned by the generic writing proficiency model,
and the H1-CS columns denote the agreements between the H1 scores and the question-specific content scoring model.

(b) The impact of ablating each of the four feature types on the overall scoring performance on
the test set (chars = character n-grams, words = word n-grams, syntax = dependency triples,
and length = log length features). Values > 0 indicate loss in performance when the feature is
ablated and vice versa.

Figure 3: Scoring performance and ablation results.

are also likely to be better students.

5 Results

Figure 3a shows the performance of our content scor-
ing model on the test set for all six questions (the H1-
CS columns). We present three different metrics that
measure the agreement of our model’s predictions
with the H1 scores. Although quadratic weighted
kappa (QWK) is generally the standard metric of per-
formance for short-answer scoring, we also compute
the exact as well as adjacent agreement of the pre-
dictions with the H1 scores. The exact agreement
shows the rate at which our model and H1 awarded

the same score to a response. The adjacent agreement
shows the rate at which scores given by our model
and H1 were no more than one score point apart (e.g.,
the model assigned a score of 2 and the human rater
assigned a score of 1 or 3). All three metrics were
computed after rounding the raw predictions obtained
from the SVR.

As an upper bound on automatic scoring perfor-
mance, we also present the same agreement metrics
between the H1 scores and the scores assigned by the
second human expert (H2).

The table also includes the same agreement metrics
for the predictions made by the generic writing pro-
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ficiency model (the H1-WP columns). As expected,
its performance is significantly worse than our con-
tent scoring model. This empirically confirms that
the writing proficiency of the test-taker is not a fac-
tor in the human expert’s assessment of their music
teaching proficiency.

6 Discussion
Our model’s predictions have high adjacent agree-
ment with H1 scores. In fact, many adjacent agree-
ment values are higher than the corresponding H1-
H2 values. However, the exact agreement and QWK
values are quite a bit lower than their H1-H2 coun-
terparts. These observations tell us that although our
content scoring model often predicts scores within
1 score point of the H1 score, it also either over-
predicts or under-predicts the H1 score by more than
1 score point more often than H2 does.

Further spot-checking of sample responses in the
training data indicated that sometimes it was possi-
ble that there was more than one correct answer to a
question. For example, in the sample question from
Section 2, it could be possible that there is more than
one challenging aspect of the piece. As long as the
test-taker articulates a valid challenge, along with an
appropriate rehearsal technique, it is possible to ob-
tain a score of 3. In situations where there is limited
training data available, and not all valid challenging
aspects have been sufficiently represented, for exam-
ple, this may cause problems for automated scoring
models. We cannot say with any certainty whether
that caused the human-machine QWK scores to be
lower than the corresponding human-human scores
in our experiments, but it is an avenue of research
that we intend to explore in future work.

We also wanted to examine how much each of the
individual feature types contributes to the model’s
performance. To do so, we ablated each of the four
feature types one at a time and re-ran the scoring
model on the test set. Figure 3b shows the percentage
loss in overall QWK for each of the six questions
as we ablate each feature type. A value above zero
indicates that removing a feature family led to a loss
in performance and a value below zero indicates that
removing a feature family actually led to an increase
in performance.

We observe that including the syntax feature type
almost always hurts the overall performance. At

first, we hypothesized that this could be due to poor
parser performance on these texts since they contain
a lot of specialized musical terms (e.g., glissando,
embouchure etc.) To confirm this hypothesis, we
selected a few responses at random from the train-
ing data and looked at their dependency parses. Al-
though we noticed some inaccuracies (e.g., dotted
being interpreted as a verb in the phrase rhythm dot-
ted quarter note), we did not find any evidence of
significantly poor parsing performance. This means
that the parsing feature representation itself seems to
be deficient. We plan to experiment with other types
of syntactic features in the future.

7 Conclusion
In this paper, we examined the feasibility of automat-
ically scoring a unique content-based assessment -
a test to measure the proficiency of teaching musi-
cal concepts to K-12 students. We first presented the
characteristics that make the responses for this assess-
ment different from almost all other previous work
and then presented our approach to building an auto-
mated content scoring model. Our model performs
moderately well on all six essay-style questions from
the test but is prone to over- or under-predicting the
true score by more than 1 point. As part of future
work, we hope to explore the following in order to
improve the model’s performance:

• Increase the size of the training data to account
for the relatively open-ended nature of the ques-
tions.
• Improve the representation of the syntactic fea-

tures.
• Experiment with a hybrid approach (Sakaguchi

et al., 2015) that combines our response-based
approach with another approach that uses over-
lap with reference answers to assign scores.
• Experiment with some music- and

instruction-specific features, including
discourse/argumentation features.
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Abstract

This document describes Tree Kernel-SVM
based methods for identifying sentences that
could be improved in scientific text. This has
the goal of contributing to the body of knowl-
edge that attempt to build assistive tools to aid
scientist improve the quality of their writings.
Our methods consist of a combination of the
output from multiple support vector machines
which use Tree Kernel computations. There-
fore, features for individual sentences are trees
that reflect their grammatical structure. For
the AESW 2016 Shared Task we built systems
that provide probabilistic and binary outputs
by using these models for trees comparisons.

1 Introduction

The system described in this article was submitted
to the Automated Evaluation of Scientific Writing
(AESW) Shared Task (Daudaravicius et al., 2016).

English is the most common language used for
scientific writing across the world. Other things be-
ing equal, many scientific writers are non-native En-
glish speakers, what leads to a demand for assisting
tools that employ “grammar error correction tech-
nologies” to compose scientific articles (Daudaravi-
cius, 2015).

Several competitions similar to the one this article
addresses have been organized, namely: the Help-
ing Our Own (HOO) Shared Task (Dale and Kil-
garriff, 2011; Dale et al., 2012), The CoNLL-2014
shared task on Grammatical Error Correction (Ng et

∗ Both authors contributed equally to the contents and ex-
periments described in this paper.

al., 2014). Those evaluations make use of human
annotated examples of correct and incorrect gram-
mar (Dahlmeier et al., 2013; Yannakoudakis et al.,
2011).

Particularly, Leacock et al. (2010) provide a com-
prehensive overview of various aspects related to
grammar error detection research.

This paper is organized as follows: Section 2
briefly describes the goals of the task our models
attempt to address, Section 3 describes our experi-
ments including the proposed Tree Kernel models,
whose results are reported in Section 4. Section 5
further comments on the results, and Section 6 con-
cludes with some summarizing remarks.

2 The task

The task consists in identifying sentences that need
improvement or correction. This is done by classi-
fying sentences into ones that do need amendments
and those that do not. The training dataset pro-
vided by the organizers comprises sentences pairs
(So, Se), where So is a sentence presented as writ-
ten by a non-native individual, these sentences con-
tain at least one grammatical or lexical mishap that
can be corrected. The corresponding Se has been
edited as to make So to look as a sentence with good
academic style. For instance, example (2), shows a
sentence that is an improved version of the one in
example (1).

(1) This is called as sub-additivity property of
von-Neumann entropy.

(2) This is called a sub-additivity property of
von Neumann entropy.
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The intuition behind this task is that systems that
automatically identify sentence candidates for im-
provement may be built. The core solution would be
provided by keeping track of common pitfalls com-
mitted by non-native individuals in their writing as
in (1). Subsequently, such a system would learn how
these pitfalls have been addressed as to emulate text
produced by native writers.

The training dataset also comprises a set of sen-
tences written by native English academics; they
constitute a body of text that is representative of
good academic writing style.

3 Experiments

For our experiments we used constituent trees corre-
sponding to the examples from the training dataset.
This dataset provided by the shared task organizers
comprises parse tree structures which were gener-
ated by using the Stanford parser (Klein and Man-
ning, 2003).

3.1 Tree Kernels

The tree structures were used to train Support Vec-
tor Machines using the SVM-light implementation
by Joachims (1999) and SubSet Tree kernel (SST)
computation tool (Collins and Duffy, 2002a; Mos-
chitti, 2004; Moschitti, 2006) built on top of the for-
mer.

In essence, a Tree Kernel classifier computes a
kernel function between two trees by comparing
subtrees extracted from them. Since the number of
possible comparisons between subtrees is exponen-
tial, we restricted the choice of subtrees to SubSet
Trees (SSTs) (Collins and Duffy, 2002b). A SST is
a tree where the leaves may comprise non-terminal
symbols and the rules that these trees reflect should
be well formed according to the rules of the target
language grammar, in this case English.

Tree Kernel methods over Support Vector Ma-
chine have been successfully used on many other
natural language processing applications, such as
Semantic Role Labelling (Moschitti et al., 2008),
question answer classification (Moschitti et al.,
2007) or relational text categorization (Moschitti,
2008).

Figure 1b illustrates some SubSet trees1 extracted
1For reasons of brevity, the whole set of SubSet Trees that is

by the SST kernel from the full syntactic tree struc-
ture for (2), which is shown in Figure 1a. Such sub-
trees will be used as features for the Support Vector
Machine model.

Our intuition behind using parse trees compar-
isons to identify candidate text for correction is that
non-native writers will regularly use spurious lexical
grammatical structures across their writings. There-
fore, given a new sentence to classify, its underlying
grammatical structure will be compared to a collec-
tion of tree structures built out of a training dataset.

3.2 Models for sentence quality assessment

Our overall strategy was to build models that use tree
representations of sentences to be used in Support
Vector Machines-based systems for sentence qual-
ity assessment. SVMs work with training exam-
ples labelled as either positive (1) or negative (-1).
Therefore, sentences in need of edition are labelled
as positive examples while sentences which do not
need edition are labelled as negative examples. A
machine learning system trained on these examples
aims to predict a positive one.

Labelling examples as either positive or negative
was translated into labelling tree structures corre-
sponding to these examples with the respective la-
bel; for instance, the tree in Figure 1a is deemed a
positive example. Internally, the SST tree tool as-
signs these labels to the corresponding subtrees: fol-
lowing from this, features such as the subtrees in 1b,
are labelled as positive examples for the kernel com-
putation.

To prepare the datasets for the training stage, we
divided the dataset provided by the organizers in
tree groups: Do: sentences as written by non-native
speakers and need edition; De are sentences that
have a counterpart in Do which were edited to have
an improvement in good academic writing style; and
Dn: sentences written by native English academic
writers which do not have counterparts in Do and do
not need edition.

We wanted to experiment with different condi-
tions on how the identification of sentences in need
of improvement may occur. Therefore, considering
these three subdatasets Do, De and Dn, three mod-
els were built.

extracted from the full parse tree is not shown here.
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Figure 1: Example of how SubSet Trees (SST) extract sub trees as features from constituent tree structures.
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• MO: uses uniquely sentences in Do as positive
examples, and sentences from De as negative
examples.

• ZM: uses sentences from Do as positive ex-
amples, and sentences from Dn as negative ex-
amples.

• ZMO: uses sentences from Do as positive
samples and sentences from both De and Dn

as negative samples.

MO depicts a scenario where the identification
would be better for sentence that keep close sim-
ilarity to the sentences in the training dataset and
high precision is paramount. ZM favours situa-
tions where sentences to be assessed do not keep
high similarity to the set of positive training exam-
ples but the model is able to generalize by contrast-
ing with sentences with good academic style. Ulti-
mately,ZMO should enclose advantages of the two
previous models.

The training dataset of parse trees provided by the
organizers contained 475,473 trees for Do, 476,142
trees for De and 725,374 for Dn. Due to their length
some sentences were unsuitable for processing by
the TK-SVMLight tool, therefore examples whose
length was above 1,400 characters were dropped out
from the training set. This meant dropping 1,489
examples from Do, 1,433 from De, and 283 from
Dn. Thus, 948,693 training examples were used for
MO, 1,199,075 examples for ZM, and 1,673,784
examples for ZMO.

Another reason why we chose Tree Kernels com-
putation as a basis for our systems is that we think
this sort of classification task should rely uniquely
on sentence-level features. Other non-linguistic can-
didate features could have been taken into account
such as the relative position of an individual sen-
tence within a paragraph or document. However,
a system built comprising such a feature might not
work properly on individual sentences that need
classification.

3.3 Training and evaluation procedures
Unfortunately, the computation of kernels for all
SubSet Trees is highly demanding in terms of com-
putation time. Due to hardware limitations, for all
three models the training data set was split into 100

sub-datasets, and a Support Vector Machine model
was trained for each sub-dataset. Then, predic-
tions were computed by using each of those hun-
dred Support Vector Machine models over the un-
labelled test dataset provided by the task organiz-
ers. The overall numerical categorization value for a
system was calculated by averaging over these pre-
dictions. This categorization value was normalized
to generate the probability of a sentence needing
improvement OutputProb using formula(1), where
OutputSV Mmodeli ∈ [−1, 1].

OutputProb =
∑100

i=1 OutputSV Mmodeli
200

+ 0.5
(1)

Because the formula aims to estimate probabili-
ties, if OutputProb > 1 then it is floored down to
one, if OutputProb < 0, then it is rounded up to
zero.

Some issues related to the use Stanford parser
emerged during the evaluation stage. The parsing
procedure for examples from the testing set was ex-
pected to produce a parse tree per example, which
thereafter would be formatted properly for testing
our systems. However, the parser failed to iden-
tify the boundaries of some sentences, particularly
if there was an abbreviation with a period or a colon
symbol occurring in them. For instance, abbrevia-
tions such as “etc.” or “i e.” caused the parser pro-
duce two parse trees for a single sentence.

This issue was overcame by running a script that
matches the tree structure with the original sentence
if the tree structure contained at least 50% of the
words in the original sentence, for which no more
than 10 consecutive sentences or consecutive trees
can be unmatched.

This procedure left 188 sentences without a match
(which is negligible amount of the total testing set:
0.13%). For these sentences a probability of 0.5 or a
label ‘false’ was assigned.

4 Results

Table 1 shows the results for the systems submitted
to the task organizers.

The system was evaluated according to the pre-
dicted label (bin) and according to the predicted
probability (prob).

226



Table 1: Results in terms of Precision, Recall and F-
measure for systems that produce either a probabilis-
tic (prob) or binary (bin) prediction. The number in
parenthesis points to the relative ranking compared
to other systems.

System Precision Recall F1

ZM bin 0.4482 (4) 0.7279 (6) 0.5548 (3)
ZM prob 0.7062 (6) 0.8182 (2) 0.7581 (3)
MO bin 0.3960 (8) 0.6970 (7) 0.5051 (7)
MO prob 0.6576 (8) 0.8014 (3) 0.7224 (3)

ZMO results are not reported as the system did
not produce any positive prediction (F1 = 0).

For the competition of binary output systems, our
ZM system performs better than MO system for
F−score, resulting ranked in third place. This is
0.073 points behind the best system score (HU), but
0.1041 points better than the baseline system from
the task organizers.

Regarding the probabilistic output systems com-
petition, our MO-based system was ranked third.
Similarly, this system is 0.073 points behind the best
system (HITS) and 0.1073 points above the baseline.
Also, this system’s results seem to keep correlation
with the results from the systems provided by the
team NTNU-YZU.

5 Discussion

It is unfortunate the dataset size prompted us to split
the training set into a hundred sub-datasets to train
their corresponding Support Vector Machine mod-
els. This split was done according to the order in
which sentences appear on the training set, expect-
ing that indirectly each modified sentence will pro-
vide the negative and the positive examples (this is
the sentence before and after being edited, So and
Se respectively ) is likely to fall within same sub-set.
While this is a simplified strategy to split the train-
ing set, the effectiveness of other methods is an open
research question to explore. Clustering algorithms
could provide a better split.

The distribution of positive and negative examples
forMO was perfectly balanced as 50% of samples
were positive while the other 50% were negative.
TheZMmodel was fairly balanced, theZMO was
not balanced (475,473 positive examples in contrast
to 952,284 negative examples) and this lead to the

corresponding systems produce only negative pre-
dictions.

It seems that the F1 measure is proportional to
how well balanced each data set is, this could be due
to not using the development set to tune the thresh-
old for binary predictions, or to re-arrange probabil-
ities.

Systems trained using the ZM perform better
than the ones using MO. We think a reason for
this is that in MO a positive example shares vari-
ous subtrees with its corresponding negative exam-
ple. Therefore, this may affect the classifier ability
to calculate predictions for some examples in the test
set. It would be ideal to make use of the test set gold
standard to have more conclusive insights in this re-
spect.

6 Conclusions

We described in this paper machine learning-based
systems for identifying sentences that need amend-
ments to improve their academic style. Our four sys-
tems have a Support Vector Machines computations
as a core, they were built having tree representations
of target sentences as features. The best systems of
these four are the ones that use a model where sen-
tences needing improvement are deemed as positive
examples, and as negative examples sentences that
were not edited and do not correspond to the positive
examples are taken into account. This may be due to
various reasons such as the distribution of positive
and negative examples, or entropy of the datasets.
We intend to address these and other issues in our
systems in future work.

We think these systems’ performance can be im-
proved by modifying: the combination of models,
and the software implementation, the representation
of features. So far, we have implemented an em-
pirical combination of sub-models output to have a
global prediction output.

Making changes in the implementation of tree
kernels computation may help to create models that
meet scalability requirements. The final prediction
would benefit of having less sub-models while keep-
ing computation time reasonable.

Finally, we expect these attempts and future work
to contribute to the state of the art of assistive writing
technologies.
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Abstract

Online, open access, high-quality textbooks
are an exciting new resource for improving
the online learning experience. Because text-
books contain carefully crafted material writ-
ten in a logical order, with terms defined be-
fore use and discussed in detail, they can pro-
vide foundational material with which to but-
tress other resources. As a first step towards
this goal, we explore the automated augmen-
tation of a popular online learning resource
– Khan Academy video modules – with rele-
vant reference chapters from open access text-
books. We show results from standard infor-
mation retrieval weighting and ranking meth-
ods as well as an NLP-inspired approach,
achieving F1 scores ranging from 0.63, to 0.83
on science topics. Future work includes taking
into account the difficulty level and prerequi-
sites of a textbook to select sections that are
both relevant and reflect the concepts that the
reader has already encountered.

1 Introduction

A learner who is studying material from an on-
line course, such as a video from a Khan academy
physics sequence, may desire additional reading ma-
terial to supplement the current video or exercise. It
can be distracting to do a web search to find relevant
material, and furthermore, the material that is found
may be described at the wrong level or may assume
prerequisite knowledge that the learner does not
have. To this point, Mathew et al. (2015) note that
online encyclopedic resources, such as Wikipedia,
are not pedagogically organized and tend to have
many cyclic dependencies among articles.

Textbooks written for students are specifically de-
signed for learning. Material is carefully organized
to define terms before use or to point the reader to
the location in which the material will be discussed
in more detail. Content is described at a consistent
reading level and notation and formatting are also
consistent.

However, to date, textbooks have not been widely
used for automated online recommendations, most
likely because they have not been freely available
online for many subjects. This situation is chang-
ing with the advent of projects like OpenStax (Pitt,
2015)1 for which respected educators are writing
and vetting free online textbooks in major subject
categories.

In this work we explore the potential of aug-
menting online course materials – specifically Khan
Academy modules2 – with relevant supplemental
reading from textbooks. We show that even very
simple algorithms can go a long way towards mak-
ing effective recommendations.

2 Related Work

There has been some related work in aligning text-
book content to other content. Contractor et al.
(2015) identify the need to automatically label in-
structional materials with learning standards, which
are defined hierarchically from general goals down
to lists of instructions that define the skills that stu-
dents should learn during a course or within a cur-
riculum. They develop an algorithm for represent-
ing the content within a list of learning standards

1https://openstaxcollege.org
2https://www.khanacademy.org
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for high school math and science curricula and label
corresponding portions of “educational documents”
and Khan academy video transcripts. They use an
unsupervised method that models each instruction as
a collection of terms that are relevant to that instruc-
tion and use external resources including Wikipedia,
Wordnet, and a word vector embedding algorithm
trained on Wikipedia and news text for term expan-
sion. They allow a match between a text and an in-
struction only if the higher level goals also match.
When associating learning goals with educational
documents, they achieve accuracy of 81% for math
and 71% for science.

Textbooks often refer to the same concept in mul-
tiple locations, and require the reader to make di-
gressions to other parts of the text to understand
concepts that they are not familiar with. Agrawal
et al. (2013) address the problem of automatically
determining which concepts described elsewhere in
the textbook are most relevant to what the reader is
viewing at the current juncture. They create a model
of the structure of references to concepts within sec-
tions of the textbook and model the manner in which
readers would navigate these references based on
their structure within the book. The model does not
examine the text itself.

Agrawal et al. (2011), working with substandard
textbooks (written in a developing nation), identify
the sections can be enriched by better written con-
tent. They define a syntactic complexity score that
makes use of the maturity of the text and a seman-
tic dispersion score based on the observation that
sections that discussed concepts with respect to one
another were of higher quality. Their earlier work
(Agrawal et al., 2010) linked textbook content to
web resources. Our intent starts with the opposite
assumption: that the textbooks are authoritative and
are to be linked to other content.

Mathew et al. (2015) distinguish between peda-
gogic and general resources such as thesauri, not-
ing that the latter have good coverage but are not
structured to aid in learning. They assess a graph-
theoretic algorithm for collapsing word definitions
into more compact forms.

3 Methods

Khan Academy modules are courses that cover
broad subjects such as ”Physics”, ”Chemistry”, ”Bi-
ology” and are broken down into submodules focus-
ing on more specific topics within the subject. Each
submodule consists of some combination of videos,
readings and interactive exercises presented within
a dynamic web interface. For example, within the
physics module on Khan Academy, submodules in-
clude “Force and Newton’s laws of motion”, “Mag-
netic forces and fields”, etc. See Figure 1 for a
screenshot.

Our goal specifically is: Given a Khan Academy
module and a textbook, for each submodule in the
Khan Academy module, assign the chapters from
the textbook that teach the same concepts as the sub-
module. We wish to label each of these submodules
with relevant chapters for reading. We present three
methods to do so.

3.1 Method 1: TF-IDF document similarity

We use a standard method for document similar-
ity comparison from information retrieval: weight-
ing terms with tf-idf scores, converting documents
into vectors with these weights, and comparing doc-
uments by taking the cosine similarity of the vectors
(Baeza-Yates et al., 2010). Each submodule is repre-
sented using the text from its main page, which only
consists of titles and short descriptions of videos,
readings, and exercises. The text from the exercises
and video transcripts were not used.

The vocabulary of words extracted consists of all
words in the submodules excluding stopwords and
terms with a document frequency over 0.9. Each
submodule and chapter is encoded as a vector of
these words using tf-idf weights computed on the set
of submodules. Let D be the set of submodules, Nd

be the number of words in submodule d, fd(t) be
the number of times term t appears in submodule d.
Term frequency is computed as the raw frequency
of a term in all submodules, i.e.

∑
d∈D fd(t)∑
d∈D Nd

. The
inverse document frequency for a term is computed
as log |D|

|{d∈D:t∈D}| . For each submodule the chapter
with the highest cosine similarity is selected.
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Figure 1: A screenshot of the ”Structure of a cell” submodule from the Khan Academy biology module.

3.2 Method 2: Learning objective frequencies
Although computing document similarity works
well when we assume a 1-1 correspondence between
a submodule and chapter in a textbook, some sub-
modules may span multiple chapters or no chapters
at all.

To address this issue we create a method based on
learning objectives. A learning objective for a sub-
module is a concept that is taught in the submodule
with the goal of being understood by a learner af-
ter completion of the submodule. In this work we
assume that learning objectives can be represented
by key phrases corresponding to new terms that are
taught to the learner such as acceleration, cell di-
vision, photosynthesis, etc. This is a very simple
representation compared to, say, a knowledge-based
method.

Our method extracts learning objectives from a
Khan Academy submodules and searches for which
chapter teaches those learning objectives with the
understanding that different learning objectives may
be taught in different chapters. Essentially we are re-
ducing the assumption of a 1-1 correspondence be-
tween a submodule and chapter to a 1-1 correspon-
dence between a learning objective and a chapter.

For each submodule a list of learning objectives
is extracted. The chapters assigned to the submod-
ule consists of the set of chapters assigned to each
learning objective. The pseudocode for this gen-
eral algorithm is the augmentSubmodule procedure
in Algorithm 1. augmentSubmodule depends on two
components: the extraction of learning objectives,
extractLearningObjectives, and the assignment of
chapters to learning objectives, pickChapterForObj.

In this work extractLearningObjectives is imple-
mented as a keyphrase extraction. The keyphrase
extraction is a rule-based approach that breaks up
lists and terms that are separated by the word ‘and’.
For example, the submodule of the physics module
titled “Electric charge, electric force, and voltage”
contains the keyphrases “electric charge”, “electric
force”, and “voltage”, which the algorithm extracts.

In addition, the words in the title are tagged with
parts of speech, so that the pattern “JJ1 and JJ2 NN”
extracts both “JJ1 NN” and “JJ2 NN”. For example,
both the phrases ‘balanced forces’ and ‘unbalanced
forces’ are extracted from ‘balanced and unbalanced
forces’. Terms can be filtered to those that occur at
least a minimum frequency in the textbook.

Our implementation of pickChapterForObj is the
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procedure pickChapterForObjFreq as shown in Al-
gorithm 1. Let the set of chapters be denoted
C. f(t, ci) is the frequency of a term t in chap-
ter ci. The chapter picked for a learning objec-
tive t is the chapter with the highest frequency,
argmaxi f(t, ci) for i ∈ {1, 2, . . . , |C|}.

3.3 Method 3: Learning objective spikes

Method 3 is based on the notion of learning objec-
tive spikes and is the same as Method 2 except with
a change in how a chapter is assigned to a learning
objective. We say a learning objective has a spike
in chapter i if it has a sudden increase in proba-
bility in chapter i compared to any of the previous
chapters. The threshold for what counts as a ”sud-
den increase” can be tuned. In Method 3 the chapter
picked for a learning objective is the chapter with the
first spike (if any exist) for the learning objective.

The motivation for this spike-based method is
that because textbooks are written to teach, in most
cases, when a new term is first discussed in detail is
where it is defined and explained best. The assump-
tion of the spike method is that this definition chap-
ter in most cases most useful to show to a learner,
even though some following chapters may use that
term more frequently in the context of describing
some more advanced concepts.

For example, as shown in Figure 2, the word
“voltage” is defined in chapter 19, where a spike is
seen, and then used many times in chapter 21 in a
discussion of circuits. However, “voltage” is men-
tioned only in passing in chapters 17 and 18, and so
those are not the best chapters to show the learner
as compared to chapter 19, which has a spike in us-
age. Thus in Figure 2, Method 3 performs better
than Method 2.

Let the set of chapters be denoted C. f(t, ci) is
the frequency of a term t in chapter ci. The prob-
ability of chapter ci given a term t is p(t, ci) =

f(t,ci)∑|C|
j=1 f(t,cj)

. The score for a chapter is s(t, ci) =

p(t, cj)−max1<j<i p(t, cj). Finally, the chapter as-
signed to a term is chosen by picking the smallest i
such that s(t, ci) > P is true where P is a tunable
threshold. The algorithm fails to identify a chap-
ter for the term if ∀i s(t, ci) ≤ P . The final algo-
rithm for Method 3 is the augmentSubmodule pro-
cedure using the pickChapterForObjSpike procedure

Figure 2: The probability of the term voltage over all chapters.

The correct chapter (19) is the first spike, but not the chapter

with the highest frequency (21).

Khan Academy
Module Textbook
Physics College Physics by OpenStax
Physics Mechanics by Benjamin Crowell
Biology Biology by OpenStax
Chemistry Chemistry by OpenStax

Table 1: Test materials; the first row was used for training hy-

perparameters.

as pickChapterForObj (see Algorithm 1).

4 Evaluation and Results

All tuning of hyperparameters (tf-idf filtering, the
minimum frequency of a learning objective term and
the threshold for a spike) was done on augmenta-
tion of the Khan Academy physics module with the
OpenStax physics textbook. Dataset details appear
in Table 1.

For each of the three test modules, we picked a
random subset of 10 submodules and split this into
two disjoint sets with 5 submodules for each. We
recruited four judges and had two judges label each
of these disjoint sets, so in total all submodules were
labeled twice. For every Khan Academy submodule,
the judges were told to select any and all chapters in
the textbook that explained the same concepts as that
submodule. A fifth judge (one of the authors) broke
ties between any discrepancies in answers from the
first two judges.

Precision was calculated as
∑M

i=0 Ni

N where M is
the number of submodules, Ni is the number of
chapters that were correctly matched for submodule
i, and N is the total number of chapters that were
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Biology
Method Precision Recall F1
Tf-idf 1.0 0.53 0.69
Term freq 0.88 0.74 0.80
Spikes 0.87 0.68 0.76

Chemistry
Method Precision Recall F1
Tf-idf 1.0 0.71 0.83
Term freq 0.58 0.79 0.67
Spikes 0.67 0.71 0.69

Physics
Method Precision Recall F1
Tf-idf 0.60 0.67 0.63
Term freq 0.50 0.67 0.57
Spikes 0.46 0.67 0.55

Table 2: The results of the tf-idf (Method 1), Term frequency

(Method 2), and Spikes (Method 3) Keywords methods.

output. Recall was calculated as
∑M

i=0 Ni

K where K
is the total number of gold-standard chapter anno-
tations for the entire module. F1 was the harmonic
mean of the precision and recall scores.

The results for the three methods are shown in
Table 2. The tf-idf document similarity method
(Method 1) achieves high precision, but lower recall
because it only selects one chapter per module. Sur-
prisingly the spikes method (Method 3) performed
worse than the term frequency method (Method 2).
We believe that this is because there were few occa-
sions in the test set where the chapter with the high-
est frequency of a term did not correspond to the
chapter that a term was explained in.

5 Limitations

Textbooks that are organized differently from the
Khan Academy module are more difficult to attain
good results on. For example, our methods get much
lower results on the physics module because the
physics textbook used does not cover certain top-
ics in the Khan Academy physics module, and our
methods do not recognize when a term is not being
taught.

In addition, the frequency and spike methods have
trouble recognizing where a term is explained for
terms such as “force” that occur with high frequency
throughout a textbook. Both methods also make the
simplifying assumption that the learning objectives

Algorithm 1 Augmenting Submodules with Chap-
ters
1: procedure AUGMENTSUBMODULE

2: learningObjectives← extractLearningObjectives()
3: relevantChapters = [ ]
4: for objective in learningObjective do
5: chapter← pickChapterForObj(objective)
6: append chapter to relevantChapters
7: return relevantChapters
8: procedure PICKCHAPTERFOROBJFREQ(term)
9: return argmaxi f(term, ci) for i ∈ {1, 2, . . . , |C|}

10: procedure PICKCHAPTERFOROBJSPIKE(term)
11: for i ∈ {1, 2, . . . , |C|} do
12: if s(objective, ci) > P then return i
13: return None

for a module can be represented by keyphrases ex-
tracted from submodule titles.

6 Conclusions and Future Work

We have presented three simple methods for aug-
menting Khan Academy modules with textbook
chapters. The tf-idf method achieves high precision
but lower recall, so we also showcased two meth-
ods (term frequency and spikes) that extract learning
objectives and attempt to determine which chapters
the learning objectives are located in. These results
show great promise for using textbooks to automat-
ically improve online learning materials developed
for other purposes.

However, so far we have only evaluated our meth-
ods in science domains. Our methods may work less
well in other domains where the important terms are
less technical, and learning objectives cannot be as
well represented by such terms.

In addition, for this work, it was known in ad-
vance which textbooks were to be aligned to a mod-
ule. In a more realistic setting, the application must
first select an appropriate textbook for the module,
perhaps based on both the subject of the textbook
and its level of complexity.

Lastly, our current work provides a coarse aug-
mentation by showing entire relevant chapters to the
learner; a useful next step will be to extract relevant
excerpts from the chapters.
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Abstract

In spite of methodological and conceptual
parallels, the computational linguistic appli-
cations short answer scoring (Burrows et
al., 2015), authorship attribution (Stamatatos,
2009), and plagiarism detection (Zesch and
Gurevych, 2012) have not been linked in prac-
tice. This work explores the practical useful-
ness of the combination of features from each
of these fields for two tasks: short answer
assessment, and plagiarism detection. The
experiments show that incorporating features
from the other domain yields significant im-
provements. A feature analysis reveals that
robust lexical and semantic features are most
informative for these tasks.

1 Introduction

Despite different ultimate goals, Short Answer As-
sessment, Plagiarism Detection, and Authorship At-
tribution are three domains of Computational Lin-
guistics that share a range of methodology. How-
ever, these parallel have not been compared across
domains. This work explores the intersection of
these areas in a practical context.
In the domain of authorship attribution, a set of texts
and potential authors is given, and the goal is to ”dis-
tinguish between texts written by different authors”
(Stamatatos, 2009, page 1). In the domain of short
answer assessment, tools are designed to assess the
meaning of a short answer by comparing it to a refer-
ence answer (Burrows et al., 2015; Ziai et al., 2012),
and thereby to its semantic appropriateness. In the
domain of Plagiarism Detection, two main goals can

be pursued (Clough and Stevenson, 2011): in ex-
trinsic plagiarism detection, a source and potentially
plagiarized texts are compared as a whole unit with
methods from the domain of authorship attribution
(Grieve, 2007). The goal of intrinsic plagiarism de-
tection is to detect stylistic changes within one doc-
ument (Zu Eissen and Stein, 2006).
All three areas use textual similarity features on
various levels of linguistic abstraction for nom-
inal classifiers, but the distribution of features
over three related dimensions differs (Zesch and
Gurevych, 2012): style, content, and structure.
While (learner language) short answer assessment
systems put emphasis on content and ignore stylis-
tic aspects, authorship attribution focuses on stylis-
tic features. Plagiarism detection systems use both
content, structural, and stylistic similarity features
to classify texts as plagiarizing other documents or
not. The main task for short answer assessment and
plagiarism detection is to evaluate the existence and
quality of paraphrases of a source text. This work
explores the effect of features used in the field of
authorship attribution and plagiarism detection fea-
tures for short answer assessment, as well as the ef-
fect of short answer assessment features for plagia-
rism detection.

2 Data

For the experiments in the domain of short answer
assessment, the Corpus of Reading comprehension
Exercises in German (Ott et al., 2012) was used.
For the experiments in the domain of plagiarism de-
tection, the Wikipedia Reuse Corpus (Clough and
Stevenson, 2011) was selected for the experiments.
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These resources were chosen since they are standard
shared evaluation resources in these domains (Bur-
rows et al., 2015; Zesch and Gurevych, 2012).

2.1 CREG

CREG-1032 is a short answer learner corpus con-
taining student and reference answers to questions
about reading comprehension texts. The longitudi-
nal data was collected at two German programs in
the United States at the Ohio State University (OSU)
and the Kansas University (KU). The corpus ex-
hibits a high variability of surface forms and seman-
tic content in the student answers due to a variety of
proficiency levels represented. Each student answer
was annotated by two independent annotators with a
binary diagnosis indicating the semantic correctness
of the answer, independent of surface variations such
as spelling mistakes or agreement errors. The cor-
pus is balanced with respect to this diagnosis. Table
1 shows the distribution of student answers, target
answers, and questions, as described in (Meurers et
al., 2011b), who also showed that the OSU answers
are significantly longer (average token length of 9.7
for KU versus 15.0 for OSU).

2.2 Wikipedia Reuse Corpus

The Wikipedia Reuse Corpus (WRC, (Clough and
Stevenson, 2011)) represents different types of text
reuse imitating different plagiarism types: copy and
paste, light and heavy revision, and non-plagiarism.
The plagiarism samples vary in the amount of re-
vision and paraphrasing performed by participants.
Table 1 shows the corpus’ data distribution. The
texts were not exclusively written by English native
speakers and show similar surface/semantic varia-
tion as the CREG answers. With an average of 208
tokens in length, the answers are nearly 20 times as
long as the answers in the CREG corpus, but referred
to as ”short answers” (Clough and Stevenson, 2011,
page 1). Since Zesch and Gurevych (2012) showed
empirical deficits in the text reuse conditions, all pla-
giarism labels were collapsed into a single category,
rendering the task a binary classification, parallel to
the CREG binary diagnoses. In this setting, the data
is unbalanced: the majority class is the plagiarism
class with 57 instances, whereas there are only 38
non-plagiarized documents.

CREG-1032-KU CREG-1032-OSU WRC
# student answers 610 422 95
# target answers 136 87 5
# questions 117 60 5

Table 1: Data distribution in the CREG-1032 and
Wikipedia Reuse Corpus data set.

3 Baseline Short Answer Assessment
System

The UIMA-based CoMiC system (Meurers et al.,
2011a; Meurers et al., 2011b) served as a framework
for the experiments. It is an alignment-based short
answer assessment system which aligns student to
reference answers on different levels of linguistic
abstraction in order to classify learner answers as
(in)correct based on the quantity of different align-
ment types. CoMiC proved to be highly effective
for both German and English (Burrows et al., 2015).
The CoMiC system follows a three-stage pipeline
architecture (Bailey and Meurers, 2008; Meurers et
al., 2011a): alignment, annotation, diagnosis.
First, the system enriches the raw answer texts with
linguistic annotation. Table 2 from (Meurers et al.,
2011b) shows the different annotation tasks together
with the respective tools.

Task NLP Tool
Sentence Detection OpenNLP (Baldridge, 2005)
Tokenization OpenNLP (Baldridge, 2005)
Lemmatization TreeTagger (Schmid, 1994)
Spell Checking Edit distance (Levenshtein, 1966)

igerman98 word list
POS Tagging TreeTagger (Schmid, 1994)
NP Chunking OpenNLP (Baldridge, 2005)
Lexical Relations GermaNet (Hamp and Feldweg, 1997)
Similarity Score PMI-IR (Turney, 2001)
Dependency Parsing MaltParser (Nivre et al., 2007)

Table 2: NLP tools used in the CoMiC system.

In the second step, a globally optimal alignment con-
figuration is selected by the Traditional Marriage
Algorithm (Gale and Shapley, 1962). The system
aligns tokens, NP chunks, and dependency triples.
Tokens are aligned when they match on the sur-
face, lowercased surface, synonym, semantic type,
or lemma level. Only new elements (not verbatim
given in the corresponding question) are aligned.
In the final step, a range of features (Table 3, (Meur-
ers et al., 2011b)) are extracted and fed to a ma-
chine learning component. In contrast to the original
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CoMiC system, predictions are made with WEKA’s
(Hall et al., 2009) memory based learner instead of
the TiMBL memory based learner (Daelemans et al.,
2007). The features denote directionalized quanti-
ties of alignments on different linguistic levels (’pct’
= ’percentage of’).

Feature Description
1. Keyword Overlap pct keywords aligned
2. Target Token Overlap pct aligned target tokens
3. Learner Token Overlap pct aligned student tokens
4. Target Chunk Overlap pct aligned target chunks
5. Learner Chunk Overlap pct aligned student chunks
6. Target Triple Overlap pct aligned target dependency triples
7. Learner Triple Overlap pct aligned student dependency triples
8. Token Match pct token-identical token alignments
9. Similarity Match pct similarity-resolved token alignments
10. Semtype Match pct type-resolved token alignments
11. Lemma Match pct lemma-resolved token alignments
12. Synonym Match pct synonym-resolved token alignments
13. Variety of Match (0-5) sum of features 8-12
14. Target Answer ID target answer id
15. Student Answer ID student answer id

Table 3: CoMiC system features.

4 Extensions of the Baseline System

Stamatatos (2009) provides an extensive overview
about approaches and stylometric features used in
computerized authorship attribution. The features
are divided into four subclasses. Table 4 based
on (Stamatatos, 2009, page 3) lists all the fea-
tures used, as well as their corresponding category
(lexical/character/syntactic/semantic) and informa-
tion about whether they are applied to one or two
documents. If they are applicable to one document,
then there exists a feature both for the student and for
the target side in order to model the relation in this
specific dimension of similarity, reflected in the pre-
fix ’Student’ or ’Target’ in the feature names. Fea-
tures applied to two documents are computed via
cosine similarity between a vector for each answer
holding the frequencies of the elements under con-
sideration. The feature all features interpolated is a
special overlap feature, for which first all frequen-
cies of all feature extractors were added to one vec-
tor before the cosine similarity was applied (see Fig-
ure 1). The first m entries in the vector are lexical
features, followed by n character features, etc.
The SpellCorr feature measures the token overlap
between two texts using spelling corrected and sur-
face forms. For each token, the system checks

Feature Description # Docs
lexical

AvgWordLength Average word length 1
TTR Type-Token Ratio 1
WordUniFreq Word Unigram frequency similarity 2
WordBiFreq Word Bigram frequency similarity 2
WordTriFreq Word Trigram frequency similarity 2
SpellCorr Spell Corrected Unigram Matches 1

character
CharFreq Character frequency similarity 2
UpperCharFreq Uppercase character frequency similarity 2
LowerCharFreq Lowercase character frequency similarity 2
DigitCharFreq Digit character frequency similarity 2
LetterProportion Proportion of letters (A-Za-z) in answer 1
UpperProportion Proportion of uppercase letters in answer 1
LowerProportion Proportion of lowercase letters in answer 1
CharBigramFreq Character bigram frequency similarity 2
CharTrigramFreq Character trigram frequency similarity 2
CharFourgramFreq Character fourgram frequency similarity 2
CharFivegramFreq Character fivegram frequency similarity 2

syntactic
POS Part of Speech tag frequency similarity 2
Chunk Chunk tag frequency similarity 2
NPChunk Noun phrase chunk frequency similarity 2
PosBigram POS tag bigram frequency similarity 2
PosTrigram POS tag trigram frequency similarity 2
PosFourgram POS tag fourgram frequency similarity 2
PosFivegram POS tag fivegram frequency similarity 2

semantic
Synonym Proportion of synonym-overlapping tokens 1
DepTriple Proportion of dependency triple overlaps 1

combination
all features interpolated all features combined 2

Table 4: Authorship attribution features imple-
mented in CoMiC.

whether the token or its lemma appears in a word
list. If not, the system seaches the closest Levens-
thein match cosidering both the other document and
the word list. All .arff feature files were generated
with the same givenness constraints as the CoMiC
baseline features and exported from there to WEKA.

5 Experimental Testing

The following orthogonal hypotheses were tested:

1. The accuracy for the learner language short an-
swer assessment task increases when features
from the domain of authorship attribution are
added.

2. The accuracy for the plagiarism classification
task increases when features from the short an-
swer assessment system are added.

5.1 Method
The WEKA lazy iBk memory based learner with
k=5-nearest neighbor search was run in a 10-
fold cross validation setting. Following Dietterich
(1998), the McNemar’s test with α = 0.1 is used in
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cosine similarity

lexical character syntactic semantic

Figure 1: Interpolated textual similarity.

R to test whether an improvement over the baseline
is statistically significant.

5.2 Results

Table 5 shows accuracies for the prediction of the
semantic equivalence of learner answers and the
prediction of plagiarism. For short answer assess-
ment, the CoMiC features yielding an accuracy of
84.5% (KU) and 87.1% (OSU) are used as a base-
line. For plagiarism detection, the set of all style
features (Table 4, 84.2%) was used as the baseline.
Table 5 shows that using only the baseline features
from the other domain already yield significant im-
provements (92.6% for the WRC, 86.9% for CREG-
1032-KU) over the baseline of in-domain features.
Also the combination of both baseline feature sets
yields improvements over the respective baseline.
Even though the interpolated similarity feature on
its own resulted in a surprisingly high accuracy for
CREG-1032-OSU (87.9%), it only works in combi-
nation for the WRC corpus, resulting in the highest
accuracy of all experiments (95.8%). Lexical fea-
tures alone result in accuracies comparable to the
baseline accuracies for both tasks. The character
based features alone work better for short answer
assessment, with even better results when combined
with the baseline features. Semantic features have a
higher impact for plagiarism detection, although for
the CREG-1032-OSU data set, these features alone
yield nearly the baseline accuracy.

Feature Analysis. The information gain of fea-
tures was computed in WEKA with the InfoGainAt-
tributeEval filter with default parameters. Ta-
ble 6 shows the ten most informative features for
each data set. The most informative features are
mostly lexical or character-based and thus content-
modeling features, where the most informative fea-

Features Data
KU OSU WRC

baselines
CoMiC 84.5 87.1 92.6*
all style features 86.9* 86.0 84.2
baselines + new features
CoMiC + all style features 85.6 87.7 90.5*
all features interpolated 78.0 87.9 62.1
CoMiC + all features interpolated 84.3 87.2 95.8*
lexical features 84.5 86.3 90.5*
CoMiC + lexical features 84.4 88.2 88.4
character features 83.3 86.3 82.2
CoMiC + character features 85.7 87.7 83.2
syntactic features 67.4 69.0 80.0
CoMiC + syntactic features 84.3 85.1 87.4
semantic features 82.1 85.0 90.6*
CoMiC + semantic features 83.8 87.0 91.6*

Table 5: Results for the binary classification tasks. *
denotes a significant improvement (α = 0.1).

ture indicates the proportion of matched tokens
when spelling-corrected versions are used. This is
not surprising given the high surface variability in
the corpora, and the design choices of the corpus
creation to ignore form errors and focus on seman-
tics.

6 Discussion and Related Work

Grieve (2007) provided an extensive comparison of
quantitative authorship attribution methods for ex-
trinsic plagiarism detection. The observation that
word and character-based metrics are most success-
ful for extrinsic plagiarism detection can be con-
firmed by the present study. Clough and Stevenson
(2011) tested two methods for classifying the texts in
their Wikipedia Reuse Corpus: n-gram overlap and
longest common subsequence. They report on an ac-
curacy of 80% for predicting all four labels, and an
accuracy of 94.7% for the binary classification. The
present work outperformed the already very accu-
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Rank CREG-1032 WRC
1 TargetSpellCorr StudentSpellCorr
2 CharBigramFreq Token Match
3 CharTrigramFreq CharTrigramFreq
4 CharFourgramFreq CharFourgramFreq
5 WordUniFreq CharFivegramFreq
6 all features interpolated TargetSpellCorr
7 Target synonym overlap CharBigramFreq
8 CharFivegramFreq StudentSynonym
9 StudentSpellCorr WordUniFreq
10 TargetSynonym TargetSynonym

Table 6: Ten most informative features for the
CREG-1032 and WRC data set.

rate system by Clough and Stevenson (2011) by al-
most one percent point with an accuracy of 95.8%.
Zesch and Gurevych (2012) used a variety of con-
tent, structural, and stylistic features for the plagia-
rism classification task on the Wikipedia Reuse Cor-
pus. They report an accuracy of 96.8% for the task
of binary plagiarism classification.
Meurers et al. (2011b) reported an accuracy of
84.6% for both the CREG-1032-KU and the CREG-
1032-OSU data set with an early version of the
CoMiC-DE system. Hahn and Meurers (2012)
report an accuracy of 86.3% for the CREG cor-
pus as a result of using the CoSeC system, which
uses abstract semantic representations. Horbach et
al. (2013) re-implemented the CoMiC system and
tested the effect of considering the text instead of
pre-defined target answers. In the best case, they
reached an accuracy of 84.4% on the CREG corpus.
Pado and Kiefer (2015) classified answers in the
CREG corpus according to their similarity to a target
answer. All answers above a threshold were classi-
fied as correct, resulting in an accuracy of 83.7% for
CREG-1032. Ziai and Meurers (2014) made use of
human-annotated information structural annotations
for the CREG-1032-OSU data set. They obtained an
accuracy of 90.3% for the CREG-1032-OSU data
set for the CoMiC system. Rudzewitz (2015) aug-
mented the CoMiC system with alignment weight-
ing features measuring the importance of aligned el-
ements with respect to the concrete task and general
linguistic properties of aligned elements. This work
reported an accuracy of 90.0% for the CREG-1032-
OSU corpus. The difference of 1.2% to the present
work warrants a combination of both approaches in

future work.

7 Conclusions and Future Work

This article represents a pioneer work for linking the
three research areas short answer assessment, au-
thorship attribution, and plagiarism detection.
The experiments confirmed the hypothesis formu-
lated in the introduction that these areas share a
similar methodology in terms of frameworks, tasks,
and features. It was shown that semantics-based
features modeling aspects of content, especially ro-
bust character-based features, were most effective
for both short answer assessment and plagiarism de-
tection, and that the most informative features for
both corpora were surprisingly similar. The experi-
ments also made evident that already rather simple
features can yield reasonable results for these tasks.
Both research hypotheses formulated in section 5
could be confirmed, respectively the null hypothe-
sis could be rejected: features from authorship at-
tribution yielded significant improvements for the
task of learner language assessment, and features
from learner language assessment yielded signifi-
cant improvements for the task of plagiarism detec-
tion. However, it has to be noted that not all features
are strictly task-specific, and also applicable to other
NLP tasks.
A comparison with related work showed that the re-
sults are comparable to current state-of-the-art ap-
proaches, although there is still room for improve-
ment. Future work therefore will explore the us-
age of more features, more elaborate machine learn-
ing algorithms, and automatic feature selection tech-
niques. In addition, more corpora from either do-
main will be used to obtain a broader evaluation per-
spective. Especially stylistic features modeling for
example stopword patterns as well as longest com-
mon subsequence features are hypothesized to be
beneficial for the task of plagiarism detection since
they model stylistic rather than semantic properties.
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Abstract

We demonstrate that an attention-based
encoder-decoder model can be used for
sentence-level grammatical error identi-
fication for the Automated Evaluation of
Scientific Writing (AESW) Shared Task 2016.
The attention-based encoder-decoder models
can be used for the generation of corrections,
in addition to error identification, which is of
interest for certain end-user applications. We
show that a character-based encoder-decoder
model is particularly effective, outperforming
other results on the AESW Shared Task on its
own, and showing gains over a word-based
counterpart. Our final model—a combination
of three character-based encoder-decoder
models, one word-based encoder-decoder
model, and a sentence-level CNN—is the
highest performing system on the AESW
2016 binary prediction Shared Task.

1 Introduction

The recent confluence of data availability and strong
sequence-to-sequence learning algorithms has the
potential to lead to practical tools for writing sup-
port. Grammatical error identification is one such
application of potential utility as a component of a
writing support tool. Much of the recent work in
grammatical error identification and correction has
made use of hand-tuned rules and features that aug-
ment data-driven approaches, or individual classi-
fiers for human-designated subsets of errors. Given
a large, annotated dataset of scientific journal arti-
cles, we propose a fully data-driven approach for

this problem, inspired by recent work in neural ma-
chine translation and more generally, sequence-to-
sequence learning (Sutskever et al., 2014; Bahdanau
et al., 2014; Cho et al., 2014).

The Automated Evaluation of Scientific Writ-
ing (AESW) 2016 dataset is a collection of nearly
10,000 scientific journal articles (over 1 million
sentences) published between 2006 and 2013 and
annotated with corrections by professional, native
English-speaking editors. The goal of the associated
AESW Shared Task is to identify whether or not a
given unedited source sentence was corrected by the
editor (that is, whether a given source sentence has
one or more grammatical errors, broadly construed).

This system report describes our approach and
submission to the AESW 2016 Shared Task, which
establishes the current highest-performing public
baseline for the binary prediction task. Our pri-
mary contribution is to demonstrate the utility of an
attention-based encoder-decoder model for the bi-
nary prediction task. We also provide evidence of
tangible performance gains using a character-aware
version of the model, building on the character-
aware language modeling work of Kim et al. (2016).
In addition to sentence-level classification, the mod-
els are capable of intra-sentence error identification
and the generation of possible corrections. We also
obtain additional gains by using an ensemble of
a generative encoder-decoder and a discriminative
CNN classifier.

2 Background

Recent work in natural language processing has
shown strong results in sequence-to-sequence trans-
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formations using recurrent neural network models
(Cho et al., 2014; Sutskever et al., 2014). Grammar
correction and error identification can be cast as a
sequence-to-sequence translation problem, in which
an unedited (source) sentence is “translated” into
a corrected (target) sentence in the same language.
Using this framework, sentence-level error identifi-
cation then simply reduces to an equality check be-
tween the source and target sentences.

The goal of the AESW shared task is to iden-
tify whether a particular sentence needs to be
edited (contains a “grammatical” error, broadly con-
strued1). The dataset consists of sentences taken
from academic articles annotated with corrections
by professional editors. Annotations are described
via insertions and deletions, which are marked with
start and end tags. Tokens to be deleted are sur-
rounded with the deletion start tag <del> and the
deletion end tag </del> and tokens to be inserted
are surrounded with the insertion start tag <ins>
and the insertion end tag </ins>. Replacements
(as shown in Figure 1) are represented as deletion-
insertion pairs. Unlike the related CoNLL-2014
Shared Task (Ng et al., 2014) data, errors are not la-
beled with fine-grained types (article or determiner
error, verb tense error, etc.).

More formally, we assume a vocabulary V
of natural language word types (some of which
have orthographic errors) and a set Q =
{<ins>,</ins>,<del>,</del>} of annotation
tags. Given a sentence s = [s1, . . . , sI ], where
si ∈ V is the i-th token of the sentence of length I ,
we seek to predict whether or not the gold, annotated
target sentence t = [t1, . . . , tJ ], where tj ∈ Q ∪ V
is the j-th token of the annotated sentence of length
J , is identical to s. We are given both s and t for
supervised training. At test time, we are only given
access to sequence s. We learn to predict sequence
t.

Evaluation of this binary prediction task is via the
F1-score, where the positive class is that indicating
an error is present in the sentence (that is, where s 6=
t)2.

1Some insertions and deletions in the shared task data rep-
resent stylistic choices, not all of which are necessarily recover-
able given the sentence or paragraph context. For the purposes
here, we refer to all such edits as “grammatical” errors.

2The 2016 Shared Task also included a probabilistic esti-

Evaluation is at the sentence level, but the
paragraph-level context for each sentence is also
provided. The paragraphs, themselves, are shuf-
fled so that full article context is not available. A
coarse academic field category is also provided for
each paragraph. Our models described below do not
make use of the paragraph context nor the field cat-
egory, and they treat each sentence independently.

Further information about the task is available in
the Shared Task report (Daudaravicius et al., 2016).

3 Related Work

While this is the first year for a shared task focusing
on sentence-level binary error identification, previ-
ous work and shared tasks have focused on the re-
lated tasks of intra-sentence identification and cor-
rection of errors. Until recently, standard hand-
annotated grammatical error datasets were not avail-
able, complicating comparisons and limiting the
choice of methods used. Given the lack of a large
hand-annotated corpus at the time, Park and Levy
(2011) demonstrated the use of the EM algorithm
for parameter learning of a noise model using error
data without corrections, performing evaluation on
a much smaller set of sentences hand-corrected by
Amazon Mechanical Turk workers.

More recent work has emerged as a result of a
series of shared tasks, starting with the Helping
Our Own (HOO) Pilot Shared Task run in 2011,
which focused on a diverse set of errors in a small
dataset (Dale and Kilgarriff, 2011), and the subse-
quent HOO 2012 Shared Task, which focused on
the automated detection and correction of preposi-
tion and determiner errors (Dale et al., 2012). The
CoNLL-2013 Shared Task (Ng et al., 2013)3 focused
on the correction of a limited set of five error types
in essays by second-language learners of English at
the National University of Singapore. The follow-up
CoNLL-2014 Shared Task (Ng et al., 2014)4 focused
on the full generation task of correcting all errors in
essays by second-language learners.

As with machine translation (MT), evaluation of

mation track. We leave for future work the adaptation of our
approach to that task.

3http://www.comp.nus.edu.sg/˜nlp/
conll13st.html

4http://www.comp.nus.edu.sg/˜nlp/
conll14st.html
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the full generation task is still an open research
area, but a subsequent human evaluation ranked the
output from the CoNLL-2014 Shared Task systems
(Napoles et al., 2015). The system of Felice et
al. (2014) ranked highest, utilizing a combination
of a rule-based system and phrase-based MT, with
re-ranking via a large web-scale language model.
Of the non-MT based approaches, the Illinois-
Columbia system was a strong performer, combin-
ing several classifiers trained for specific types of
errors (Rozovskaya et al., 2014).

4 Models

We use an end-to-end approach that does not have
separate components for candidate generation or re-
ranking that make use of hand-tuned rules or explicit
syntax, nor do we employ separate classifiers for
human-differentiated subsets of errors, unlike some
previous work for the related task of grammatical er-
ror correction.

We next introduce two approaches for the task of
sentence-level grammatical error identification: A
binary classifier and a sequence-to-sequence model
that is trained for correction but can also be used for
identification as a side-effect.

4.1 Baseline Convolutional Neural Net

To establish a baseline, we follow past work that
has shown strong performance with convolutional
neural nets (CNNs) across various domains for
sentence-level classification (Kim, 2014; Zhang and
Wallace, 2015). We utilize the one-layer CNN archi-
tecture of Kim (2014) with the publicly available5

word vectors trained on the Google News dataset,
which contains about 100 billion words (Mikolov
et al., 2013). We experiment with keeping the
word vectors static (CNN-STATIC) and fine-tuning
the vectors (CNN-NONSTATIC). The CNN models
only have access to sentence-level labels and are not
given correction-level annotations.

4.2 Encoder-Decoder

While it may seem more natural to utilize models
trained for binary prediction, such as the aforemen-
tioned CNN, or for example, the recurrent network

5https://code.google.com/archive/p/
word2vec/

approach of Dai and Le (2015), we hypothesize that
training at the lowest granularity of annotations may
be useful for the task. We also suspect that the gen-
eration of corrections is of sufficient utility for end-
users to further justify exploring models that pro-
duce corrections in addition to identification. We
thus use the Shared Task as a means of assessing
the utility of a full generation model for the binary
prediction task.

We propose two encoder-decoder architectures
for this task. Our word-based architecture (WORD)
is similar to that of Luong et al. (2015). Our
character-based models (CHAR) still make predic-
tions at the word-level, but use a CNN and a high-
way network over characters instead of word embed-
dings as the input to the encoder and decoder, as de-
picted in Figure 1. We follow past work (Sutskever
et al., 2014; Luong et al., 2015) in stacking multi-
ple recurrent neural networks (RNNs), specifically
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks, in both the encoder
and decoder.

Here, we model the probability of the target given
the source, p(t | s), with an encoder neural network
that summarizes the source sequence and a decoder
neural network that generates a distribution over the
target words and tags at each step given the source.

We start by describing the basic encoder and de-
coder architectures in terms of the WORD model,
and then we describe the CHAR model departures
from WORD.

Encoder The encoder reads the source sentence
and outputs a sequence of vectors, associated with
each word in the sentence, which will be selec-
tively accessed during decoding via a soft attentional
mechanism. We use a LSTM network to obtain the
hidden states hsi ∈ Rn for each time step i,

hsi = LSTM(hsi−1,x
s
i ).

For the WORD models, xsi ∈ Rm is the word em-
bedding for si, the i-th word in the source sentence.
(The analogue for the CHAR models is discussed be-
low.) The output of the encoder is the sequence of
hidden state vectors [hs1, . . . ,h

s
I ]. The initial hidden

state of the encoder is set to zero (i.e. hs0 ← 0).

Decoder The decoder is another LSTM that pro-
duces a distribution over the next target word/tag
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Figure 1: An illustration of the CHAR model architecture translating an example source sentence into the corrected target with

a single word replacement. A CNN (here, with three filters of width two) is applied over character embeddings to obtain a fixed

dimensional representation of a word, which is given to a highway network (in light blue, above). Output from the highway network

is used as input to a LSTM encoder/decoder. At each step of the decoder, its hidden state is interacted with the hidden states of

the encoder to produce attention weights (for each word in the encoder), which are used to obtain the context vector via a convex

combination. The context vector is combined with the decoder hidden state through a one layer MLP (yellow), after which an affine

transformation followed by a softmax is applied to obtain a distribution over the next word/tag. The MLP layer (yellow) is used as

additional input (via concatenation) for the next time step. Generation continues until the <eos> symbol is generated.

given the source vectors [hs1, . . . ,h
s
I ] and the previ-

ously generated target words/tags t<j = [t1, . . . tj ].
Let

htj = LSTM(htj−1,x
t
j)

be the summary of the target sentence up to the j-th
word, where xtj is the word embedding for tj in the
WORD models. The current target hidden state htj
is combined with each of the memory vectors in the
source to produce attention weights as follows,

uj,i = htj ·Wαhsi

αj,i =
expuj,i∑

k∈[1,I] expuj,k

The source vectors are multiplied with the respec-
tive attention weights, summed, and interacted with
the current decoder hidden state htj to produce a con-
text vector cj ,

vj =
∑
i∈[1,I]

αj,ihsi

cj = tanh(W[vj ;htj ])

The probability distribution over the next

word/tag is given by applying an affine transforma-
tion to cj followed by a softmax,

p(tj+1 | s, t<j) = softmax(Ucj + b)

Finally, as in Luong et al. (2015), we feed cj as ad-
ditional input to the decoder for the next time step
by concatenating it with xtj , so the decoder equation
is modified to,

htj = LSTM(htj−1, [x
t
j ; cj−1])

This allows the decoder to have knowledge of previ-
ous (soft) alignments at each time step. The decoder
hidden state is initialized with the final hidden state
of the encoder (i.e. ht0 ← hsI ).

Character Convolutional Neural Network For
the CHAR models, instead of a word embedding, our
input for each word in the source/target sentence is
an output from a character-level convolutional neu-
ral network (CharCNN) (depicted in Figure 1). Our
character model closely follows that of Kim et al.
(2016).

Suppose word si is composed of characters
[p1, . . . , pl]. We concatenate the character embed-
dings to form the matrix Pi ∈ Rc×l, where the k-th
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column corresponds to the character embedding for
pk (of dimension c).

We then apply a convolution between Pi and a
filter H ∈ Rc×w of width w, after which we add a
bias and apply a nonlinearity to obtain a feature map
fi ∈ Rl−w+1. The k-th element of fi is given by,

fi[k] = tanh(〈Pi[∗, k : k + w − 1],H〉+ b)

where 〈A,B〉 = Tr(ABT ) is the Frobenius inner
product and Pi[∗, k : k + w − 1] is the k-to-(k +
w − 1)-th column of Pi. Finally, we take the max-
over-time

zi = max
k

fi[k]

as the feature corresponding to filter H. We use mul-
tiple filters H1, . . .Hh to obtain a vector zi ∈ Rh as
the representation for a given source/target word or
tag. We have separate CharCNNs for the encoder
and decoder.

Highway Network Instead of replacing the word
embedding xi with zi, we feed zi through a highway
network (Srivastava et al., 2015). Whereas a multi-
layer perceptron produces a new set of features via
the following transformation (given input z),

ẑ = f(Wz + b)

a highway network instead computes,

ẑ = r� f(Wz + b) + (1− r)� z

where f is a non-linearity (in our models, ReLU),�
is the element-wise multiplication operator, and r =
σ(Wrz+br) and 1−r are called the transform and
carry gates. We feed zi into the highway network to
obtain ẑi, which is used to replace the input word
embeddings in both the encoder and the decoder.

Inference Exact inference is computationally in-
feasible for the encoder-decoder models given the
combinatorial explosion of possible output se-
quences, but we follow past work in NMT using
beam search. We do not constrain the generation
process of words outside insertion tags to words
in the source, and each low-frequency holder token
generated in the target sentence is replaced with the
source token associated with the maximum attention
weight. We use a beam size of 10 for all models,

with the exception of one of the models in the fi-
nal system combination, for which we use a beam of
size 5, as noted in Section 6.

Note that this model generates corrections, but we
are only interested in determining the existence of
any error at the sentence-level. As such, after beam
decoding, we simply check for whether there were
any corrections in the target. However, we found
that decoding in this way under-predicts sentence-
level errors. It is therefore important to calibrate the
weights associated with corrections, which we dis-
cuss in Section 5.3.

5 Experiments

5.1 Data

The AESW task data differs from previous gram-
matical error datasets in terms of scale and genre.
To the best of our knowledge, the AESW dataset is
the first large-scale, publicly available profession-
ally edited dataset of academic, scientific writing.
The training set consists of 466,672 sentences with
edits and 722,742 sentences without edits, and the
development set contains 57,340 sentences with ed-
its and 90,106 sentences without. The raw training
and development datasets are provided as annotated
sentences, t, from which the s sequences may be de-
terministically derived. There are 143,802 sentences
in the Shared Task test set with hidden gold labels,
which serve directly as s sequences.

As part of pre-processing, we treat each sentence
independently, discarding paragraph context (which
sentences, if any, were present in the same para-
graph) and domain information, which is a coarse
grouping by the field of the original journal (En-
gineering, Computer Science, Mathematics, Chem-
istry, Physics, etc.). We generate Penn Treebank
style tokenizations of the input. Case is maintained
and digits are not replaced with holder symbols. The
vocabulary is restricted to the 50,000 most com-
mon tokens, with remaining low frequency tokens
replaced with a special <unk> token. The CHAR

model can encode but not decode over open vocab-
ularies and hence we do not have any <unk> to-
kens on the source side of those models. For all
of the encoder-decoder models, we replace the low-
frequency target symbols during inference as dis-
cussed above in Section 4.2.
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For development against the provided data with
labels, we set aside a 10,000 sentence sample from
the original development set for tuning, and use
the remaining 137,446 sentences for validation6.
The encoder-decoder models are given all 466,672
pairs of s and t sequences with edits, augmented
with varying numbers of pairs without edits. The
CHAR+SAMPLE and WORD+SAMPLE models are
given a random sample of 200,000 pairs without ed-
its for a total of 666,672 pairs of s and t sequences.
The CHAR+ALL and WORD+ALL models are given
all 722,742 sentences without edits for a total of
1,189,414 pairs of s and t sequences. For some of
the final testing models, we also train with the devel-
opment sentences. In these latter cases, all sequence
pairs are used. In training all of the encoder-decoder
models, as indicated in Section 5.2, we drop sen-
tences exceeding 50 tokens in length.

We also experimented with creating corrected ver-
sions of sentences for the CNN. The binary CNN
classifiers are given 1,656,086 single-sentence train-
ing examples, of which 722,742 are error-free ex-
amples (in which s = t), and the remaining ex-
amples are constructed by removing the tags from
the annotated sentences, t, to create tag-free exam-
ples that contain errors (466,672 instances) and ad-
ditional error-free examples (466,672 instances).

5.2 Training

Training (along with testing) of all models was con-
ducted on GPUs. Our models were implemented
with the Torch7 framework.

CNN Architecture and training approaches were
informed by past work in sentence-level classifica-
tion using CNNs (Kim, 2014; Zhang and Wallace,
2015). A limited grid search on the development
set determined our use of filter windows of width
3, 4, and 5 and 1000 feature maps. We trained
for 10 epochs. Training otherwise followed the ap-
proach of the correspondingly named CNN-STATIC

and CNN-NONSTATIC models of Kim (2014).

6Note that the number of sentences in the final development
set without labels posted on CodaLab (http://codalab.
org) differed from that originally posted on the AESW 2016
Shared Task website with labels.

7http://torch.ch

encoder-decoder Initial parameter settings (in-
cluding architecture decisions such as the number
of layers and embedding and hidden state sizes)
were informed by concurrent work in neural ma-
chine translation and existing work such as that of
Sutskever et al. (2014) and Luong et al. (2015). We
used 4-layer LSTMs with 1000 hidden units in each
layer. We trained for 14 epochs with a batch size of
64 and a maximum sequence length of 50. The pa-
rameters for the WORD model were uniformly ini-
tialized in [−0.1, 0.1], and those of the CHAR model
were uniformly initialized in [−0.05, 0.05]. The L2-
normalized gradients were constrained to be ≤ 5.
Our learning rate schedule started the learning rate
at 1 and halved the learning rate after each epoch
beyond epoch 10, or once the validation set perplex-
ity no longer improved. The WORD model used
1000-dimensional word embeddings. For CHAR,
the character embeddings were 25-dimensional, the
filter width was 6, the number of feature maps was
1000, and 2 highway layers were used. The max-
imum word length was 35 characters for training
CHAR. Note that we do not reverse the source (s) se-
quences, unlike some previous NMT work. Follow-
ing the work of Zaremba et al. (2014), we employed
dropout with a probability of 0.3 between the LSTM
layers.

Training both WORD and CHAR on the training
set took on the order of a few days using GPUs, with
the former being more efficient than the latter. In
practice, we used two GPUs for training CHAR due
to memory requirements.

5.3 Tuning

Post-hoc tuning was performed on the 10k held-out
portion of the development set. In terms of maximiz-
ing the F1-score, this post-hoc tuning was important
for these models, without which precision was high
and recall was low. We leave to future work alterna-
tive approaches to this type of post-hoc tuning.

For the CNN models, after training, we tuned the
decision boundary to maximize the F1-score on the
held-out tuning set. Analogously, for the encoder-
decoder models, after training the models, we tuned
the bias weights (given as input to the final softmax
layer generating the words/tags distribution) associ-
ated with the four annotation tags via a simple grid
search by iteratively running beam search on the tun-
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Figure 2: F1 scores for varying values applied additively to

the bias weights of the four annotation tags on the held-out 10k

tuning subset.
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Figure 3: Precision vs. recall trade-off as the bias weights as-

sociated with the four annotation tags are varied on the held-out

10k tuning subset. The points yielding maximum F1 scores are

highlighted with black circles.

ing set. Due to the relatively high expense of decod-
ing, we employed a coarse grid search in which the
bias weights of the four annotation tags were uni-
formly varied.

6 Results

Results on the development set, excluding the 10k
tuning set, appear in Table 1. Here (and elsewhere)
RANDOM is the result of randomly assigning a sen-
tence to one of the binary classes. For the CNN clas-
sifiers, fine-tuning the word2vec embeddings im-
proves performance. The encoder-decoder mod-
els improve over the CNN classifiers, even though

the latter are provided with additional data (via
word2vec). The character-based models yield tan-
gible improvements over the word-based models.

For consistency here, we kept the beam size at 10
across models, but subsequent analysis revealed that
increasing the beam from 5 to 10 had a negligible
effect on overall performance.

Tuning results appear in Figures 2 and 3, illus-
trating the importance of adjusting the bias weights
associated with the annotation tags in balancing pre-
cision and recall to maximize the F1 score. The
models trained on all sequence pairs without ed-
its, CHAR+ALL and WORD+ALL, perform particu-
larly poorly without tuning these bias weights, yield-
ing F1 scores near that of RANDOM before tuning,
which corresponds to a weight of 0.0 in Figure 2.

The official development set posted on CodaLab
differed slightly from the original development set
provided with labels, so we include those results in
Table 2 for the encoder-decoder models. Here, eval-
uation is performed on the CodaLab server, as with
the final test submission. The overall relative perfor-
mance pattern is similar to that of the original devel-
opment set.

A comparison of our results with other shared task
submissions appears in Table 3. (Teams were al-
lowed to submit up to two results.) Our submis-
sion, COMBINATION was a simple majority vote at
the system level (for each test sentence) of 5 mod-
els8: (1) a CNN-NONSTATIC model trained with the
concatenation of the training and development sets
(and using word2vec); (2) a WORD model trained
on all sequence pairs in the training and develop-
ment sets with a beam size of 10 for decoding; (3,4)
a CHAR+SAMPLE model trained on the training set,
decoding the test set twice, each time with differ-
ent weight biases (the two highest performing via
the grid search over the tuning set) with a beam
size of 10; and (5) a CHAR model trained on all se-
quence pairs in the training and development sets,
with training suspended at epoch 9 (out of 14) and
a beam size of 5 to meet the Shared Task deadline.
For reference, we also include the CodaLab evalu-
ation for just the CHAR+SAMPLE model trained on
the training set with a beam size of 10, with the bias

8The choice of models was limited to those that were trained
and tuned in time for the Shared Task deadline.
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Model Data Precision Recall F1

RANDOM N/A 0.3885 0.4992 0.4369

CNN-STATIC Training+word2vec 0.5349 0.7586 0.6274
CNN-NONSTATIC Training+word2vec 0.5365 0.7758 0.6343

WORD+ALL Training 0.5399 0.7882 0.6408
WORD+SAMPLE Training 0.5394 0.8024 0.6451
CHAR+ALL Training 0.5400 0.8048 0.6463
CHAR+SAMPLE Training 0.5526 0.8126 0.6579

Table 1: Experimental results on the development set excluding the held-out 10k tuning subset.

Model Data Precision Recall F1

RANDOM N/A 0.3921 0.5981 0.4736
WORD+ALL Training 0.5343 0.7577 0.6267
WORD+SAMPLE Training 0.5335 0.7699 0.6303
CHAR+ALL Training 0.5351 0.7749 0.6330
CHAR+SAMPLE Training 0.5469 0.7803 0.6431

Table 2: Results on the official development set. Here, RANDOM was provided by the Shared Task organizers.

Model Data Precision Recall F1

RANDOM N/A 0.3607 0.6004 0.4507

KNOWLET – 0.6241 0.3685 0.4634
NTNU-YZU – 0.6717 0.3805 0.4858
HITS – 0.3765 0.948 0.5389
UW-SU – 0.4145 0.8201 0.5507
NTNU-YZU – 0.5025 0.7785 0.6108

CHAR+SAMPLE Training 0.5112 0.7841 0.6189
COMBINATION Training+Dev+word2vec 0.5444 0.7413 0.6278

Table 3: Final submitted results on the Shared Task test set. COMBINATION was our final submitted system. RANDOM was

provided by the Shared Task organizers. For comparison, we have included the other team submissions from National Taiwan

Normal University and Yuan Ze University (NTNU-YZU), the University of Washington and Stanford University (UW-SU),

HITS (HITS), and Knowlet (KNOWLET). Teams were allowed to designate up to two final submissions. (The CHAR model trained

on the combined training and development set had not finished training by the Shared Task deadline. As such, it was not submitted,

but the partially trained model was included in COMBINATION.)

weights being those that generated the highest F1-
score on the 10k tuning set.

7 Discussion

Of particular interest, the CHAR+SAMPLE model
performs well, both in terms of performance on the
test set relative to other submissions, as well as on
the development set relative to the WORD models
and the CNN classifiers. It is possible this is due
to the ability of the CHAR models to capture some
types of orthographic errors.

The empirical results suggest that simply adding
additional already correct source-target pairs when
training the encoder-decoder models may not boost

performance, ceteris paribus, as seen in com-
paring the performance of CHAR+SAMPLE vs
WORD+SAMPLE, and CHAR+ALL vs WORD+ALL.
We leave to future work alternative approaches for
introducing additional correct (target) sentences, as
has been examined for neural machine translation
models (Sennrich et al., 2015; Gülçehre et al., 2015).

Our results provide initial evidence to support the
hypothesis that training at the lowest granularity of
annotation is a more efficient use of data than train-
ing against the binary label. In future work, we
plan to compare against sentence classification us-
ing LSTMs (Dai and Le, 2015) and convolutional
models that use correction-level annotations.
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Another benefit of the encoder-decoder models is
that they can be used to generate corrections (and
identify locations of intra-sentence errors) for end-
users. However, the added generation capabilities of
the encoder-decoder models comes at the expense of
considerably longer training and testing times com-
pared to the CNN classifiers.

We found that post-hoc tuning provides a straight-
forward means of tuning the precision-recall trade-
off for these models, and we speculate (but leave to
future work for investigation) that in practice, end-
users might prefer greater emphasis placed on preci-
sion over recall.

8 Conclusion

We have presented our submission to the AESW
2016 Shared Task, suggesting, in particular, the util-
ity of a neural attention-based model for sentence-
level grammatical error identification. Our models
do not make use of hand-tuned rules, are not trained
with explicit syntactic annotations, and do not make
use of individuals classifiers designed for human-
designated subsets of errors.

For the encoder-decoder models, modeling at the
sub-word level was beneficial, even though predic-
tions were still made at the word level. It would be
of interest to push this further to eliminate the need
for an initial tokenization step, in order to general-
ize the approach to other languages, such as Chinese
and Japanese.

We plan to examine alternative approaches for
training with additional correct (target) sentences.
Inducing artificial errors to generate more incorrect
(source) sentences is also a direction we intend to
pursue.

We leave for future work an analysis of the gener-
ation quality of our encoder-decoder models on the
AESW dataset and the CoNLL-2014 Shared Task
data, as well as user studies to assess whether perfor-
mance is sufficient in practice to be useful, including
the utility of correction vs. identification.

We consider this to be just the beginning of the
development of data-driven support tools for writers,
and many areas remain to be explored.
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Abstract

We applied two standard, open source tools
for detecting spelling and grammar errors to
the AESW2016 shared task: After the Dead-
line and LanguageTool. The tools’ output
was combined with a Maximum Entropy ma-
chine learning model to classify each input sen-
tence as requiring or not requiring any edits.
This approach yielded the second-highest pre-
cision of 64.41% in the binary estimation task
at AESW 2016, but also the lowest recall of
36.85%, resulting in an F-Measure of 46.34%.

1 Introduction

The Automated Evaluation of Scientific Writing
Shared Task (AESW 2016) targeted the analysis of
individual sentences, in order to assess whether or not
a sentence as a whole requires editing or not (Daudar-
avicius et al., 2016). The long-term vision behind this
task is to “promote the development of automated
writing evaluation tools that can assist authors in
writing scientific papers”.1

Our work in this area is similarly motivated by the
idea of providing an interactive “virtual research as-
sistant” that supports researchers in their daily tasks.
Writing support includes providing interactive feed-
back on the quality of textual artifacts to academic
authors. Such a support generally requires achieving
high precision over recall, as tools with too many
false positives tend to be ignored by authors. Addi-
tionally, providing salient feedback on detected mis-
takes – ideally together with suggestions for improve-
ments – to the authors is an important feature. Stan-

1AESW 2016, http://textmining.lt/aesw/index.html

dard, open source grammar and spelling tools have
addressed these questions for quite some time, but are
generally not focused on academic texts. Hence, we
were interested in how well existing, general-purpose
tools perform when applied to academic writing. In
our experiments, we applied two well-known tools,
After the Deadline and LanguageTool (described in
Section 2.3), to the AESW data sets. Our hypothe-
sis was that these two tools are (i) complementary
to some degree, so that their combination can in-
crease precision and/or recall; and (ii) a machine
learning approach can combine the tools’ output with
additional syntactical context information, thereby
attuning them to academic writing.

2 Methods

In this section, we discuss the setup of our
AESW 2016 experiments.

2.1 Data and Task Description

Here, we briefly describe the datasets and tasks; for
the full details, please refer to (Daudaravicius et al.,
2016).

The input sentences were randomly selected from
more than 9,000 journal articles across different do-
mains (Computer Science, Physics, Human Sciences,
etc.). The training and development data sets contain
256,389 and 31,732 sentences, respectively. Some
sentences contain changes that were applied by pro-
fessional editors, who are native English speakers.
These sentences have inline <ins> and <del> tags
that mark inserted and removed content, respectively.
An example sentence is shown in Fig. 1.

The test data set (31,085 sentences) “retain texts
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<sentence sid="3570.3">
The enterprise aims to increase <del>in</del>
<ins>the</ins> output (at the same time to
reduce expenses) _MATH_ and to decrease
<del>in</del><ins>the</ins> consumed
<del>efforts</del><ins>effort</ins> _MATH_.

</sentence>

Figure 1: Example sentence in XML format from the AESW

2016 development set

tagged with <del> tags and the tags are dropped.
Texts between <ins> tags are removed.”2

The goal of the AESW tasks was to predict
whether a given sentence as a whole requires editing
– that is, individual insertions or deletions did not
have to be annotated. Thus, the output for the two
tasks was either a boolean feature (True meaning a
sentence requires editing) or a probabilistic feature
with a value in [0,1] (where “1” indicates that an edit
is required).

2.2 Preprocessing
To facilitate cross-fold evaluations, we split all
AESW data sets (development, training, and testing)
into individual XML files containing 1000 sentences
each.

For machine learning, each sentence from the de-
velopment and training sets received an edit feature of
True if it contained at least one <ins> or <del> tag,
otherwise the edit feature was set to False. For train-
ing, content marked as ‘inserted’ (between <ins>
tags as shown in Fig. 1) was removed from the texts.
The <del> tags were likewise removed, but the con-
tent was retained, thereby showing a sentence’s con-
tent before any changes performed by an editor. Note
that this conforms to the format of the test set, as
described above.

2.3 Writing Error Detection Tools
We experimented with two open source tools for writ-
ing error detection:

After the Deadline (AtD) detects spelling, gram-
mar, and style errors (Mudge, 2010).3 We used ver-
sion atd-081310 in its default configuration for our
experiments.

2AESW 2016 Data Set, see http://textmining.lt/aesw/index.
html#data

3After the Deadline, http://www.afterthedeadline.com/

LanguageTool (LT) is another popular open
source spelling and grammar tool,4 which also sup-
ports multiple languages. We used version 3.2-
SNAPSHOT from the LT GitHub repository5 for our
experiments.

2.4 Experimental Setup

To facilitate the combination of the individual results,
we integrated both tools into a pipeline through the
General Architecture for Text Engineering (GATE)
(Cunningham et al., 2011). Each error reported by
one of the tools is added to the input text in the form
of an annotation, which holds a start- and end-offset,
as well as a number of features, such as the type of
the error, the internal rule that generated the error,
and possibly suggestions for improvements, as shown
in Figure 2.

Additionally, we added a number of standard
GATE plugins from the ANNIE pipeline (Cunning-
ham et al., 2002) to perform tokenization, part-of-
speech tagging, and lemmatization on the input texts.
Finally, annotations spanning placeholder texts in the
sentences, such as MATH , were filtered out, as these
were particular to the AESW data.

2.5 Machine Learning

In addition to applying the AtD and LT tools indi-
vidually, we experimented with their combination
through machine learning. Essentially, we follow a
stacking approach (Witten and Frank, 2011) by treat-
ing the AtD and LT tools as individual classifiers and
use them to train a model for assigning the output
‘edit’ feature to a sentence.

ML Features. Table 1 lists all features we derive
from the input sentences. We experimented with
different token root and category n-grams, including
unigrams, bigrams and trigrams.

ML Algorithms. Training and evaluation were per-
formed using the Weka6 (Witten and Frank, 2011)
and Mallet7 (McCallum, 2002) toolkits. These were
executed from within GATE using the Learning

4LanguageTool, https://languagetool.org/
5LanguageTool GitHub repository, https://github.com/

languagetool-org/languagetool
6Weka, https://sourceforge.net/projects/weka/
7Mallet, http://mallet.cs.umass.edu/

253



Figure 2: Combination of the writing analysis tools After the Deadline and LanguageTool in the GATE Developer GUI

Feature Description

Token.root Morphological root of the token
Token.category Part-of-speech tag for the token
LT.rule Rule name as reported by LT
LT.string Reported text (surface form)
AtD.rule Rule name as reported by AtD
AtD.string Reported text (surface form)

Table 1: Machine Learning Features

Framework Plugin.8 We experimented with a number
of classification algorithms, including Decision Trees,
Winnow, Naı̈ve Bayes, KNN, PAUM, and Maximum
Entropy. The latter generally performed best for the
dataset and features, hence in this paper we only
report the results from the MaxEnt model.

3 Results

In this report, we provide a summary of our sys-
tem’s results – for a complete description of all
AESW 2016 results, please refer to (Daudaravicius
et al., 2016).

8GATE Learning Framework Plugin, https://github.com/
GateNLP/gateplugin-LearningFramework

Baseline experiments. To establish a baseline, we
ran the AtD and LT tools on the development set.
Here, every sentence that had at least one error anno-
tation received an edit feature of True. Table 3 shows
the results as reported by the Codalab site9 used in
the competition.

Tool Precision Recall F-Measure

AtD 0.4318 0.7448 0.5467
LT 0.4719 0.4739 0.4729

Table 3: Baseline experiments: Evaluation of the individual tools

on the development set

Feature analysis. We measured the impact of the
various features shown in Table 1 on the classification
performance. A selected set of results is shown in
Table 2. Accuracy was calculated using Mallet with
a three-fold cross-validation on the training data set.
Generally, adding more features increased precision,
but did not improve recall.

Submitted run. For the submitted run, we re-
trained the MaxEnt classifier using the full fea-

9Codalab, http://codalab.org/
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Feature Set Accuracy

AtD.rule, AtD.string, LT.rule, LT.string 0.6261
AtD.rule, AtD.string, LT.rule, LT.string, Token.root unigrams, Token.category unigrams 0.6584
AtD.rule, AtD.string, LT.rule, LT.string, Token.root bigrams, Token.category bigrams 0.7300
AtD.rule, AtD.string, LT.rule, LT.string, Token.root trigrams, Token.category trigrams 0.8525

Table 2: Three-fold cross-validation of the MaxEnt classifier on the training data with different feature sets

ture set (using trigrams for both Token.root and To-
ken.category) on both development and training set.
The exact same configuration was used for the prob-
abilistic task submission, using the classifier’s con-
fidence as the prediction value (with 1-confidence
for sentences classified as not requiring edits). The
results are summarized in Table 4.

Tool Precision Recall F-Measure

binary 0.6241 (1) 0.3685 (8) 0.4634 (7)
probabilistic 0.7294 (2) 0.6591 (6) 0.6925 (5)

Table 4: Submitted runs for the AESW 2016 task on the test set

(as reported by Codalab)

4 Conclusions

Based on our experiments, standard spell and gram-
mar checking tools can help in assessing academic
writing, but do not cover all different types of edits
observed in the training data. In future work, we
plan to categorize the false negatives and develop
additional features to capture specific writing errors.

As the AESW 2016 task was performed on indi-
vidual sentences, the results do not accurately reflect
the interactive use within a tool: False positive errors,
such as spelling mistakes reported for an unknown
acronym, are counted for every sentence, rather than
once for the entire document, thereby decreasing pre-
cision significantly when an entity appears multiple
times. Also, document-level writing errors, such as
discourse-level mistakes, cannot be captured with
this setup – for example, use of acronyms before
they are defined or inconsistent use of American vs.
English spelling. Finally, while the sentence-level
decision can be helpful in directing the attention of
an editor to a possibly problematic sentence, by itself
it does not explain why a given sentence was flagged
or how it could be improved, which are important
information for academic writers.
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Abstract

We develop a supervised ranking model to re-
rank candidates generated from an SMT-based
grammatical error correction (GEC) system.
A range of novel features with respect to GEC
are investigated and implemented in our re-
ranker. We train a rank preference SVM
model and demonstrate that this outperforms
both Minimum Bayes-Risk and Multi-Engine
Machine Translation based re-ranking for the
GEC task. Our best system yields a significant
improvement in I-measure when testing on the
publicly available FCE test set (from 2.87%
to 9.78%). It also achieves an F0.5 score of
38.08% on the CoNLL-2014 shared task test
set, which is higher than the best original re-
sult. The oracle score (upper bound) for the
re-ranker achieves over 40% I-measure perfor-
mance, demonstrating that there is consider-
able room for improvement in the re-ranking
component developed here, such as incorpo-
rating features able to capture long-distance
dependencies.

1 Introduction

Grammatical error correction (GEC) has attracted
considerable interest in recent years. Unlike clas-
sifiers built for specific error types (e.g. determiner
or preposition errors), statistical machine transla-
tion (SMT) systems are trained to deal with all error
types simultaneously. An SMT system thus learns to
translate incorrect English into correct English using
a parallel corpus of corrected sentences. The SMT
framework has been successfully used for GEC, as
demonstrated by the top-performing systems in the
CoNLL-2014 shared task (Ng et al., 2014).

However, the best candidate produced by an SMT
system is not always the best correction. An exam-
ple is given in Table 1.

Since SMT was not originally designed for GEC,
many standard features do not perform well on this
task. It is necessary to add new local and global fea-
tures to help the decoder distinguish good from bad
corrections. Felice et al. (2014) used Levenshtein
distance to limit the changes made by their SMT sys-
tem, given that most words translate into themselves
and errors are often similar to their correct forms.
Junczys-Dowmunt and Grundkiewicz (2014) also
augmented their SMT system with Levenshtein dis-
tance and other sparse features that were extracted
from edit operations.

However, the integration of additional mod-
els/features into the decoding process may affect the
dynamic programming algorithm used in SMT, be-
cause it does not support some complex features,
such as those computed from an n-best list. An al-
ternative to performing integrated decoding is to use
additional information to re-rank an SMT decoder’s
output. The aim of n-best list re-ranking is to re-rank
the translation candidates produced by the SMT sys-
tem using a rich set of features that are not used by
the SMT decoder, so that better candidates can be
selected as ‘optimal’ translations. This has several
advantages: 1) it allows the introduction of new fea-
tures that are tailored for GEC; 2) unlike in SMT,
we can use various types of features without wor-
rying about fine-grained smoothing issues and it is
easier to use global features; 3) re-ranking is easy to
implement, and the existing decoder does not need
to be modified; and 4) the decoding process in SMT
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Source There are some informations you have asked me about.
Reference There is some information you have asked me about.
10 best list

1st: There are some information you have asked me about.
2nd: There is some information you have asked me about.
3rd: There are some information you asked me about.
4th: There are some information you have asked me.
5th: There are some information you have asked me for.
6th: There are some information you have asked me about it.
7th: There is some information you asked me about.
8th: There are some information you asked me for.
9th: There were some information you have asked me about.

10th: There is some information you have asked me.

Table 1: In this example, there are two errors in the sentence (marked in bold): an agreement error (are→ is) and a mass noun error

(informations → information). The best output is the one with highest probability, which only corrects the mass noun error, but

misses the agreement error. However, the 2nd-ranked candidate corrects both errors and matches the reference (marked in italics).

The source sentence and error annotation are taken from the FCE dataset (Yannakoudakis et al., 2011), and the 10-best list is from

an SMT system trained on the whole CLC (Nicholls, 2003). More details about the datasets and system are presented in Section 3.

only needs to be performed once, which allows for
fast experimentation.

Most previous work on GEC has used evaluation
methods based on precision (P), recall (R), and F-
score (e.g. the CoNLL 2013 and 2014 shared tasks).
However, they do not provide an indicator of im-
provement on the original text so there is no way to
compare GEC systems with a ‘do-nothing’ baseline.
Since the aim of GEC is to improve text quality, we
use the Improvement (I) score calculated by the I-
measure (Felice and Briscoe, 2015), which tells us
whether a system improves the input.

The main contributions of our work are as fol-
lows. First, to the best of our knowledge, we are
the first to use a supervised discriminative re-ranking
model in SMT for GEC, showing that n-best list
re-ranking can be used to improve sentence quality.
Second, we propose and investigate a range of easily
computed features for GEC re-ranking. Finally, we
report results on two well-known publicly available
test sets that can be used for cross-system compar-
isons.

2 Approach

Our re-ranking approach is defined as follows:

1. an SMT system is first used to generate an n-
best list of candidates for each input sentence;

2. features that are potentially useful to discrimi-
nate between good and bad corrections are ex-
tracted from the n-best list;

3. these features are then used to determine a new
ranking for the n-best list;

4. the new highest-ranked candidate is finally out-
put.

2.1 SMT for grammatical error correction

Following previous work (e.g. Brockett et al. (2006),
Yuan and Felice (2013), Junczys-Dowmunt and
Grundkiewicz (2014)), we approach GEC as a trans-
lation problem from incorrect into correct English.

Our training data comprises parallel sentences
extracted from the Cambridge Learner Corpus
(CLC) (Nicholls, 2003). Two automatic alignment
tools are used for word alignment: GIZA++ (Och
and Ney, 2003) and Pialign (Neubig et al., 2011).
GIZA++ is an implementation of IBM Models 1-
5 (Brown et al., 1993) and a Hidden-Markov align-
ment model (HMM) (Vogel et al., 1996). Word
alignments learnt by GIZA++ are used to extract
phrase-to-phrase translations using heuristics. Un-
like GIZA++, Pialign creates a phrase table directly
from model probabilities. In addition to default fea-
tures, we add character-level Levenshtein distance
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to each mapping in the phrase table as proposed by
Felice et al. (2014).

Decoding is performed using Moses (Koehn et
al., 2007). The language models used during de-
coding are built from the corrected sentences in
the learner corpus, to make sure that the final sys-
tem outputs fluent English sentences. The IRSTLM
Toolkit (Federico et al., 2008) is used to build n-
gram language models (up to 5-grams) with modi-
fied Kneser-Ney smoothing (Kneser and Ney, 1995).
Previous work has shown that adding bigger lan-
guage models based on larger corpora improves
performance (Yuan and Felice, 2013; Junczys-
Dowmunt and Grundkiewicz, 2014). The use of big-
ger language models will be investigated at the re-
ranking stage, as it allows us to compute a richer set
of features that would otherwise be hard to integrate
into the decoding stage.

2.2 Ranking SVM

The SMT system is not perfect, and candidates with
the highest probability from the SMT system do not
always constitute the best correction. An n-best list
re-ranker is trained to re-rank these candidates in or-
der to find better corrections. We treat n-best list
re-ranking as a discriminative ranking problem. Un-
like standard SMT, the source input sentence is also
added to the candidate pool if it is not in the n-best
list, since in many cases the source sentence has no
error and should be translated as itself.

We use rank preference SVMs (Joachims, 2002)
in the SVMrank package (Joachims, 2006). This
model learns a ranking function from preference
training examples and then assigns a score to each
test example, from which a global ordering is de-
rived. The default linear kernel is used due to train-
ing and test time costs.

Rank preference SVMs work as follows. Suppose
that we are given a set of ranked instances R con-
taining training samples xi and their target rankings
ri:

R = {(x1, r1), (x2, r2), ..., (xl, rl)} (1)

such that xi � xj when ri < rj , where� denotes
a preference relationship. A set of ranking functions
f ∈ F is defined, where each f determines the pref-
erence relations between instances:

xi � xj ⇔ f(xi) > f(xj) (2)

The aim is to find the best function f that min-
imises a given loss function ξ with respect to the
given ranked instances. Instead of using the R set
directly, a set of pair-wise difference vectors is cre-
ated and used to train a model. For linear ranking
models, this is equivalent to finding the weight vec-
tor w that maximises the number of correctly ranked
pairs:

∀(xi � xj) : w(xi − xj) > 0 (3)

which is, in turn, equivalent to solving the follow-
ing optimisation problem:

min
w

1
2
wTw + C

∑
ξij (4)

subject to

∀(xi � xj) : w(xi − xj) ≥ 1− ξij (5)

where ξij ≥ 0 are non-negative slack variables
that measure the extent of misclassification.

2.3 Feature space
New features are introduced to identify better cor-
rections in the n-best produced by the SMT decoder.
We use general features that work for all types of
errors, leaving L2-specific features for future work.
These are described briefly below.

A) SMT feature set: Reuses information ex-
tracted from the SMT system. As the SMT frame-
work has been shown to produce good results for
GEC, we reuse these pre-defined SMT features.
This feature set includes:

Decoder’s scores: Includes unweighted trans-
lation model scores, reordering model scores, lan-
guage model scores and word penalty scores. We
use unweighted scores, as the weights for each score
will be reassigned during training.

N-best list ranking information: Encodes the
original ranking information provided by the SMT
decoder. Both linear and non-linear transformations
are used.

Note that both the decoder’s features and the n-
best list ranking features are extracted from the SMT
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system output. If the source sentence is not in the n-
best list, it will not have these two kinds of features
and zeros will be used.

B) Language model feature set: Raw candidates
from an SMT system can include many malformed
sentences so we introduce language model (LM)
features and adaptive language model (ALM) fea-
tures in an attempt to identify and discard them.

LM: Language models are widely used in GEC,
especially to rank correction suggestions proposed
by other models. Ideally, correct word sequences
will get high probabilities, while incorrect or un-
seen ones will get low probabilities. We use Mi-
crosoft’s Web N-gram Services, which provide ac-
cess to large smoothed n-gram LMs built from web
documents (Gao et al., 2010). All our experiments
are based on the 5-gram ‘bing-body:apr10’ model.
We also build several n-gram LMs from native and
learner corpora, including the CLC, the British Na-
tional Corpus (BNC) and ukWaC (Ferraresi et al.,
2008). The LM feature set contains unnormalised
sentence scores, normalised scores using arithmetic
mean and geometric mean, and the minimum and
maximum n-gram probability scores.

ALM: Adaptive LM scores are calculated from
the n-best list’s n-gram probabilities. N-gram counts
are collected using the entries in the n-best list for
each source sentence. N-grams repeated more of-
ten than others in the n-best list get higher scores,
thus ameliorating incorrect lexical choices and word
order. The n-gram probability for a target word ei
given its history ei−1

i−n+1 is defined as:

pn−best(ei|ei−1
i−n+1) =

countn−best(ei, ei−1
i−n+1)

countn−best(ei−1
i−n+1)

(6)
The sentence score for the sth candidateHs is cal-

culated as:

score(Hs) = log(
∏

pn−best(ei|ei−1
i−n+1)) (7)

The sentence score is then normalised by sentence
length to get an average word log probability, mak-
ing it comparable for candidates of different lengths.
In our re-ranking system, different values of n are

used, from 2 to 6. This feature is taken from Hilde-
brand and Vogel (2008).

C) Statistical word lexicon feature set: We use
the word lexicon learnt by the IBM Model 4, which
contains translation probabilities for word-to-word
mappings. The statistical word translation lexicon is
used to calculate the translation probability Plex(e)
for each word e in the target sentence. Plex(e) is
the sum of all translation probabilities of e for each
word fj in the source sentence fJ

1 . Specifically, this
can be defined as:

Plex(e|fJ
1 ) =

1
J + 1

J∑
j=0

p(e|fj) (8)

where fJ
1 is the source sentence and J is the

source sentence length. p(e|fj) is the word-to-word
translation probability of the target word e from one
source word fj .

As noted by Ueffing and Ney (2007), the sum in
Equation (8) is dominated by the maximum lexicon
probability, which we also use as an additional fea-
ture:

Plex−max(e|fJ
1 ) = max

j=0,...,J
p(e|fj) (9)

For both lexicon scores, we sum over all words
ei in the target sentence and normalise by sentence
length to get sentence translation scores. Lexicon
scores are calculated in both directions. This feature
is also taken from Hildebrand and Vogel (2008).

D) Length feature set: These features are used to
make sure that the final system does not make un-
necessary deletions or insertions. This set contains
four length ratios:

score(Hs, E) =
N(Hs)
N(E)

(10)

score(Hs, H1) =
N(Hs)
N(H1)

(11)

score(Hs, Hmax) =
N(Hs)
N(Hmax)

(12)

score(Hs, Hmin) =
N(Hs)
N(Hmin)

(13)
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whereHs is the sth candidate, E is the source (er-
roneous) sentence, H1 is the 1-best candidate (the
candidate ranked 1st by the SMT system), N(·) is
the sentence’s length, N(Hmax) is the maximum
candidate length in the n-best list for that source
sentence and N(Hmin) is the minimum candidate
length.

3 Experiments

3.1 Dataset

We use the publicly available FCE dataset (Yan-
nakoudakis et al., 2011), which is a part of the CLC.
The FCE dataset is a set of 1,244 scripts written
by learners of English taking the First Certificate
in English (FCE) examination around the world be-
tween 2000 and 2001. The texts have been man-
ually error-annotated with a taxonomy of approxi-
mately 80 error types (Nicholls, 2003). The FCE
dataset covers a wide variety of L1s and was used
in the HOO-2012 error correction shared task (Dale
et al., 2012). Compared to the National Univer-
sity of Singapore Corpus of Learner English (NU-
CLE) (Dahlmeier et al., 2013) used in the CoNLL
2013 and 2014 shared tasks, which contains essays
written by students at the National University of Sin-
gapore, the FCE dataset is a more representative test
set of learner writing, which is why we use it for our
experiments. The performance of our model on the
CoNLL-2014 shared task test data is also presented
in Section 3.7.

Following Yannakoudakis et al. (2011), we split
the publicly available FCE dataset into training and
test sets: we use the 1,141 scripts from the year
2000 and the 6 validation scripts for training, and
the 97 scripts from the year 2001 for testing. The
FCE training set contains about 30,995 pairs of par-
allel sentences (approx. 496,567 tokens on the tar-
get side), and the test set contains about 2,691 pairs
of parallel sentences (approx. 41,986 tokens on the
target side). Both FCE and NUCLE are too small
to build good SMT systems, considering that previ-
ous work has shown that training on small datasets
does not work well for SMT-based GEC (Yuan
and Felice, 2013; Junczys-Dowmunt and Grund-
kiewicz, 2014). To overcome this problem, Junczys-
Dowmunt and Grundkiewicz (2014) introduced ex-
amples collected from the language exchange social

networking website Lang-8, and were able to im-
prove system performance by 6 F-score points. As
noticed by them, Lang-8 data may be too noisy and
error-prone, so we decided to add examples from
the fully annotated learner corpus CLC to our train-
ing set (approx. 1,965,727 pairs of parallel sentences
and 29,219,128 tokens on the target side).

Segmentation and tokenisation are performed us-
ing RASP (Briscoe et al., 2006), which is expected
to perform better on learner data than a system de-
veloped exclusively from high quality copy-edited
text such as the Wall Street Journal.

3.2 Evaluation

System performance is evaluated using the I-
measure proposed by Felice and Briscoe (2015),
which is designed to address problems with previous
evaluation methods and reflect any improvement on
the original sentence after applying a system’s cor-
rections. An I score is computed by comparing sys-
tem performance (WAccsys) with that of a baseline
that leaves the original text uncorrected (WAccbase):

I =



bWAccsysc if WAccsys = WAccbase

WAccsys −WAccbase

1−WAccbase
if WAccsys > WAccbase

WAccsys
WAccbase

− 1 otherwise

(14)
Values of I lie in the [−1, 1] interval. Positive val-

ues indicate improvement, while negative values in-
dicate degradation. A score of 0 indicates no im-
provement (i.e. baseline performance), 1 indicates
100% correct text and -1 indicates 100% incorrect
text.

In order to compute the I score, system perfor-
mance is first evaluated in terms of weighted accu-
racy (WAcc), based on a token-level alignment be-
tween a source sentence, a system’s candidate, and
a gold-standard reference:1

1TP: true positives, TN: true negatives, FP: false positives,
FN: false negatives, FPN: both a FP and a FN (see Felice and
Briscoe (2015))
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WAcc =
w · TP + TN

w · (TP + FP) + TN + FN− (w + 1) · FPN
2

(15)
In Section 3.3 and 3.7, we also report results us-

ing another two evaluation metrics for comparison:
F0.5 from M2 Scorer (Dahlmeier and Ng, 2012b)
and GLEU (Napoles et al., 2015). The M2 Scorer
was the official scorer in the CoNLL 2013 and 2014
shared tasks, with the latter using F0.5 as the sys-
tem ranking metric. GLEU is a simple variant of
BLEU (Papineni et al., 2002), which shows better
correlation with human judgments on the CoNLL-
2014 shared task test set.

3.3 SMT system
We train several SMT systems and select the best
one for our re-ranking experiments. These systems
use different configurations, defined as follows:

• GIZA++: uses GIZA++ for word alignment;

• Pialign: uses Pialign to learn a phrase table;

• FCE: uses the publicly available FCE as train-
ing data;

• + LD: limits edit distance by adding the
character-level Levenshtein distance as a new
feature;

• + CLC: incorporates additional training exam-
ples extracted from the CLC.

Evaluation results using the aforementioned met-
rics are presented in Table 2. As we mentioned ear-
lier, a baseline system which makes no corrections
gets zero F score. We can see that not all the systems
make the source text better. Pialign outperforms
GIZA++. Adding more learner examples improves
system performance. The Levenshtein distance fea-
ture further improves performance. The best system
in terms of the I-measure is the one that has been
trained on the whole CLC, aligned with Pialign, and
includes edit distance as an additional feature (Pi-
align + FCE + CLC + LD). The positive I score
of 2.87 shows a real improvement in sentence qual-
ity. This system is also the best system in terms of
GLEU and F0.5 so we use the n-best list from this
system to perform re-ranking.

3.4 SVM re-ranker

The input to the re-ranking model is the n-best list
output from an SMT system. The original source
sentence is used to collect a 10-best list of candidates
generated by the SMT decoder, which is then used
to build a supervised re-ranking model. For training,
we use per-sentence I-measure values as gold labels.

The effectiveness of our re-ranker is proved by the
results: performing a 10-best list re-ranking yields a
statistically significant improvement in performance
over the top-ranked output from the best existing
SMT system.2 The best re-ranking model is built
using all features, achieving I = 9.78 (Table 3 #1).
In order to measure the contribution of each feature
set to the overall improvement in sentence quality, a
number of ablation tests are performed, where new
models are built by removing one feature type at a
time. In Table 3, SMT best is the best SMT sys-
tem output without re-ranking. FullFeat combines
all feature types described in Section 2.3. The rest
are FullFeat minus the indicated feature type.

The ablation tests tell us that all the features in
the FullFeat set have positive effects on overall per-
formance. Among them, the SMT decoder’s scores
are the most effective, as their absence is responsible
for a 6.58 decrease in I-measure (Table 3 #2). The
removal of the word lexicon features also acounts
for a 2.13 decrease (#6), followed by SMT n-best
list ranking information (1.46 #3), ALM (1.43 #5),
length features (0.75 #7) and the LM features (0.22
#4). In order to test the performance of the SMT
decoder’s scores on their own, we built a new re-
ranking model using only these features, which we
report in Table 3 #8. We can see that using only
the SMT decoder’s scores yields worse performance
than no re-ranking, suggesting that the existing fea-
tures used by the SMT decoder are not optimal when
used outside the SMT ecosystem. We hypothesise
that this might be caused by the lack of scores for
the source sentences that are not included in the n-
best list of the original SMT system.

Looking at the re-ranker’s output reveals that
there are some L2 learners errors which are missed
by the SMT system but are captured by the re-ranker
- see Table 4.

2We perform two-tailed paired T-tests, where p < 0.05.

261



Align Setting GLEU M2 I-measure
P R F0.5 WAcc I

Baseline 60.39 100 0 0 86.83 0
GIZA++ FCE 61.42 36.66 16.97 29.76 83.24 -4.14

+ LD 61.64 37.70 16.40 29.92 83.64 -3.68
+ CLC 67.70 48.67 37.64 45.97 83.94 -3.33
+ CLC + LD 67.98 49.87 37.16 46.67 84.42 -2.78

Pialign FCE 62.22 43.13 11.34 27.64 84.94 -2.17
+ LD 62.19 43.07 11.17 27.41 85.00 -2.11
+ CLC 70.07 62.37 32.19 52.52 87.01 1.38
+ CLC + LD 70.15 63.27 31.95 52.90 87.21 2.87

Table 2: SMT system performance on the FCE test set (in percentages). The best results are marked in bold.

# Feature WAcc I
0 SMT best 87.21 2.87
1 FullFeat 88.12 9.78
2 - SMT (decoder) 87.25 3.20
3 - SMT (rank) 87.93 8.32
4 - LM 88.09 9.56
5 - ALM 87.93 8.35
6 - word lexicon 87.84 7.65
7 - length 88.02 9.03
8 SMT (decoder) 87.15 2.40

Table 3: Results of 10-best list re-ranking on the FCE test set

(in percentages). The best results are marked in bold.

3.5 Oracle score

In order to estimate a realistic upper bound on the
task, we calculate an oracle score from the same 10-
best list generated by our best SMT model. The ora-
cle set is created by selecting the candidate which
has the highest sentence-level weighted accuracy
(WAcc) score for each source sentence in the test set.

Table 5 #0-2 compares the results of standard
SMT (i.e. the best candidate according to the SMT
model), the SVM re-ranker (the best re-ranking
model from Section 3.4) and the approximated or-
acle. The oracle score is about 41 points higher than
the standard SMT score in terms of I, and about 5
points higher in terms of WAcc, suggesting that there
are alternative candidates in the 10-best list that are
not chosen by the SMT model. Our re-ranker im-
proves the I score from 2.87 to 9.78, and the WAcc
score from 87.21 to 88.12, a significant improve-
ment over the standard SMT model. However, there

is still much room for improvement.
The oracle score tells us that, under the most

favourable conditions, our models could only im-
prove the original text by 44.35% at most. This also
reveals that in many cases, the correct translation is
not in the 10-best list. Therefore, it would be im-
possible to retrieve the correct translation even if the
re-ranking model was perfect.

3.6 Benchmark results

We also compare our ranking model with two other
methods: Minimum Bayes-Risk (MBR) re-ranking
and Multi-Engine Machine Translation (MEMT)
candidate combination.

MBR was first proposed by Kumar and
Byrne (2004) to minimise the expected loss of
translation errors under loss functions that measure
translation performance. Instead of using the
model’s best output, the one that is most similar
to the most likely translations is selected. We use
the same n-best list as the candidate set and the
likely translation set. MBR re-ranking can then be
considered as selecting a consensus candidate: the
least ‘risky’ candidate which is closest on average
to all the likely candidates.

The MEMT system combination technique was
first proposed by Heafield and Lavie (2010) and
was successfully applied to GEC by Susanto et
al. (2014). A confusion network is created by align-
ing the candidates, on which a beam search is later
performed to find the best candidate.

The 10-best list from the best SMT system in Ta-
ble 2 is used for re-ranking and results of using MBR
re-ranking and MEMT candidate combination are
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System Example sentences
Source I meet a lot of people on internet and it really interest me.
Reference I meet a lot of people on the Internet and it really interests me.
SMT best I meet a lot of people on the internet and it really interest me.
SVM re-ranker I meet a lot of people on the Internet and it really interests me.
Source And they effect everyone’s life directly or indirectly.
Reference And they affect everyone’s life directly or indirectly.
SMT best And they effect everyone’s life directly or indirectly.
SVM re-ranker And they affect everyone’s life directly or indirectly.
Source Of course I will give you some more detail about the student conference.
Reference Of course I will give you some more details about the student conference.
SMT best Of course I will give you some more detail about the student conference.
SVM re-ranker Of course I will give you some more details about the student conference.

Table 4: Example output from SMT best and SVM re-ranker.

# Model WAcc I
0 SMT best 87.21 2.87
1 SVM re-ranker 88.12 9.78
2 Oracle 92.67 44.35
3 MBR 87.32 3.71
4 MEMT 87.75 5.34

Table 5: Performance of SMT best, SVM re-ranker, oracle

best, MBR re-ranking and MEMT candidate combination (in

percentages).

presented in Table 5 #3-4. SVM re-ranker is our best
ranking model (#1), MBR is the MBR re-ranking
(#3) and MEMT is the MEMT candidate combina-
tion (#4). We can see that our supervised ranking
model achieves the best I score, followed by MEMT
candidate combination and MBR re-ranking. Our
model clearly outperforms the other two methods,
showing its effectiveness in re-ranking candidates
for GEC.

3.7 CoNLL-2014 shared task

The CoNLL-2014 shared task on grammatical error
correction required participating systems to correct
all errors present in learner English text. The official
training and test data comes from the NUCLE. F0.5
was adopted as the evaluation metric, as reported by
the M2 Scorer. In order to test how well our re-
ranking model generalises, we apply our best model
trained on the CLC to the CoNLL-2014 shared task
test data. We re-rank the 10-best correction can-
didates from the winning team in the shared task

(CAMB, Felice et al. (2014)), which were kindly
provided to us for these experiments. After the
shared task, there has been an on-going discussion
about how to best evaluate GEC systems, and dif-
ferent metrics have been proposed (Dahlmeier and
Ng, 2012b; Felice and Briscoe, 2015; Bryant and
Ng, 2015; Napoles et al., 2015; Grundkiewicz et
al., 2015). We evaluated our re-ranker using GLEU,
the M2 Scorer and the I-measure. Our proposed re-
ranking model (SVM re-ranker) is compared with
five other systems: the baseline, the top three sys-
tems in the shared task and a GEC system by Su-
santo et al. (2014), which combined the output
of two classification-based systems and two SMT-
based systems, and achieved a state-of-the-art F0.5
score of 39.39% - see Table 6. We can see that our
re-ranker outperforms the top three systems on all
evaluation metrics. It also achieves a comparable
F0.5 score to the system of Susanto et al. (2014) even
though our re-ranker is not trained on the NUCLE
data or optimised for F0.5. This result shows that our
model generalises well to other datasets. We expect
these results might be further improved by retokenis-
ing the test data to be consistent with the tokenisa-
tion of the CLC.3

4 Related work

The aim of GEC for language learners is to correct
errors in non-native text. Brockett et al. (2006) first

3The NUCLE data was preprocessed using the NLTK
toolkit, whereas the CLC was tokenised with RASP.
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System GLEU F0.5 I
Baseline 64.19 0 0
CAMB + SVM re-ranker 65.68 38.08 -1.71
Susanto et al. (2014) n/a 39.39 n/a
Top 3 systems in CoNLL-2014
CAMB (Felice et al., 2014) 64.32 37.33 -5.58
CUUI (Rozovskaya et al., 2014) 64.64 36.79 -3.91
AMU (Junczys-Dowmunt and
Grundkiewicz, 2014)

64.56 35.01 -3.31

Table 6: System performance on the CoNLL-2014 test set with-

out alternative answers (in percentages).

proposed the use of a noisy channel SMT model for
correcting a set of 14 countable/uncountable nouns
which are often confusing for learners. Dahlmeier
and Ng (2012a) developed a beam-search decoder
to iteratively generate candidates and score them us-
ing individual classifiers and a general LM. Their
decoder focused on five types of errors: spelling, ar-
ticles, prepositions, punctuation insertion, and noun
number. Three classifiers were used to capture
three of the common error types: article, prepo-
sition and noun number. Yuan and Felice (2013)
trained phrase-based and POS-factored SMT sys-
tems to correct 5 error types using learner and ar-
tificial data. Later, researchers realised the need for
new features in SMT for GEC. Felice et al. (2014)
and Junczys-Dowmunt and Grundkiewicz (2014) in-
troduced Levenshtein distance and sparse features
to their SMT systems, and reported better perfor-
mance. In addition, Felice et al. (2014) used a LM
to re-rank the 10-best candidates after they noticed
that better corrections were in the n-best list. Simi-
larly, for Chinese GEC, Zhao et al. (2015) confirmed
that their system included correct predictions in its
10-best list not selected during decoding, so a re-
ranking of the n-best list was clearly needed.

Re-ranking has been widely used in many natural
language processing tasks such as parsing, tagging
and sentence boundary detection (Collins and Duffy,
2002; Collins and Koo, 2005; Roark et al., 2006;
Huang et al., 2007). Various machine learning algo-
rithms have been adapted to these re-ranking tasks,
including boosting, perceptrons and SVMs.

In machine translation, generative models have
been widely used. Over the last decade, re-ranking
techniques have shown significant improvement.
Discriminative re-ranking (Shen et al., 2004), one of

the best-performing strategies, used two perceptron-
like re-ranking algorithms that improved translation
quality over a baseline system when evaluating with
BLEU. Goh et al. (2010) employed an online train-
ing algorithm for SVM-based structured prediction.
Various global features were investigated for SMT
re-ranking, such as the decoder’s scores, source and
target sentences, alignments and POS tags, sen-
tence type probabilities, posterior probabilities and
back translation features. More recently, Farzi and
Faili (2015) proposed a re-ranking system based on
swarm algorithms.

5 Conclusions and future work

We have investigated n-best list re-ranking for SMT-
based GEC. We have shown that n-best list re-
ranking can be performed to improve correction
quality. A supervised machine learning model has
proved to be effective and to generalise well. Our
best re-ranking model achieves an I score of 9.78%
on the publicly available FCE test set, compared to
a 2.87% score for our best SMT system without
re-ranking. When testing on the official CoNLL-
2014 test set without alternative answers, our model
achieves an F0.5 score of 38.08%, an I score of -
1.71%, and a GLEU score of 65.68%, outperform-
ing the top three teams on all metrics.

In future work, we would like to explore more
discriminative features. Syntactic features may pro-
vide useful information to correct potentially long-
distance errors, such as those involving subject-verb
agreement. Features that can capture the seman-
tic similarity between the source and the target sen-
tences are also needed, as it is important to retain
the meaning of the source sentence after correction.
Neural language models and neural machine trans-
lation models might also be useful for GEC. It is
worth trying GEC re-ranking jointly for larger con-
text as corrections for some errors may require a
signal outside the sentence boundaries, for example
by adding new features computed from surrounding
sentences. The n-best list size is an important pa-
rameter in re-ranking. We leave its optimisation to
future research, but our upper bound for re-ranking
the 10-best list of just over 40% suggests further im-
provements may be possible.
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Abstract

We present an automated method for estimat-
ing the difficulty of spoken texts for use in
generating items that assess non-native learn-
ers’ listening proficiency. We collected infor-
mation on the perceived difficulty of listening
to various English monologue speech samples
using a Likert-scale questionnaire distributed
to 15 non-native English learners. We aver-
aged the overall rating provided by three non-
native learners at different proficiency lev-
els into an overall score of listenability. We
then trained a multiple linear regression model
with the listenability score as the dependent
variable and features from both natural lan-
guage and speech processing as the indepen-
dent variables. Our method demonstrated a
correlation of 0.76 with the listenability score,
comparable to the agreement between the non-
native learners’ ratings and the listenability
score.

1 Introduction

Extensive research has been conducted on the pre-
diction of difficulty of understanding written lan-
guage based on linguistic features. This has resulted
in various readability formulas, such as the Fry read-
ability index and the Flesch-Kincaid formula, which
is scaled to United States primary school grade lev-
els. Compared to readability, research into listen-
ability, the difficulty of comprehending spoken texts,

∗We would like to thank to Yuan Wang for data collection,
Kathy Sheehan for sharing text difficulty prediction system and
insights, and Klaus Zechner, Larry Davis, Keelan Evanini, and
anonymous reviewers for comments.

has been somewhat limited. Given that spoken and
written language share many linguistic features such
as vocabulary and grammar, efforts were made to
apply readability formula to the difficulty of spoken
texts, rending promising results that the listenabil-
ity of spoken texts could be reasonably predicted
from readability formula without taking acoustic
features of spoken language into account (Chall and
Dial, 1948; Harwood, 1955; Rogers, 1962; Denbow,
1975; O’Keefe, 1971). However, linguistic features
unique to spoken language such as speech rate, dis-
fluency features, and phonological phenomena con-
tribute to the processing difficulty of spoken texts
as such linguistic features pose challenges at both
perception (or parsing) and comprehension levels
(Anderson, 2005). Research evidence indicated that
ESL students performed better on listening compre-
hension tasks when the rate of speech was slowed
and meaningful pauses were included (Blau, 1990;
Brindley and Slatyer, 2002). Shohamy and Inbar
(1991) observed that EFL students recalled most
when the information was delivered in the form of
a dialogue rather than a lecture or a news broadcast.
The researchers attributed test takers poor perfor-
mance on the latter two text types to a larger den-
sity of propositions, greater than that of the more
orally oriented text type (p. 34). Furthermore, it is
not difficult to imagine how other features unique
to spoken language affect language processing. For
example, prosodic features (e.g., stress, intonation)
can aid listeners in focusing on key words and in-
terpreting intended messages. Similarly, disfluency
features (e.g., pause, repetitions) may provide the
listener with more processing time and redundant in-
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Source Length (sec.) Number of
passages

% in the total sample Set A Set B Set C

English proficiency
tests for business
purpose

25 - 46 50 25 16 16 18

English proficiency
tests for academic
purpose

23 - 101 80 40 28 26 26

News 15 - 66 35 18 12 12 11
Interviews 30 - 93 35 18 11 12 12
Total 200 100 67 66 67

Table 1: Distribution of speech samples

formation (Cabrera and Martı́nez, 2001; Chiang and
Dunkel, 1992). Dunkel et al. (1993) stated that a
variety of linguistic features associated with spoken
texts contribute to task difficulty on listening com-
prehension tests. Thus, for a valid evaluation of the
difficulty of spoken texts, linguistic features relevant
to spoken as well as written language should be care-
fully considered. However, none of the studies that
we were aware of at the time of the current study had
attempted to address this issue in developing an au-
tomated tool to evaluate the difficulty of spoken texts
using linguistic features of both written and spoken
language. Lack of an automated evaluation tool ap-
propriate for spoken texts is evidenced in more re-
cent studies that applied readability formula to eval-
uate the difficulty of spoken test directions (Cormier
et al., 2011) and spoken police cautions (Eastwood
and Snook, 2012).

Recently, Kotani et al. (2014) developed an auto-
mated method for predicting sentence-level listen-
ability as part of an adaptive computer language
learning and teaching system. One of the primary
goals of the system is to provide learners with lis-
tening materials according to their second-language
proficiency level. Thus, the listenability score as-
signed by this method is based on the learners’ lan-
guage proficiency and takes into account difficulties
experienced across many levels of proficiency and
the entire set of available materials. Their method
used many features extracted from the learner’s ac-
tivities as well as new linguistic features that account
for phonological characteristics of speech.

Our study explores a systematic way to measure
the difficulty of spoken texts using natural language

processing (NLP) technology. In contrast to Kotani
et al. (2014)’s system for measuring sentence-level
listenability, we predict a listenability score for a
spoken text comprised of several sentences. We first
gathered multiple language learners’ perceptions of
overall spoken text difficulty, which we operational-
ized as a criterion variable. We assumed that the lin-
guistic difficulty of spoken texts relates to four ma-
jor dimensions of spoken language: acoustic, lexi-
cal, grammatical, and discourse. As we identified
linguistic features for the study, we attempted to rep-
resent each dimension in our model. Finally, we de-
veloped a multiple linear regression model to esti-
mate our criterion variable using linguistic features.
Thus, this study addresses the following questions:

• To what extent do non-native listeners agree
with the difficulty of spoken texts?

• What linguistic features are strongly associated
with the perceived difficulty of spoken texts?

• How accurately can an automated model based
on linguistic features measuring four dimen-
sions (Acoustic, Lexical, Grammatical, and
Discourse) predict the perceived difficulty of
spoken texts?

2 Data

2.1 Speech Samples

We used a total of 200 speech samples from two
different types of sources: listening passages from
an array of English proficiency tests for academic
and business purposes, and samples from broadcast
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news and interviews which are often used as listen-
ing practice materials for language learners. Table
1 shows the distribution of the 200 speech samples
by source and by random partition into three distinct
sets A, B, and C for the collection of human ratings.
Each set includes a similar number of speech sam-
ples per source.

All speech samples were monologic speech and
the length of speech samples was limited to a range
of about 23 to 101 seconds. All samples were free
from serious audio quality problems that would have
obscured the contents. The samples from the En-
glish proficiency exams were spoken by native En-
glish speakers with high-quality pronunciation and
typical Canadian, Australian, British, or American
accents. The samples from the news clips were part
of 1996 English Broadcast News Speech corpus de-
scribed in Graff et al. (1997). We selected seven
television news programs and extracted speech sam-
ples from the original anchors. The interview sam-
ples were excerpts from interview corpus described
in Pitt et al. (2005). They were comprised of uncon-
strained conversational speech between native En-
glish speakers from the Midwestern United States
and a variety of interviewers who, while speaking
native- or near-native English, are from unknown
origins. We only extracted a monologic portion from
the interviewee.

2.2 Human Ratings
A questionnaire was designed to gather participants’
perceptions of overall spoken text difficulty, opera-
tionalized as our criterion variable. The question-
naire is comprised of five Likert-type questions de-
signed to be combined into a single composite score
during analysis. Higher point responses indicated
a lower degree of listening comprehension and a
higher degree of text difficulty. The original ques-
tionnaire is as follows:

1. Which statement best represents the level of
your understanding of the passage?

5) Missed the main point
4) Missed 2 key points
3) Missed 1 key point
2) Missed 1-2 minor points
1) Understood everything

2. How would you rate your understanding of the
passage?

5) less than 60%
4) 70%
3) 80%
2) 90%
1) 100%

3. How much of the information in the passage
can you remember?

5) less than 60%
4) 70%
3) 80%
2) 90%
1) 100%

4. Estimate the number of words you missed or
did not understand.

5) more than 10 words
4) 6-10 words
3) 3-5 words
2) 1-2 words
1) none

5. The speech rate was

5) fast
4) somewhat fast
3) neither fast nor slow
2) somewhat slow
1) slow

The first three questions were designed to esti-
mate participants’ overall comprehension of the spo-
ken text. The fourth question, regarding the num-
ber of missed words, and the fifth question were de-
signed to estimate the difficulty associated with the
Vocabulary and Acoustic dimensions. We did not in-
clude separate questions related to the Grammar or
Discourse dimensions.

Our aim was to recruit two non-native English
speakers of beginner, intermediate, and advanced
proficiency and have them rate each set of speech
samples. We were able to recruit 15 non-native
English leaner representing various native language
groups including Chinese, Japanese, Korean, Thai,
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and Turkish. Prior to evaluating the speech samples,
participants were classified into one of the three pro-
ficiency levels based on the score they received on
the TOEFL Practice Online(TPO). TPO is an on-
line practice test which allows students to gain fa-
miliarity with the format of TOEFL, and we used a
total score that was a composite score of four sec-
tion scores: listening, reading, speaking, and writ-
ing. Each participant rated one set, approximately
67 speech samples. The participants were assigned
to one of the three sets of speech samples with care
taken to ensure that each set was evaluated by a
group representing a wide range of proficiency lev-
els. Table 2 summarizes the number of listeners at
each proficiency level assigned to each set.

Beginner Intermediate Advanced
Set A 2 1 2
Set B 1 1 3
Set C 2 1 2

Table 2: Distribution of non-native listeners

All participants attended a rating session which
lasted about 1.5 hours. At the beginning of the
rating session, the purpose and procedures of the
study were explained to the participants. Since we
were interested in the individual participants’ per-
sonal perceptions of the difficulty of spoken texts,
participants were told to use their own criteria and
experience when answering the questionnaire. Par-
ticipants worked independently and listened to each
speech sample on the computer. The questionnaire
was visible while the listening stimuli were playing;
however, the ability to respond to it was disabled
until the speech sample had been listened to in its
entirety. After listening to each sample, the partic-
ipants provided their judgments of spoken text dif-
ficulty by answering the questionnaire items. The
speech samples within each set appear in random se-
quence to minimize the effect of the ordering of the
samples on the ratings. Furthermore, to minimize
the effect of listeners’ fatigue on their ratings, they
were given the option of pausing at any time during
the session and resuming whenever ready.

Before creating a single composite score from five
Likert-type questions, we first conducted correlation
analysis using the entire dataset. We created all pos-
sible pairs among five Likert-type questions and cal-

culated Pearson correlations between responses to
paired questions. The responses to the first four
questions were highly correlated with Pearson cor-
relation coefficients ranging from 0.79 to 0.92. The
correlations between Question 5 and the other four
questions ranged between 0.49 and 0.61. The strong
inter-correlations among different Likert-type ques-
tions suggested that these questions measured one
aspect: the overall difficulty of spoken texts. Thus,
instead of using each response from a different ques-
tion separately, for each audio sample, we summed
each individual participant’s responses to the five
questions. This resulted in a scale with a minimum
score of 5 and maximum score of 25, where the
higher score, the more difficult the text. Hereafter,
we refer to an individual-listener’s summed rating
an aggregated score.

Since our system goal was to predict the averaged
perceived difficulty of the speech samples across En-
glish learners at beginning, intermediate, and ad-
vanced levels, we used the average of three listen-
ers’ aggregated scores, one listener from each pro-
ficiency level. Going forward we will refer to this
average rating as the listenability score. The mean
and standard deviation of listenability scores were
17.3 and 4.6, respectively. We used this listenability
score as our dependent variable during model build-
ing.

3 Method

3.1 Speech-Based Features
In order to capture the acoustic characteristics of
speech samples, we used speech proficiency scor-
ing system, an automated proficiency scoring sys-
tem for spontaneous speech from non-native English
speakers. speech proficiency scoring system cre-
ates an automated transcription using an automated
speech recognition (ASR) system and does not re-
quire a manual transcription. However, in this study,
when generating features for our listenability model,
we used a forced alignment algorithm to align the
audio sample against a manual transcription in or-
der to avoid the influence of speech recognition er-
rors. This created word- and phone-level transcrip-
tions with time stamps. The system also computes
pitch and power and calculates descriptive statistics
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Dimension Feature Correlation with Average Hu-
man Difficulty Rating

Acoustic Speaking rate in words per second −0.42
Number of silences per word 0.25

Mean deviation of speech chunk −0.30
Mean distance between stressed syllables in seconds 0.25

Variations in vowel durations −0.30
Vocabulary Number of noun collocations per clause −0.27

Type token ratio 0.33
Normalized frequency of low frequency words −0.49

Average frequency of word types −0.25
Grammar Average words per sentence −0.38

Number of long sentences −0.39
Normalized number of sentences 0.45

Table 3: Correlation between linguistic features and listenability

such as the mean and standard deviation of both
of these at the word and response level. Given the
transcriptions with time stamps and descriptive fea-
tures of pitch and power, speech proficiency scor-
ing system produces around 100 features for auto-
mated proficiency scoring per input. However, be-
cause speech proficiency scoring system is designed
to measure the non-native speaker’s degree of lan-
guage proficiency, and a large number of features
assess distance between the non-native test takers’
speech and the native speakers’ norm. These fea-
tures are not applicable to our data since all audio
samples are from native speakers. After excluding
these features, only 20 features proved to be useful
for our study. The features were classified into three
groups as follows:

• Fluency: Features in this group measure the de-
gree of fluency in the speech flow; for example,
speaking rate and the average length of speech
chunk without disfluencies;

• Pause: Features in this group capture charac-
teristics of silent pauses in speech; for exam-
ple, the duration of silent pauses per word, the
mean of silent pause duration, and the number
of long silent pauses;

• Prosodic: Features in this group measure
rhythm and durational variations in speech; for
example, the mean distance between stressed
syllables in syllables, and the relative frequency
of stressed syllables.

3.2 Text-Based Features

Text-based features were generated on clean tran-
scripts of the monologic speech using the text dif-
ficulty prediction system system. (Sheehan et al.,
2014) The main goal of text difficulty prediction
system is to provide an overall measure of text
complexity, otherwise known as readability, an im-
portant subtask in the measurement of listenability.
However, because of the differences between read-
ability and listenability, only seven of the more than
200 linguistic features generated by text difficulty
prediction system were selected for our model, four
of which cover the Vocabulary construct and three
of which cover our Grammar construct.

3.3 Model Building

Beginning with the full set of features generated by
speech proficiency scoring system and text difficulty
prediction system, we conducted a correlation anal-
ysis between these linguistic features and our hu-
man ratings. We used the entire dataset for corre-
lation analysis due to the limited amount of avail-
able data. We selected our subset of features using
the following procedure: first, we excluded a feature
when its Pearson correlation coefficient with listen-
ability scores was less than 0.25. In order to avoid
collinearity in the listenability model, we excluded
highly correlated features (r ≥ 0.8). Next, the re-
maining features were classified into four groups
(Acoustic, Vocabulary, Grammar, and Discourse)
each containing the three features representing that
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dimension with the highest correlations. The final,
overall set of features used in our analysis was se-
lected to maximize the coverage of all of the com-
bined characteristics represented by the overall con-
structs. For instance, if two features showed a cor-
relation larger than 0.80, a feature whose dimension
was not well represented by other features was se-
lected. This resulted in a set of 12 features as pre-
sented in Table 3. We did attempt to develop a Co-
herence dimension using two features (the frequency
of content word overlap and the frequency of casual
conjuncts), but both were found to have insignifi-
cant correlations with the listenability score and thus
were excluded from the model.

Model-building and evaluation were performed
using three-fold cross-validation. We randomly di-
vided out data into three sets, two of which were
combined for training with the remaining set used
for testing. For each round, a multiple linear regres-
sion model was built using the average difficulty rat-
ings of three non-native listeners, one at each profi-
ciency level, as the dependent variables and the 12
features as independent variables.

4 Results

4.1 Agreement among non-native listeners

In this study, we estimated the difficulty of under-
standing spoken texts based on self-reported ratings
via Likert-type questions, similar to the approach
taken by Kotani et al. (2014). Likert-type ques-
tions are effective in collecting the participants’ im-
pression for the given item and are widely used in
survey research but are highly susceptible. Partic-
ipants may avoid selecting extreme response cat-
egories (central tendency bias) or may choose the
“easy” category more often to inflate their listening
comprehension level. These distortions may result
in shrinkage of the listenability score’s scale. In par-
ticular, the second bias may be more salient for par-
ticipants at low proficiency levels and cause a skew
toward higher listenability scores. In order to ex-
amine whether any participant was subject to such
biases, we first analyzed the distribution of response
categories per each participant. Approximately 335
responses were available per participant (67 audio
samples, 5 questions per sample). All participants
made use of every response category, and 10 out of

Figure 1: Distribution of Likert-type responses per proficiency

group

15 participants used all categories at least 4% of the
time. However, four participants rarely used certain
response categories; two advanced learners and one
intermediate learner used category “5” (most diffi-
cult) only 1%. On the contrary, one rater at the be-
ginner level used category “1” (easiest) only for 1%.
Due to the potential bias in these ratings, we tried to
exclude them when selecting three listeners (one lis-
teners per proficiency level) to use in calculating the
listenability score; these advanced learners and this
beginner learner were excluded, but the intermedi-
ate learner was included due to lack of an alternative
learner at the same proficiency level.

Next, we examined the relationship between dif-
ficulty ratings and non-native listeners’ proficiency
levels. Figure 4.1 shows distribution of aggregated
scores per proficiency group.

The aggregated score reflects the degree of com-
prehension by non-native listeners. The lowest
response category indicated understanding of all
words and possibly all main points, while the highest
response category indicated that listeners failed to
understand the main point, or they understood less
than 60% of the contents. Beginners’ scores were
relatively evenly distributed; the proportion of re-
sponse category “1” (easiest) was 14%, while the
proportion of response category “5” (most difficult)
was 24%. In regards to the high proportion of “5”
responses by beginners, we would expect that, if
there was a tendency on the part of the beginners
to inflate their scores, the proportion of this cate-
gory would be low. On the contrary, it was the most
frequently selected category, demonstrating that the
beginning listeners in this study did not seem to be
inflating their ability to understand the spoken text.
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Not surprisingly, as proficiency level increased, the
listeners were more likely to judge the samples as
easy, and the frequency of selecting categories rep-
resenting difficulty decreased. The percentages of
response category “5” selections were 24% for be-
ginners, 9.1% for intermediate learners, and 5.3%
for advanced learners.

Finally, we used Pearson correlation coefficients
to assess the inter-rater agreement on the difficulty
of spoken texts. The correlation analysis results be-
tween two listeners at the same proficiency level are
summarized in second and third rows of Table 4. For
the beginner group, the correlation coefficient for set
B was unavailable due to the lack of a second lis-
tener. We also analyzed the agreement between all
possible pairs of listeners across the different groups
by calculating the Pearson correlation coefficient per
pair and taking the average for each set (8 pairs for
set A and C, 5 pairs for set B). The results are pre-
sented in the last row of Table 4.

Table 4 provides Pearson correlation coefficients.

Group Proficiency
Level

A B C Mean

Within
Group

Beginner 0.56 - 0.60 0.58

Advanced 0.55 0.64 0.64 0.61
Cross-Group 0.61 0.58 0.60 0.60

Table 4: Pearson correlations among non-native listeners’ rat-

ings

The non-native listeners showed moderate agree-
ment on the difficulty of our selection of spoken
texts. Within the same group, the Pearson correla-
tion coefficients ranged from 0.55 to 0.64, and the
average was 0.58 for the beginner group and 0.61 for
the advanced group. The average correlation across
groups was also comparable to the within-group cor-
relation values, although the range of the coefficients
was wider, ranging from 0.51 to 0.7.

Next, we evaluated the reliability of the listenabil-
ity scores (the average of three non-native listeners’
ratings) based on the correlation with the second lis-
tener’s ratings not used in the listenability scores.
Compared to correlations between individual lis-
teners’ ratings (Pearson correlation coefficients of
within-group condition), there were increases in the
Pearson correlation coefficients. The Pearson cor-

relation coefficient with the beginner group listener
score was 0.65, and that with the advanced group lis-
tener score was 0.71; there was 0.07 increase in the
beginner listener and 0.10 increase in the advanced
listener, respectively. This improvement is expected
since the listenability scores are averages of three
scores and therefore a better estimate of the true
score. We will use Pearson correlation coefficients
of 0.65 and 0.71 as reference of human performance
when comparing with machine performance.

4.2 Relationships Between Listenability Scores
and Linguistic Features

We conducted a correlation analysis between our set
of 12 features used in the model and the average lis-
tenability scores. A brief description, relevant di-
mension, and Pearson correlation coefficients with
the listenability scores are presented in Table 3. Fea-
tures in the Acoustic dimension were generated us-
ing speech proficiency scoring system based on both
a audio file and its manual transcription. Features in
both the Vocabulary and Grammar dimensions were
generated using text difficulty prediction system and
only made use of the transcription.

The features showed moderate correlation with
the listenability scores, with coefficients ranging
from 0.25 to 0.50 in absolute value. The best per-
forming feature was the “normalized frequency of
low frequency words” which measures vocabulary
difficulty. It was followed by the “normalized num-
ber of sentences” which measures syntactic com-
plexity and then the “speaking rate of spoken texts”
from the Acoustic dimension.

4.3 Performance of the Automated System

Table 5 presents the agreement between ratings gen-
erated by our system and the human ratings. The
model using both written and spoken features, “All”,
has a strong correlation with the averaged listenabil-
ity score, with a Pearson correlation coefficient of
0.76. This result is comparable to the agreement be-
tween the average listenability score and those of
the individual listeners (0.65 and 0.71). In order
to evaluate the impact of different sets of features,
we developed two models: a model based only on
speech proficiency scoring system features (Acous-
tic dimension alone) and a model based only on text
difficulty prediction system features (the Vocabulary
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and Grammar dimensions). The performance of the
model was promising, but there was a substantial
drop in agreement: a decrease of approximately 0.1
in the Pearson correlation coefficient from the ob-
served for the model with both written and spoken
features. Overall, the results strongly suggest that
the combination of acoustic-based features and text-
based features can achieve a substantial improve-
ment in predicting the difficulty of spoken texts over
the limited linguistic features typically used in tradi-
tional readability formulas.

Feature Set Correlation Weighted
Kappa

All 0.76 0.73
speech profi-
ciency scoring
system only

0.67 0.64

text difficulty pre-
diction system only

0.65 0.63

Table 5: Correlation between automated scores and listenabil-

ity scores based on human ratings

5 Discussion

Due to the limited amount of data available to us,
the features used in the scoring models were se-
lected using all of our data, including the evaluation
partitions; this may result in an inflation of model
performance. Additionally, we selected a subset
of features based on correlations with listenability
scores and expert knowledge (construct relevance)
but we did not use an automated feature selection
algorithm. In a future study, we will address this is-
sue by collecting a larger amount of data and making
separate, fixed training and evaluation partitions.

In this study, we used non-native listeners’
impression-based ratings as our criterion value. We
did not provide any training session prior to collect-
ing these ratings which were based on individual
participants’ own perceptions of the difficulty. The
individual raters had a moderate amount of agree-
ment on the difficulty of the spoken texts, but for use
in training our model, the reliability of listenability
scores based on the average of three raters was sub-
stantially higher. However, impression-based rat-
ings tend to be susceptible to raters’ biases, so it is

not always possible to get high-quality ratings. Rat-
ings from non-native learners covering a wide range
of proficiency levels is particularly difficult. Obtain-
ing a high-quality criterion value has been a critical
challenge in the development of many listenability
systems. To address this issue, we explored auto-
mated methods that improve the quality of aggre-
gated ratings. Snow et al. (2008) identified indi-
vidual raters with biases and corrected them using
small set of expert annotations. Ipeirotis et al. (2010)
proposed a method using the EM algorithm without
any gold data: they first initialize the correct rating
for each task based on the majority vote outcome,
then estimated the quality of each rater based on
the confusion matrix between each individual rater’s
ratings and majority vote-based answers. Following
that, they re-estimated correct answers based on the
weighted vote using the rater’s error rate. They re-
peated this process until it converged. Unfortunately
we found that it was difficult to apply these methods
to our study. Both methods required correct answers
across all raters (either based on expert annotations
or majority voting rules). In our case, the answers
varied across proficiency levels since our questions
were in regards to the degree of spoken text compre-
hension. In order to apply these methods, we would
have needed to define a set of correct answers per
proficiency level. In the future, instead of applying
these automated methods exactly, we intend to de-
velop a new criterion value based on an objective
measure of a listener’s comprehension. We will cre-
ate a list of comprehension questions specific to each
spoken text and estimate the difficulty based on the
proportion of correct answers.

Originally, responses of individual Likert-type
question are ordinal scale data. The numbers as-
signed to different response categories express a
”greater than” relationship, and the intervals be-
tween two consequent points are not always identi-
cal. For instance, for the Likert-type question using
five response categories (”strongly disagree”, ”dis-
agree”, ”neither disagree nor agree”, ”agree”, and
”strongly agree”), the interval between ”strongly
agree” and ”agree” may not be identical to the in-
terval between ”agree” and ”neither disagree nor
agree”. Thus, some analyses applicable to interval
data are not appropriate for Likert-type data. On the
contrary, the Likert-scale data is comprised of a se-
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ries of Likert-type questions addressing one aspect,
and all questions are designed to create one single
composite score. For this type of data, we can use
descriptive analysis such as mean and standard devi-
ation and linear regression models. In this study, five
Likert-type questions were designed to measure one
aspect, perceptions of overall spoken text difficulty,
and, in fact, responses to different questions were
strongly correlated. Based on this observation, we
treated our data as a Likert-scale data and conducted
various analysis applicable to the interval scale data.

Our method was initially designed to assist with
the generation of listening items for language pro-
ficiency tests. Therefore, we focused on spoken
texts frequently used on such tests, so, as a result,
the range of text types investigated was narrow and
quite homogenous. Interactive dialogues and dis-
cussions were not included in this study. Further-
more, although effort was made to include a vari-
ety of monologues by adding radio broadcasts to our
data sample, a significant portion of the speech sam-
ples were recorded spoken texts that were designed
for a specific purpose, that is, testing English lan-
guage proficiency. It is possible that the language
used in such texts is more contrived than that of
monologues encountered in everyday life, particu-
larly since they do not contain any background noise
and were produced by speakers from a narrow set of
English accents. That having been said, our method
is applicable within this context, and predicting the
difficulty of monologues produced by native speak-
ers with good audio quality is its best usage.

6 Conclusion

This study investigated whether the difficulty of
comprehending spoken texts, known as listenability,
can be predicted using a certain set of linguistic fea-
tures. We used existing natural language and speech
processing techniques to propose a listenability es-
timation model. This study combined written and
spoken text evaluation tools to extract features and
build a multiple regression model that predicts hu-
man perceptions of difficulty on short monologues.
The results showed that a combination of 12 such
features addressing the Acoustic, Vocabulary, and
Grammar dimensions achieved a correlation of 0.76
with human perceptions of spoken text difficulty.
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Abstract

We investigate automatically extracting multi-
word topical components to replace informa-
tion currently provided by experts that is used
to score the Evidence dimension of a writing
in response to text assessment. Our goal is
to reduce the amount of expert effort and im-
prove the scalability of an automatic scoring
system. Experimental results show that scor-
ing performance using automatically extracted
data-driven topical components is promising.

1 Introduction

Automatic essay scoring has increasingly been in-
vestigated in recent years. One important aspect
of writing assessment, specifically in source-based
writing, is evaluation of content. Different methods
have been used to assess the content of essays, e.g.,
bag of words (Mayfield and Rose, 2013), semantic
similarity (Foltz et al., 1999; Kakkonen et al., 2005;
Lemaire and Dessus, 2001), content vector analy-
sis and cosine similarity (Louis and Higgins, 2010;
Higgins et al., 2006; Attali and Burstein, 2006), and
Latent Dirichlet Allocation (LDA) topic modeling
(Persing and Ng, 2014).

These prior studies differ from our research in
several ways. Much of the prior work does not tar-
get source-based writing and thus does not make use
of source materials. Approaches that do make use
of source materials are typically designed to detect
only if an essay is on-topic. Our source-based as-
sessment, in contrast, is also concerned with localiz-
ing in the student essay pieces of evidence that stu-
dents provided from the source material. This is be-

cause our goal is to not only score an essay, but also
to provide feedback based on detailed essay content.

Various kinds of source-based assessments of
content (both in essay and short answering scoring)
typically require some expert work in advance. Ex-
perts have provided reference answers (Nielsen et
al., 2009; Mohler et al., 2011) or manually crafted
patterns (Sukkarieh et al., 2004; Makatchev and
VanLahn, 2007; Nielsen et al., 2009). Using man-
ually provided information helps increase the accu-
racy of a scoring system and its ability to provide
meaningful feedback related to the scoring rubric.
But involving experts in the scoring process is a
drawback for automatically scoring at scale.

Research to reduce expert effort has been un-
derway to increase the scalability of scoring sys-
tems. A semi-supervised method is used to reduce
the amount of required hand-annotated data (Zesch
et al., 2015). Text templates or patterns are auto-
matically identified for short answer scoring (Ra-
machandran et al., 2015). Content importance mod-
els (Beigman Klebanov et al., 2014) are used to pre-
dict source material that students should select.

In this paper, our goal is to use natural language
processing to automatically extract from source ma-
terial a comprehensive list of topics which include:
a) important topic words, and b) specific expressions
(N-grams with N > 1) that students need to pro-
vide in their essays. We call this comprehensive list
“topical components”. Automatic extraction of top-
ical components helps to reduce expert effort before
the automatic assessment process. We evaluate the
usefulness of our method for extracting topical com-
ponents on the Response-to-Text Assessment (RTA)
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Excerpt from the article: Many kids in Sauri did not attend school because their parents could not afford school fees. Some kids
are needed to help with chores, such as fetching water and wood. In 2004, the schools had minimal supplies like books, paper
and pencils, but the students wanted to learn. All of them worked hard with the few supplies they had. It was hard for them to
concentrate, though, as there was no midday meal. By the end of the day, kids didn’t have any energy.
Prompt: The author provided one specific example of how the quality of life can be improved by the Millennium Villages Project
in Sauri, Kenya. Based on the article, did the author provide a convincing argument that winning the fight against poverty is
achievable in our lifetime? Explain why or why not with 3-4 examples from the text to support your answer.
Essay with score of 4 on Evidence dimension: I was convinced that winning the fight of poverty is achievable in our lifetime.

Many people couldn’t afford medicine or bed nets to be treated for malaria . Many children had died from this dieseuse even

though it could be treated easily. But now, bed nets are used in every sleeping site . And the medicine is free of charge. Another

example is that the farmers’ crops are dying because they could not afford the nessacary fertilizer and irrigation . But they are

now, making progess. Farmers now have fertilizer and water to give to the crops. Also with seeds and the proper tools . Third,

kids in Sauri were not well educated. Many families couldn’t afford school . Even at school there was no lunch . Students were

exhausted from each day of school. Now, school is free . Children excited to learn now can and they do have midday meals .
Finally, Sauri is making great progress. If they keep it up that city will no longer be in poverty. Then the Millennium Village project
can move on to help other countries in need.

Table 1: An excerpt from the source text, the prompt, and a high-scoring essay with highlighted evidence (Rahimi et al., 2014).

(Correnti et al., 2012; Correnti et al., 2013).
RTA is developed to assess analytical writing in

response to text (Correnti et al., 2013), e.g., making
claims and marshalling evidence from a source text
to support a viewpoint. Automatic scoring of the Ev-
idence dimension of the RTA was previously investi-
gated in (Rahimi et al., 2014). The Evidence dimen-
sion evaluates how well students use selected details
from a text to support and extend a key idea. A set of
rubric-based features enabled by topical components
manually provided by experts were used in (Rahimi
et al., 2014) to automatically assess Evidence.

In this paper, we propose to use a model enabled
by LDA topic modeling to automatically extract the
topical components (i.e., topic words and signifi-
cant N-grams (N ≥ 1)) needed for our scoring
approach1. We hypothesize that extracting rubric-
based features based on data-driven topical com-
ponents can perform as well as extracting features
from manually provided topical components. Re-
sults show that our method for automatically extract-
ing topical components is promising but still needs
improvement.

2 Data

We have two datasets of student writing from two
different age groups (grades 5-6 and grades 6-8) that
were written in response to one prompt introduced
in (Correnti et al., 2013). The student essays com-

1Unlike much LDA-enabled work, we not only make use of
topic words, but also expressions clustered to a set of topics.

prising our datasets were obtained as follows. A text
was read aloud by a teacher and students followed
along. The text is about a United Nations project to
eradicate poverty in a rural village in Kenya. After
a guided discussion of the article, students wrote an
essay in response to a prompt that required them to
make a claim and support it using details from the
text. A small excerpt from the article, the prompt,
and a sample high-scoring student essay from grades
5-6 are shown in Table 1.

Our datasets (particularly essays by students in
grades 5–6) have a number of properties that may
increase the difficulty of the automatic essay assess-
ment task. For example, the essays are short and
many of them are only one paragraph (the median
number of paragraphs for 5–6 and 6–8 datasets are
1 and 2 respectively). Some statistics about the
datasets are in Table 2.

The RTA provides rubrics along five dimensions
to assess student writing, each on a scale of 1-4 (Cor-
renti et al., 2013). In this paper we focus only on pre-
dicting the score of the Evidence dimension2. The
essays in our datasets were scored half by experts
and the rest by trained undergraduates. The corpus
of grades 5–6 and 6–8 respectively consist of 1569
essays with 602 of them double-scored, and 1045
essays with all of them double-scored, for inter-
rater reliability. Inter-rater agreement (Quadratic
Weighted Kappa) on the double-scored portion of

2The other RTA dimensions are Analysis, Organization,
Style, and MUGS (Mechanics, Usage, Grammar, Spelling).
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Dataset Mean SD

5–6
Grades

words 161.25 92.24
unique words 93.27 40.57
sentences 9.01 6.39
paragraphs 2.04 1.83

6–8
Grades

words 218.90 111.08
unique words 109.34 41.59
sentences 11.98 7.17
paragraphs 2.56 1.72

Table 2: The two dataset’s statistics.

Dataset 1 2 3 4 Total
5–6 471 594 334 170 1569
Grades (30%) (38%) (21%) (11%)
6–8 250 434 229 132 1045
Grades (24%) (42%) (22%) (13%)

Table 3: Distribution of the Evidence scores.

the grades 5-6 and 6-8 corpora respectively are 0.67
and 0.73 for the Evidence dimension. The distribu-
tion of Evidence scores is shown in Table 3.

3 Extracting Topical Components

One way of obtaining topical components is to have
experts manually create them using their knowledge
about the text (Rahimi et al., 2014). An example
subset of the components, provided by experts and
used to extract the features mentioned in Section 4.2,
are in Table 4. The excerpt from the text from which
the “school” topic is extracted is shown in Table 1.

In this paper, we instead automatically extract the
topical components. Our proposed method has 3
main steps: (1) using topic modeling to extract top-
ics and probabilistic distribution of words, (2) us-
ing Turbo-Topic to get the significant N-grams per-
topic, and (3) post-processing the Turbo-Topic out-
put to get the topical-components.

The first step uses LDA topic modeling (Blei et
al., 2003) which is a generative probabilistic model
of a corpus. The basic idea is that documents are
represented as random mixtures over latent topics,
where each topic is characterized by a distribution
over words. The output of the LDA algorithm is a
list of topics. Each topic is a probability distribution
over words in a vocabulary.

The second step feeds the posterior distribution
output of LDA over words as an input to Turbo-
Topic (Blei and Lafferty, 2009) to extract signifi-
cant N-grams per-topic. In Turbo-Topic, the pos-

terior distribution output of LDA is used to annotate
each word occurrence in the corpus with its most
probable topic. It uses a back-off language model
defined for arbitrary length expressions and a sta-
tistical co-occurrence analysis is carried out recur-
sively to extract the most significant multi-word ex-
pressions for each topic. Finally, the resulting ex-
pressions are combined with the unigram list. One
advantage of Turbo-Topic is the ability of finding
significant phrases without the necessity of all words
in the phrase being assigned to the topic by using
the information of repeated context in the language
model. For example, the N-gram “schools now serve
lunch” can be distinguished as a significant N-gram
for the topic “School” using the language model
even if only the words “schools” and “lunch” are as-
signed to the topic “school” by LDA.

The third step uses the output of Turbo-Topic,
which is a list of significant N-grams (N ≥ 1) with
their counts per-topic, to extract the topical compo-
nents. To make different topics unique and more dis-
tinguishable, we decided to include each N-gram in
only one topic. For this purpose, we use the count
of N-grams in topics and assign each N-gram to the
topic in which it has the highest count. The next is-
sue is to remove the redundant information. If A and
B are two N-grams in a topic and A is a subset of B,
we remove the N-gram A. After processing the out-
put of Turbo-Topic, we divide it to a list of highly
important words and a list of expressions per-topic.
We use a cut-off threshold and only include the top
N-grams based on their counts in each topic.

4 Experiments

We configure experiments to test the validity of
the hypothesis that scoring models that extract fea-
tures based on automatically extracted LDA-enabled
topical components can perform as well as mod-
els which extract features from topical components
manually provided by experts.

4.1 Experimental Tools and Methods
All experiments use 10 fold cross validation with
Random Forest as a classifier (max-depth=5).
We report performance using Quadratic Weighted
Kappa, a standard evaluation measure for essay as-
sessment. Paired student t-test with p-value < 0.05
is used to measure statistical significance.
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Topic:Hospitals Topic:Schools Topic:Progress

a) Topic Words
care, health, hospital,
doctor, disease

school, supply, fee,
student, lunch

progress, four, serve,
attendance, maintain

b) N-grams (N > 1)

Yala sub district hospital
no running water electricity
not medicine treatment could afford
no doctor only clinical officer
three kids bed two adults

kids not attend go school
not afford school fees
no midday meal lunch
schools minimal supplies
concentrate not energy

progress made just four years
water connected hospital
bed nets used every sleeping site
kids go school now
now serves lunch

Table 4: A sub-list of manually extracted a) topic words and b) specific expressions for three sample topics. They are manually

provided by experts in (Rahimi et al., 2014). Some of the stop-words might have been removed from the expressions by experts.

Topic: Hospitals Topic: Schools Topic: Progress

a) Topic Words
author, fight, hospital,
yala, sub, 2015

school, water, food,
malaria, children, free

sauri, progress, made, student,
project, better

b) N-grams (N > 1)

common diseases
win the fight against poverty
also has a generator for
district hospital
rate is way up
yala subdistrict hospital

school supplies
school fees and
afford it
food supply
midday meal
paper and

made amazing progress in just four years
lunch for the students
school now serves
water is connected to the
just 4 years
progress in just 4

Table 5: A sub-list of automatically extracted a) topic words and b) specific expressions for three sample topics. They are automat-

ically extracted by the data-driven LDA-enabled model (see Section 3).

We compare results for models that extracted fea-
tures from topical components with a baseline model
which uses the top 500 unigrams as features (chosen
based on a chi-squared feature selection method),
and with an upper-bound model which is the best
model reported in (Rahimi et al., 2014). The only
difference between our model and the upper-bound
model is that in our model the topical components
were extracted automatically instead of manually.

To train LDA, we use a set of 591 not-scored es-
says (which are not used in our cross validation ex-
periments) from grades 6-8, and the text. We use
the LDA-C implementation (Blei et al., 2003) with
default values for the parameters and seeded initial-
ization of topics to a distribution smoothed from a
randomly chosen document. The number of topics
is chosen equal to the number of topics provided by
experts (K = 8). The Turbo-Topic parameters are
set as P-value = 0.001 and min-count = 10 based on
our intuition that it is better to discard less. The cut-
off threshold for removing less frequent N-grams is
intuitively set to the top 20 most frequent N-grams
in a topic.

4.2 Features

We use the same set of primarily rubric-based fea-
tures introduced in (Rahimi et al., 2014) to score the
Evidence dimension of RTA:

Number of Pieces of Evidence (NPE): based on
the list of important words for each main topic.

Concentration (CON): a binary feature which
indicates if an essay has a high concentration, de-
fined as fewer than 3 sentences with topic words.

Specificity (SPC): a vector of integer values.
Each value shows the number of examples from the
text mentioned in the essay for a single topic.

Word Count (WOC): number of words.
We need the list of important words per topic to

calculate the NPE and CON features, and the list of
important expressions per topic to calculate SPC.

5 Results and Discussion

Sample extracted topical components are in Table 5.
The shown topic labels (e.g. “Hospitals”) were as-
signed manually by looking at the N-grams and are
only for the purpose of better understanding the out-
put. Qualitatively comparing the extracted topical
components (Table 5) with the ones provided by ex-
perts (Table 4) suggests that the method presented in
Section 3 can: (1) distinguish a lot of important N-
grams that students were expected to cover in their
essays as pieces of evidence, and (2) group related
N-grams to topics. In fact, we were able to intu-
itively map our learned topics to 4 of the 8 manually-
produced topics; 3 of these 4 mappings are shown in
Table 5. However, while some of the automatically
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extracted topics are of a promising quality, there is
still much room for improvement.

Model (5-6) (6-8)
[n=1569] [n=1045]

1 Unigram baseline 0.52 0.49
2 Unigram + WOC 0.53 0.52
3 Automatic (proposed) 0.56(1) 0.53(1)
4 Automatic (proposed) minus WOC 0.54 0.51
5 Manual (upper bound) 0.62 0.60

Table 6: Performance of models using automatically extracted

topical components, baseline models, and the upper-bound.

Bold shows that the model significantly outperforms all other

models. The numbers in parentheses show model numbers that

the current model significantly outperforms.

We can think of several reasons for not being able
to map all automatically extracted topics to the man-
ually produced topics. First, the manually provided
topics are based on an expert’s knowledge of the
text. Experts may expect some details in student
essays and include these in the topic list, but stu-
dents are not always able to distinguish these details
to cover in their essays. In other words, the LDA-
enabled model is data-driven while expert knowl-
edge is not. If some details are not covered in our
training dataset, the data-driven model is not able to
distinguish them. Second, experts are able to distin-
guish topics and their important examples even from
only a few sentences in the text. But, if topics and
examples are covered in the essays by only a phrase
or a few sentences, the data-driven model is not able
to distinguish them as distinct topics. They will not
be distinguished or will be included in other topics
by our model. We also observed that some exam-
ples provided by experts are broken down to more
than one N-gram in our model. For example, “less
than 1 dollar a day” is broken down to two N-grams:
“less than” and “1 dollar a day”.

Table 6 presents the quantitative performance of
our proposed model, where features for predicting
RTA Evidence scores are derived using the automat-
ically extracted topical components. The results on
both datasets show that the proposed model (Model
3) significantly outperforms the unigram baseline
(Model 1). However, the upper-bound model per-
forms significantly better than all other models.
There is no significant difference between the rest
of the models. To better understand the role of word
count (which is not impacted by topical component

extraction) in Model 3, we also created Models 2
and 4. Comparing Models 1 and 4, as well as Mod-
els 2 and 3, shows that the proposed model still out-
performs unigrams after matching for use of word
count or not. Although the improvement is no longer
significant, unigrams are less useful than our rubric-
based features for providing feedback. We also note
that absolute performance is lower on the grade 6–
8 dataset for all models, which could be due to the
larger size of the 5–6 dataset. In sum, our quan-
titative results indicate that rubric-based Evidence
scoring without involvement of experts is promis-
ing, yielding scoring models that maintain reliabil-
ity while improving validity compared to unigrams.
However, the gap with the upper bound shows that
our topic extraction method still needs improvement.

6 Conclusion and Future Work

We developed a natural language processing tech-
nique to automatically extract topical components
(topics and significant words and expressions per-
topic) relevant to a source text, as our previous ap-
proach required these to be manually defined by ex-
perts. To evaluate our method, we predicted the
score for the Evidence dimension of an analyti-
cal writing in response to text assessment (RTA)
for upper elementary school students. Experiments
comparing the predictive utility of features based
on automatically extracted topical components ver-
sus manually defined components indicated promis-
ing performance for the LDA-enabled extracted top-
ical components. Replacing experts’ work with
our LDA-enabled method has the potential to better
scale rubric-based Evidence scoring.

There are several areas for improvement. We need
to tune all parameters. We plan to examine using su-
pervised LDA to make use of scores, or seeded LDA
where a few words for each topic are provided. We
should study how the size, score distribution, and
spelling errors in training data impact topical extrac-
tion and scoring. We plan to examine generality by
using other RTA articles and prompts. Finally, mo-
tivated by short-answer scoring (Sakaguchi et al.,
2015), we would like to integrate features needing
expert resources with other (valid) features.
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Abstract
We investigate the task of assessing sentence-
level prompt relevance in learner essays. Var-
ious systems using word overlap, neural em-
beddings and neural compositional models are
evaluated on two datasets of learner writ-
ing. We propose a new method for sentence-
level similarity calculation, which learns to
adjust the weights of pre-trained word embed-
dings for a specific task, achieving substan-
tially higher accuracy compared to other rel-
evant baselines.

1 Introduction

Evaluating the relevance of learner essays with re-
spect to the assigned prompt is an important part of
automated writing assessment (Higgins et al., 2006;
Briscoe et al., 2010). Students with limited relevant
vocabulary may attempt to shift the topic of the es-
say in a more familiar direction, which grammatical
error detection systems are not able to capture. In an
automated examination framework, this weakness
could be further exploited by memorising a gram-
matically correct essay and presenting it in response
to any prompt. Being able to detect topical relevance
can help prevent such weaknesses, provide useful
feedback to the students, and is also a step towards
evaluating more creative aspects of learner writing.

Most existing work on assigning topical relevance
scores has been done using supervised methods.
Persing and Ng (2014) trained a linear regression
model for detecting relevance to each prompt, but
this approach requires substantial training data for
all the possible prompts. Higgins et al. (2006) ad-
dressed off-topic detection by measuring the cosine

similarity between tf-idf vector representations of
the prompt and the entire essay. However, as this
method only captures similarity using exact match-
ing at the word-level, it can miss many topically rel-
evant word occurrences in the essay. In order to
overcome this limitation, Louis and Higgins (2010)
investigated a number of methods that expand the
prompt with related words, such as morphological
variations. Ideally, the assessment system should
be able to handle the introduction of new prompts,
i.e. ones for which no previous data exists. This al-
lows the list of available topics to be edited dynam-
ically, and students or teachers can insert their own
unique prompts for every essay. We can achieve this
by constructing an unsupervised function that mea-
sures similarity between the prompt and the learner
writing.

While previous work on prompt relevance as-
sessment has mostly focussed on full essays, scor-
ing individual sentences for prompt relevance has
been relatively underexplored. Higgins et al. (2004)
used a supervised SVM classifier to train a binary
sentence-based relevance model with 18 sentence-
level features. We extend this line of work and
investigate unsupervised methods using neural em-
beddings for the task of assessing topical relevance
of individual sentences. By providing sentence-level
feedback, our approach is able to highlight specific
areas of the text that require more attention, as op-
posed to showing a single overall score. Sentence-
based relevance scores could also be used for esti-
mating coherence in an essay, or be combined with
a more general score for indicating sentence quality
(Andersen et al., 2013).
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In the following sections we explore a number
of alternative similarity functions for this task. The
evaluation of the methods was performed on two dif-
ferent publicly available datasets and revealed that
alternative approaches are required, depending on
the nature of the prompts. We propose a new method
which achieves substantially better performance on
one of the datasets, and construct a combination ap-
proach which provides more robust results indepen-
dent of the prompt type.

2 Relevance Scoring Methods

The systems receive the prompt and a single sen-
tence as input, and aim to provide a score repre-
senting the topical relevance of the sentence, with
a higher value corresponding to more confidence in
the sentence being relevant. For most of the fol-
lowing methods, both the sentence and the prompt
are mapped into vector representations and cosine is
used to measure their similarity.

2.1 Baseline methods
The simplest baseline we use is a random system
where the score between each sentence and prompt
is randomly assigned. In addition, we evaluate the
majority class baseline, where the highest score is
always assigned to the prompt in the dataset which
has most sentences associated with it. It is impor-
tant that any engineered system surpasses the per-
formance of these trivial baselines.

2.2 TF-IDF
TF-IDF (Spärck Jones, 1972) is a well-established
method of constructing document vectors for infor-
mation retrieval. It assigns the weight of each word
to be the multiplication of its term frequency and in-
verse document frequency (IDF). We adapt IDF for
sentence similarity by using the following formula:

IDF (w) = log(
N

1 + nw
)

where N is the total number of sentences in a cor-
pus and nw is the number of sentences where the tar-
get word w occurs. Intuitively, this will assign low
weights to very frequent words, such as determiners
and prepositions, and assign higher weights to rare
words. In order to obtain reliable sentence-level fre-
quency counts, we use the British National Corpus

(BNC, Burnard (2007)) which contains 100 million
words of English from various sources.

2.3 Word2Vec
Word2Vec (Mikolov et al., 2013) is a useful tool
for efficiently learning distributed vector representa-
tions of words from a large corpus of plain text. We
make use of the CBOW variant, which maps each
word to a vector space and uses the vectors of the
surrounding words to predict the target word. This
results in words frequently occurring in similar con-
texts also having more similar vectors. To create a
vector for a sentence or a document, each word in
the document is mapped to a corresponding vector,
and these vectors are then summed together.

While the TF-IDF vectors are sparse and essen-
tially measure a weighted word overlap between the
prompt and the sentence, Word2Vec vectors are able
to capture the semantics of similar words without
requiring perfect matches. In the experiments we
use the pretrained vectors that are publicly avail-
able, trained on 100 billion words of news text,
and containing 300-dimensional vectors for 3 mil-
lion unique words and phrases.1

2.4 IDF-Embeddings
We experiment with combining the benefits of both
Word2Vec and TF-IDF. While Word2Vec vectors
are better at capturing the generalised meaning of
each word, summing them together assigns equal
weight to all words. This is not ideal for our task –
for example, function words will likely have a lower
impact on prompt relevance, compared to more spe-
cific rare words.

We hypothesise that weighting all word vectors
individually during the addition can better reflect the
contribution of specific words. To achieve this, we
scale each word vector by the corresponding IDF
weight for that word, following the formula in Sec-
tion 2.2. This will still map the sentence to a dis-
tributed semantic vector, but more frequent words
have a lower impact on the result.

2.5 Skip-Thoughts
Skip-Thoughts (Kiros et al., 2015) is a more ad-
vanced neural network model for learning dis-
tributed sentence representations. A single sentence

1https://code.google.com/archive/p/word2vec/
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is first mapped to a vector by applying a Gated Re-
current Unit (Cho et al., 2014), which learns a com-
position function for mapping individual word em-
beddings to a single sentence representation. The
resulting vector is used as input to a decoder which
tries to predict words in the previous and the next
sentence. The model is trained as a single network,
and the GRU encoder learns to map each sentence
to a vector that is useful for predicting the content of
surrounding sentences.

We make use of the publicly available pretrained
model2 for generating sentence vectors, which is
trained on 985 million words of unpublished liter-
ature from the BookCorpus (Zhu et al., 2015).

2.6 Weighted-Embeddings

We now propose a new method for constructing
vector representations, based on insights from all
the previous methods. IDF-Embeddings already in-
troduced the idea that words should have different
weights when summing them for a sentence repre-
sentation. Instead of using the heuristic IDF for-
mula, we suggest learning these weights automati-
cally in a data-driven fashion.

Each word is assigned a separate weight, initially
set to 1, which is used for scaling its vector. Next,
we construct an unsupervised learning framework
for gradually adjusting these weights for all words.
The task we use is inspired by Skip-Thoughts, as
we assume that neighbouring sentences are semanti-
cally similar and therefore suitable for training sen-
tence representations using a distributional method.
However, instead of learning to predict the individ-
ual words in the sentences, we can directly optimise
for sentence-level vector similarity.

Given sentence u, we randomly pick another
nearby sentence v using a normal distribution with a
standard deviation of 2.5. This often gives us neigh-
bouring sentences, but occasionally samples from
further away. We also obtain a negative example z
by randomly picking a sentence from the corpus, as
this is unlikely to be semantically related to u.

Next, each of these sentences is mapped to a vec-
tor space by applying the corresponding weights and
summing the individual word vectors:

2https://github.com/ryankiros/skip-thoughts

~u =
∑
w∈u

gw ~w

where ~u is the sentence vector for u, ~w is the original
embedding for word w, and gw is the learned weight
for word w.

The following cost function is minimised for
training the model – it optimises the dot product of
u and v to have a high value, indicating high vector
similarity, while optimising the dot product of u and
z to have low values:

cost = max(−~u~v + ~u~z, 0)

Before the cost calculation, we normalise all the
sentence vectors to have unit length, which makes
the dot products equivalent to calculating the cosine
similarity score. The max() operation is added, in
order to stop optimising on sentence pairs that are al-
ready sufficiently discriminated. The BNC was used
as the text source, and the model was trained with
gradient descent and learning rate 0.1.

We removed any tokens containing an underscore
in the pretrained vectors, as these are used to rep-
resent longer phrases, and were left with a vocab-
ulary of 92, 902 words. During training, the origi-
nal word embeddings are left constant, and only the
word weights gw are optimised. This allows us to
retrofit the vectors for our specific task with a small
number of parameters – the full embeddings contain
27, 870, 600 parameters, whereas we need to opti-
mise only 92, 902.

Similar methods could potentially be used for
adapting word embeddings to other tasks, while
still leveraging all the information available in the
Word2Vec pretrained vectors. We make the trained
weights from our system publicly available, as these
can be easily used for constructing improved sen-
tence representations for related applications.3

3 Evaluation

Since there is no publicly available dataset that con-
tains manually annotated relevance scores at the sen-
tence level, we measure the accuracy of the methods
at identifying the original prompt which was used
to generate each sentence in a learner essay. While

3http://www.marekrei.com/projects/weighted-embeddings
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not all sentences in an essay are expected to directly
convey the prompt, any noise in the dataset equally
disadvantages all systems, and the ability to assign
a higher score to the correct prompt directly reflects
the ability of the model to capture topical relevance.

Two separate publicly available corpora of learner
essays, written by upper-intermediate level language
learners, were used for evaluation. The First Certifi-
cate in English dataset (FCE, Yannakoudakis et al.
(2011)), consisting of 30,899 sentences written in
response to 60 prompts; and the International Co-
pus of Learner English dataset (ICLE, Granger et al.
(2009)) containing 20,883 sentences, written in re-
sponse to 13 prompts.4

There are substantial differences in the types of
prompts used in these two datasets. The ICLE
prompts are short and general, designed to point the
student towards an open discussion around a topic.
In contrast, the FCE contains much more detailed
prompts, describing a scenario or giving specific in-
structions on what should be mentioned in the text.
An average prompt in ICLE contains 1.5 sentences
and 19 words, whereas an average prompt in FCE
has 10.3 sentences and 107 words. These differ-
ences are large enough to essentially create two dif-
ferent variants of the same task, and we will see in
Section 4 that alternative methods perform best for
each of them.

During evaluation, the system is presented with
each sentence independently and aims to correctly
identify the prompt that the student was writing to.
For longer prompts, the vectors for individual sen-
tences are averaged together. Performance is evalu-
ated through classification accuracy and mean recip-
rocal rank (Voorhees and Harman, 1999).

4 Results

Results for all the systems can be seen in Table
1. TF-IDF achieves good results and the best per-
formance on the FCE essays. The prompts in this
dataset are long and detailed, containing specific
keywords and names that are expected to be used
in the essay, which is why this method of measur-
ing word overlap achieves the highest accuracy. In
contrast, on the ICLE dataset with more general and
open-ended prompts, the TF-IDF method achieves

4We used the same ICLE subset as Persing and Ng (2014).

FCE ICLE
ACC MRR ACC MRR

Random 1.8 7.9 7.7 24.4
Majority 22.4 25.8 28.0 39.3
TF-IDF 37.2 47.0 32.3 46.9
Word2Vec 14.1 26.2 32.8 49.6
IDF-Embeddings 22.7 33.9 40.7 55.1
Skip-Thoughts 2.8 9.1 21.9 37.9
Weighted-Embeddings 24.2 35.1 51.5 65.4

Combination 32.6 43.4 49.8 64.1

Table 1: Accuracy and mean reciprocal rank for the task of

sentence-level topic detection on FCE and ICLE datasets.

mid-level performance and is outranked by several
embedding-based methods.

Word2Vec is designed to capture more general
word semantics, as opposed to identifying specific
tokens, and therefore it achieves better performance
on the ICLE dataset. By combining the two meth-
ods, in the form of IDF-Embeddings, accuracy is
consistently improved on both datasets, confirming
the hypothesis that weighting word embeddings can
lead to a better sentence representation.

The Skip-Thoughts method does not perform well
for the task of sentence-level topic detection. This is
possibly due to the model being trained to predict
individual words in neighbouring sentences, there-
fore learning various syntactic and paraphrasing pat-
terns, whereas prompt relevance requires more gen-
eral topic similarity. Our results are consistent with
those of Hill et al. (2016), who found that Skip-
Thoughts performed very well when the vectors
were used as features in a separate supervised classi-
fier, but gave low results when used for unsupervised
similarity tasks.

The newly proposed Weighted-Embeddings
method substantially outperforms Word2Vec and
IDF-Embeddings on both datasets, showing that
automatically learning word weights in combina-
tion with pretrained embeddings is a beneficial
approach. In addition, this method achieves the best
overall performance on the ICLE dataset by a large
margin.

Finally, we experimented with a combination
method, creating a weighted average of the scores
from TF-IDF and Weighted-Embeddings. The com-
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0.382 Students have to study subjects which are not closely related to the subject they want to specialize in .
0.329 In order for that to happen however , our government has to offer more and more jobs for students .
0.085 I thought the time had stopped and the day on which the results had to be announced never came .

University, degrees, undergraduate, doctorate, professors, university, degree, professor, PhD, College, psychology

Table 2: Above: Example sentences from essays written in response to the prompt ”Most University degrees are theoretical and do

not prepare us for the real life. Do you agree or disagree?”, and relevance scores using the Weighted-Embeddings method.

Below: Most highly ranked individual words for the same prompt.

bination does not outperform the individual systems,
demonstrating that these datasets indeed require al-
ternative approaches. However, it is the second-best
performing system on both datasets, making it the
most robust method for scenarios where the type of
prompt is not known in advance.

two -1.31 cos 3.32
although -1.26 studio 2.22

which -1.09 Labour 2.18
five -1.06 want 2.01

during -0.80 US 2.00
the -0.73 Secretary 1.99

unless -0.66 Ref 1.98
since -0.66 film 1.98
when -0.66 v. 1.91

also -0.65 Cup 1.89

Table 3: Top lowest and highest ranking words and their

weights, as learned by the Weighted-Embeddings method.

5 Discussion

In Table 2 we can see some example learner
sentences from the ICLE dataset, together with
scores from the Weighted-Embeddings system. The
method manages to capture an intuitive relevance
assessment for all three sentences, even though
none of them contain meaningful keywords from
the prompt. The second sentence receives a slightly
lower score compared to the first, as it introduces a
somewhat tangential topic of government. The third
sentence is ranked very low, as it contains no infor-
mation specific to the prompt. Automated assess-
ment systems relying only on grammatical error de-
tection would likely assign similar scores to all of
them. The method maps sentences into the same
vector space as individual words, therefore we are
also able to display the most relevant words for each
prompt, which could be useful as a writing guide for
low-level students.

Table 3 contains words with the highest and low-
est weights, as assigned by Weighted-Embeddings
during training. We can see that the model has inde-
pendently learned to disregard common stopwords,
such as articles, conjunctions, and particles, as they
rarely contribute to the general topic of a sentence.
In contrast, words with the highest weights mostly
belong to very well-defined topics, such as politics,
entertainment, or sports.

6 Conclusion

In this paper, we investigated the task of assessing
sentence-level prompt relevance in learner essays.
Frameworks for evaluating the topic of individual
sentences would be useful for capturing unsuitable
topic shifts in writing, providing more detailed feed-
back to the students, and detecting subversion at-
tacks on automated assessment systems.

We found that measuring word overlap, weighted
by TF-IDF, is the best option when the writing
prompts contain many details that the student is ex-
pected to include. However, when the prompts are
relatively short and designed to encourage a discus-
sion, which is common in examinations at higher
proficiency levels, then measuring vector similarity
using word embeddings performs consistently bet-
ter.

We extended the well-known Word2Vec embed-
dings by weighting them with IDF, which led to
improvements in sentence representations. Based
on this, we constructed the Weighted-Embeddings
model for automatically learning individual weights
in a data-driven manner, using only plain text as
input. The resulting method consistently outper-
forms the Word2Vec and IDF-Embeddings methods
on both datasets, and substantially outperforms any
other method on the ICLE dataset.
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Abstract

I investigate Russian second language read-
ability assessment using a machine-learning
approach with a range of lexical, morpholog-
ical, syntactic, and discourse features. Test-
ing the model with a new collection of Russian
L2 readability corpora achieves an F-score of
0.671 and adjacent accuracy 0.919 on a 6-level
classification task. Information gain and fea-
ture subset evaluation shows that morpholog-
ical features are collectively the most infor-
mative. Learning curves for binary classifiers
reveal that fewer training data are needed to
distinguish between beginning reading levels
than are needed to distinguish between inter-
mediate reading levels.

1 Introduction

Reading is one of the core skills in both first and
second language learning, and it is arguably the
most important means of accessing information in
the modern world. Modern second language peda-
gogy typically includes reading as a major compo-
nent of foreign language instruction. There has been
debate regarding the use of authentic materials ver-
sus contrived materials, where authentic materials
are defined as “A stretch of real language, produced
by a real speaker or writer for a real audience and de-
signed to convey a real message of some sort” (Mor-
row, 1977, p. 13).1 Many empirical studies have
demonstrated advantages to using authentic materi-
als, including increased linguistic, pragmatic, and

1The definition of authenticity is itself a matter of disagree-
ment (Gilmore, 2007, §2), but Morrow’s definition is both well-
accepted and objective.

discourse competence (Gilmore, 2007, citations in
§3). However, Gilmore (2007) notes that “Finding
appropriate authentic texts and designing tasks for
them can, in itself, be an extremely time-consuming
process.” An appropriate text should arguably be
interesting, linguistically relevant, authentic, recent,
and at the appropriate reading level.

Tools to automatically identify a given text’s com-
plexity would help remove one of the most time-
consuming steps of text selection, allowing teach-
ers to focus on pedagogical aspects of text selection.
Furthermore, these tools would also make it possible
for learners to find appropriate texts for themselves.

A thorough conceptual and historical overview of
readability research can be found in Vajjala (2015,
§2.2). The last decade has seen a rise in research on
readability classification, primarily focused on En-
glish, but also including French, German, Italian,
Portuguese, and Swedish (Roll et al., 2007; Vor der
Brück et al., 2008; Aluisio et al., 2010; Francois
and Watrin, 2011; Dell’Orletta et al., 2011; Hancke
et al., 2012; Pilán et al., 2015). Broadly speaking,
these languages have limited morphology in com-
parison with Russian, which has relatively rich mor-
phology among major world languages. It is there-
fore not surprising that morphology has received lit-
tle attention in studies of automatic readability clas-
sification. One important exception is Hancke et al.
(2012) which examines lexical, syntactic and mor-
phological features with a two-level corpus of Ger-
man magazine articles. In their study, morphologi-
cal features are collectively the most predictive cat-
egory of features. Furthermore, when combining
feature categories in groups of two or three, the
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highest performing combinations included the mor-
phology category. If morphological features figure
so prominently in German readability classification,
then there is good reason to expect that they will be
similarly informative for Russian second-language
readability classification.

This article explores to what extent textual fea-
tures based on morphological analysis can lead to
successful readability classification of Russian texts
for language learning. In Section 2, I give an
overview of previous research on readability, includ-
ing some work on Russian. The corpora collected
for use in this study are described in Section 3. The
features extracted for machine learning are outlined
in Section 4. Results are discussed in Sections 5 and
6, and conclusions and outlook for future research
are presented in Section 7.

2 Background

The history of empirical readability assessment be-
gan as early as 1880 (DuBay, 2006), with methods as
simple as counting sentence length by hand. Today,
research on readability is dominated by machine-
learning approaches that automatically extract com-
plex features based on surface wordforms, part-of-
speech analysis, syntactic parses, and models of lex-
ical difficulty. In this section, I give an abbreviated
history of the various approaches to readability as-
sessment, including the kinds of textual features that
have received attention. Although some proprietary
solutions are relevant here, I focus primarily on work
that has resulted in publically available knowledge
and resources.

2.1 History of evaluating text complexity

The earliest approaches to readability analysis con-
sisted of developing readability formulas, which
combined a small number of easily countable fea-
tures, such as average sentence length, and aver-
age word length (Kincaid et al., 1975; Coleman
and Liau, 1975). Although formulas for comput-
ing readability have been criticized for being overly
simplistic, they were quickly adopted and remain
in widespread use today.2 An early extension of

2The Flesch Reading Ease test and the Flesch-Kincaid
Grade Level test are implemented in the proofing tools of many
major word processors.

these simple ‘counting’ formulas was to addition-
ally rely on lists of words deemed “easy”, based on
either their frequency or polling of young learners
(Dale and Chall, 1948; Chall and Dale, 1995; Sten-
ner, 1996). A higher proportion of words belonging
to these lists resulted in lower readability measures,
and vice versa.

With the recent growth of natural language pro-
cessing techniques, it has become possible to ex-
tract information about the lexical and/or syntac-
tic structure of a text, and automatically train read-
ability models using machine-learning techniques.
Some of the earliest attempts at this built unigram
language models based on American textbooks, and
estimated a text’s reading level by testing how well
it was described by each unigram model (Si and
Callan, 2001; Collins-Thompson and Callan, 2004).
This approach was extended in the REAP project3

to include a number of grammatical features as well
(Heilman et al., 2007; Heilman et al., 2008a; Heil-
man et al., 2008b).

Over time, readability researchers have increas-
ingly taken inspiration from various subfields of lin-
guistics to identify features for modeling readability,
including syntax (Schwarm and Ostendorf, 2005;
Petersen and Ostendorf, 2009), discourse (Feng,
2010; Feng et al., 2010), textual coherence (Graesser
et al., 2004; Crossley et al., 2007a; Crossley et
al., 2007b; Crossley et al., 2008), and second lan-
guage acquisition (Vajjala and Meurers, 2012). The
present study expands this enterprise by examining
second language readability for Russian.

2.2 Automatic readability assessment of
Russian texts

The history of readability assessment of Russian
texts takes a very similar trajectory to the work re-
lated above. Early work was based on developing
formulas based on simple countable features (Mikk,
1974; Oborneva, 2005; Oborneva, 2006a; Oborneva,
2006b; Mizernov and Graščenko, 2015).

Some researchers have tried to be more objective
about defining readability, by obtaining data from
expert raters, or from other experimental means,
and then performing statistical analysis—such as
linear regression, or correlation—to identify impor-

3http://reap.cs.cmu.edu
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tant factors of text complexity (Sharoff et al., 2008;
Petrova and Okladnikova, 2009; Okladnikova, 2010;
Špakovskij, 2003; Špakovskij, 2008; Ivanov, 2013;
Kotlyarov, 2015), such as lexical properties, mor-
phological categories, typographic layout, and syn-
tactic complexity.

To my knowledge, only one study has previ-
ously examined readability in the context of Rus-
sian second-language pedagogical texts. Karpov et
al. (2014) performed a series of experiments using
several different kinds of machine-learning models
to automatically classify Russian text complexity, as
well as single-sentence complexity. They collected
a small corpus of texts (described in Section 3 be-
low), with texts at 4 of the CEFR levels:4 A1, A2,
B1, and C2. They extracted 25 features from these
texts, including document length, sentence length,
word length, lexicon difficulty, and presence of each
part of speech. No morphological features were in-
cluded, despite the fact that morphology is the most
challenging feature of Russian grammar for most
language learners. Using Classification Tree, SVM,
and Logistic Regression models for binary classi-
fication (A1-C2, A2-C2, and B1-C2), they report
achieving accuracy close to 100%. It should be
noted that no results were reported with more cus-
tomary stepwise binary combinations, such as A1-
A2, A2-B1, and B1-C2, which are more difficult—
and more useful—distinctions. In a four-way classi-
cation task, they state that their results were lower,
but they only provide precision, recall, and accuracy
metrics for the B1 readability level during four-way
classification, which were as high as 99%. Irregular-
ities in reporting make it difficult to draw firm con-
clusions from their work, especially because their
corpora covered only four out of six CEFR levels
with no more than 60 data points per level.

3 Corpora

The corpora5 in this study all use the same scale for
rating L2 readability, the Common European Frame-
work of Reference for Languages (CEFR). The six

4CEFR levels are introduced in Section 3.
5Some of the corpora used in this study are proprietary, so

they cannot be published online. However, they can be shared
privately for research purposes. With the exception of the two
corpora from Karpov et al. (2014), all of the corpora were cre-
ated and used for the first time in this study.

common reference levels of CEFR can be divided
into three levels—Basic user (A), Independent user
(B), and Proficient user (C)—each of which is sub-
divided into two levels. This yields the following
six levels in ascending order: A1, A2, B1, B2, C1,
and C2.6 For all corpora, reading levels were as-
signed by the original author or publisher, so there
is no guarantee that the reading levels between cor-
pora align well.

Two subcorpora were used by Karpov et al.
(2014). The CIE corpus includes texts created by
teachers for learners of Russian. These texts are
taken from a collection of materials kept in an open
repository at http://texts.cie.ru. The sec-
ond subcorpus used by Karpov et al. (2014) consists
of 50 original news articles for native readers, rated
at level C2.

The LingQ corpus (LQ) is a corpus of texts
from http://www.lingq.com, a commercial
language-learning website that includes lessons up-
loaded by member enthusiasts, with 3481 texts.
Reading levels were determined by the member who
uploaded each lesson.

The Red Kalinka (RK) corpus is a collection
of 99 texts taken from 13 books in the “Russian
books with audio” series available at http://
www.redkalinka.com. These books include
stories, dialogues, texts about Russian culture, and
business dialogues.

The TORFL corpus comes from the Test of Rus-
sian as a Foreign Language, a set of standardized
tests administered by the Russian Ministry of Educa-
tion and Science. It is a collection of 168 texts that I
extracted from official practice tests for the TORFL.

The Zlatoust corpus (Zlat) comes from a series
of readers for language learners at the lower CEFR
levels, with 746 documents.

The Combined corpus is a combination of the cor-
pora described above. The distribution of documents
per level is given in Table 1. Note that some corpora
do not have texts at every reading level.

Table 2 shows the median document length (in
words) per level in each of the corpora. The over-
all median document size is 268 words. Within
each corpus, median document length tends to in-

6There is no consensus on how the CEFR levels align with
other language evaluation scales, such as the ACTFL and ILR
used in the United States.
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All A1 A2 B1 B2 C1 C2
CIE 145 28 57 60 – – –
news 50 – – – – – 50
LQ 3481 323 653 716 832 609 348
RK 99 40 18 17 18 6 –
TORFL 168 31 36 36 26 28 11
Zlat. 746 – 66 553 127 – –
Comb. 4689 422 830 1382 1003 643 409
Table 1: Distribution of documents per level for each corpus

crease with each level, with some exceptions. Tests
were conducted with a modified corpus in which
longer documents were truncated to approximately
300 words; classifier performance was slightly lower
with this modified corpus.

All A1 A2 B1 B2 C1 C2
CIE 314 116 340 354 – – –
news 174 – – – – – 174
LQ 246 65 47 225 522 3247 436
RK 286 68 296 418 278 292 –
TORFL 158 55 160 196 238 146 284
Zlat. 344 – 122 345 414 – –
Comb. 268 67 68 275 474 2621 313

Table 2: Median words per document for each level of each

corpus

The overall distribution of document length is
shown in Figure 1, where the x-axis is all docu-
ments ranked by document length and the y-axis is
document length. The shortest document contains 7
words, and the longest document contains over 9000
words.

Figure 1: Distribution of document length in words

4 Features

In the following sections, I give an overview of the
features used in this study, both the rationale for

their inclusion, as well as details regarding their op-
erationalization and implementation. I combine fea-
tures used in previous research with some novel fea-
tures based on morphological analysis. I divide fea-
tures into the following categories: lexical, morpho-
logical, syntactic, and semantic.

4.1 Lexical features (LEX)

The lexical features (LEX) are divided into three
subcategories: lexical variability (LEXV), lexical
complexity (LEXC), and lexical familiarity (LEXF).

LEXV The lexical variability category contains
features that are intended to measure the variety of
lexemes found in a document. One of the most ba-
sic measures of lexical variability is the type-token
ratio, which is the number of unique wordforms
divided by the number of tokens in a text. Be-
cause the type-token ratio is dependent on document
length, I included a few more robust metrics that
have been proposed: Root TTR (T/

√
N ), Corrected

TTR (T/
√

2N ), Bilogarithmic TTR (log T/ log N ),
and the Uber Index (log2 T/ log(N/T )). For all of
these metrics, a higher score signifies higher con-
centrations of unique tokens, which indicates more
difficult readability levels.

LEXC Lexical complexity includes multiple con-
cepts. One is the degree to which individual words
can be parsed into component morphemes. This is a
reflection of the derivational or agglutinative struc-
ture of words. Another measure of lexical complex-
ity is word length, which reflects the difficulty of
chunking and storing words in short-term memory.
Depending on the particulars of a given language
or the development level of a given learner, lexi-
cal complexity can either inhibit or enhance compre-
hension. For example, the word neftepererabatyva-
juščij (zavod) ‘oil-refining (factory)’ is overwhelm-
ing for a beginning learner, but an advanced learner
who has never seen this word can easily deduce its
meaning by recognizing its component morphemes:
nefte-pere-rabat-yvaj-uščij ‘oil-re-work-IPFV-ing’.

Word length features were computed on the ba-
sis of characters, syllables, and morphemes. For
each of these three, both an average and a maximum
were computed. In addition, all six of these features
were computed for both all words, and for content
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words only.7 The features for word length in mor-
phemes were computed on the basis of Tixonov’s
Morpho-orthographic dictionary (Tixonov, 2002),
which contains parses for about 100 000 words. All
words that are not found in the dictionary were ig-
nored. In addition to average and maximum word
lengths, I also followed Karpov et al. (2014) in cal-
culating word length bands, such as the proportion
of words with five or more characters. These bands
are calculated for 5–13 characters (9 features) and
3–6 syllables (4 features). All 13 of these features
were calculated both for all words and for content
words only.

LEXF Lexical familiarity features were computed
to attempt to capture the degree to which the words
of a text are familiar to readers of various levels.
These features model the development of learners’
vocabulary from level to level. Unlike the features
for lexical variability and lexical complexity, which
are primarily based on surface structure, the features
for lexical familiarity rely on a predefined frequency
lists or lexicons.

The first set of lexical familiarity features are de-
rived from the official “Lexical Minimum” lists for
the TORFL examinations. The lexical minimum
lists are compiled for the four lowest levels (A1, A2,
B1, and B2), where each list contains the words that
should be mastered for the tests at each level. These
lists can be seen as prescriptive vocabulary for lan-
guage learners. Following Karpov et al. (2014), I
computed features for the proportion of words above
a given reading level.

The second set of lexical familiarity features are
taken from the Kelly Project (Kilgarriff et al., 2014),
which is a “corpus-based vocabulary list” for lan-
guage learners. These lists are based primarily on
word frequency, with manual adjustments made by
professional teachers. Just like the features based on
the Lexical Minimum, I computed the proportion of
words over each of the six CEFR levels.

The third set of lexical familiarity features are
based on raw frequency and frequency rank for both
lemma frequency and token frequency.8 For each of

7The following parts of speech were considered content
words: adjectives, adverbs, nouns and verbs.

8Lemma frequency data were taken from Ljaševskaja
and Šarov (2009) (available digitally at http://dict.

the four kinds of frequency data, I computed aver-
age, median, minimum, and standard deviation.

4.2 Morphological features (MORPH)

Morphological features are primarily based on mor-
phosyntactic values, as output by an automatic mor-
phological analyzer. The first three sets of features
reflect simple counts of whether a morphosyntac-
tic tag is present or what proportion of tokens re-
ceive each morphosyntactic tag. The first set of
features expresses whether a given morphosyntac-
tic tag is present in the document. A second set
of features, expresses the ratio of tokens with each
morphosyntactic tag, normalized by token count. A
third set of features, the value-feature ratio (VFR),
was calculated as the number of tokens that express
a morphosyntactic value (e.g. past), normalized by
the number of tokens that express the corresponding
morphosyntactic feature (e.g. tense).

In the early stages of learning Russian, learners
do not have a knowledge of all six cases, so I hy-
pothesized that texts intended for the lowest reading
level might be distinguished by a limited number of
attested cases. Similarly, two subcases in Russian,
partitive genitive and second locative, are generally
rare, but are overrepresented in texts written for be-
ginners who are being introduced to these subcases.
Two features were computed to capture these intu-
itions: the number of cases and the number of sub-
cases attested in the document.

Following Nikin et al. (2007; Krioni et al. (2008;
Filippova (2010), I calculated a feature to measure
the proportion of abstract words. This was done by
using a regular expression to test lemmas for the
presence of a number of abstract derivational suf-
fixes. This feature is normalized to the number of
tokens in the document.

4.2.1 Sentence length-based features (SENT)
The SENT category consists of features that in-

clude in their computation some form of sentence
length, including words per sentence, syllables per
sentence, letters per sentence, coordinating con-
junctions per sentence, and subordinating conjunc-

ruslang.ru/freq.php), which is based on data from the
Russian National Corpus. The token frequency data were taken
directly from the Russian National Corpus webpage at http:
//ruscorpora.ru/corpora-freq.html.
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tions per sentence. In addition, I also compute the
type frequency of morphosyntactic readings per sen-
tence. This category also includes the traditional
readability formulas: Russian Flesch Reading Ease
(Oborneva, 2006a), Flesch Reading Ease, Flesch-
Kincaid Grade Level, and the Coleman-Liau Index.

4.3 Syntactic features (SYNT)

Syntactic features for this study were primarily
based on the output of the hunpos9 trigram part-of-
speech tagger and maltparser10 syntactic depen-
dency parser, both trained on the SynTagRus11 tree-
bank. Using maltoptimizer,12 I found that the
best-performing algorithm was Nivre Eager, which
achieved a labeled attachment score of 81.29% with
cross-validation of SynTagRus.

Researchers of automatic readability classifica-
tion and closely related tasks have used a number of
syntactic dependency features which I also imple-
ment here (Yannakoudakis et al., 2011; Dell’Orletta
et al., 2011; Vor der Brück and Hartrumpf, 2007;
Vor der Brück et al., 2008). These include features
based on dependency lengths (the number of tokens
intervening between a dependent and its head), as
well as the number of dependents belonging to par-
ticular parts of speech, in particular nouns and verbs.
In addition, I also include features based on de-
pendency tree depth (the path length from root to
leaves).

4.4 Discourse/content features (DISC)

The discourse/content features (DISC) are intended
to capture the broader difficulty of understanding the
text as a whole, rather than the difficulty of pro-
cessing the linguistic structure of particular words
or sentences. One set of features are based on defi-
nitions (Krioni et al., 2008), which are a set of words
and phrases that are used to introduce or define new
terms in a text. Using regular expressions, I cal-
culate definitions per token and definitions per sen-
tence.

Another set of features is adapted from the work

9https://code.google.com/p/hunpos/
10http://www.maltparser.org/
11http://ruscorpora.ru/

instruction-syntax.html
12http://nil.fdi.ucm.es/maltoptimizer/

index.html

of Brown et al. (2007; 2008), who show that logi-
cal propositional density—a fundamental measure-
ment in the study of discourse comprehension—can
be accurately measured purely on the basis of part-
of-speech counts.

One other feature is based on the intuition that
reading dialogic texts is generally easier than read-
ing prose. This feature is computed as the number
of dialog symbols13 per token.

4.5 Summary of features

As outlined in the preceding sections, this study
makes use of 179 features. Many of the features are
inspired by previous research of readability, both for
Russian and for other languages. The distribution of
these features across categories is shown in Table 3.

Category Number of features
DISC 6
LEXC 42
LEXF 38
LEXV 7
MORPH 60
SENT 10
SYNT 16
Total 179

Table 3: Distribution of features across categories

5 Results

The machine-learning and evaluation for this study
were performed using the weka data mining soft-
ware (Hall et al., 2009). Based on preliminary tests,
the Random Forest model was selected as the clas-
sifier algorithm for the study.14 All results reported
below are achieved using the Random Forest algo-
rithm with default parameters. Unless otherwise
specified, evaluation was performed using ten-fold
cross validation.

Results are given in Table 4. Precision is a mea-
sure of how many of the documents predicted to be
at a given readability level are actually at that level
(true positives divided by true and false positives).

13In Russian, -, –, — and : are used to mark turns in a dialog.
14Other classifiers that consistently performed well were

NNge (nearest-neighbor with non-nested generalized exem-
plars), FT (Functional Trees), MultilayerPerceptron, and SMO
(sequential minimal optimization for support vector machine).
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Recall measures how many of the documents at a
given readability level are predicted correctly (true
positives divided by true positives and false nega-
tives). The two metrics are calculated for each read-
ing level and weighted averages are reported for the
classifier as a whole. The F-score is a harmonic
mean of precision and recall. Adjacent accuracy
is the same as weighted recall, except that it con-
siders predictions that are off by one category as
correct. For example, a B2 document is counted
as being correctly classified if the classifier predicts
B1, B2, or C1. The baseline performance achieved
by predicting the mode reading level (B1)—using
weka’s ZeroR classifier—is precision 0.097 and re-
call 0.312 (F-score 0.149). The OneR classifier,
which is based on only the most informative fea-
ture (corrected type-token ratio), achieves precision
0.487 and recall 0.497 (F-score 0.471). The Ran-
dom Forest classifier, trained on the full Combined
corpus with all 179 features, achieves precision 0.69
and recall 0.677 (F-score 0.671), with adjacent ac-
curacy 0.919.

Classifier Precis. Recall F-score
ZeroR 0.097 0.312 0.149
OneR 0.487 0.497 0.471
RandomForest 0.690 0.677 0.671

Table 4: Baseline and RandomForest results with Combined

corpus

A confusion matrix is given in Table 5, which
shows the predictions of the RandomForest classi-
fier. The rows represent the actual reading level as
specified in the gold standard, whereas the columns
represent the reading level predicted by the classi-
fier. Correct classifications appear along the diago-
nal. Table 5 shows that the majority of misclassifi-
cations are only off by one level, and indeed the ad-
jacent accuracy is 0.919, which means that less than
10% of the documents are more than one level away
from the gold standard.

5.1 Binary classifiers

Evaluation was performed with binary classifiers, in
which the datasets contain only two adjacent read-
ability levels. Since the Combined corpus has six
levels, there are five binary classifier pairs: A1-
A2, A2-B1, B1-B2, B2-C1, C1-C2. The results of

A1 A2 B1 B2 C1 C2
A1 234 120 48 0 0 0
A2 41 553 192 17 0 0
B1 16 76 1130 90 5 5
B2 1 57 311 478 83 4
C1 1 20 66 98 394 6
C2 0 3 40 58 9 78

Table 5: Confusion matrix for RandomForest, all features,

Combined corpus. Rows are actual and columns are predicted.

the cross-validation evalution of these classifiers is
given in Table 6. Red Kalinka and LQsupp (the
second largest subcorpus of LingQ)—which were
judged to be the most reliable subcorpora—were
also examined individually.

A1-A2 A2-B1 B1-B2 B2-C1 C1-C2
Comb. prec. 0.821 0.857 0.817 0.833 0.894

recall 0.821 0.857 0.811 0.831 0.897
F-score 0.812 0.855 0.806 0.826 0.892

RK prec. 0.967 0.943 0.832 0.837 –
recall 0.966 0.943 0.829 0.792 –
F-score 0.965 0.943 0.828 0.730 –

LQsupp prec. 0.911 0.806 0.955 0.914 0.926
recall 0.903 0.806 0.956 0.915 0.924
F-score 0.901 0.806 0.954 0.912 0.924

Table 6: Evalution metrics for binary classifiers: RandomFor-

est, all features

As expected, because the binary classifiers’ are
more specialized, with less data noise and fewer lev-
els to choose between, their accuracy is much higher.

One potentially interesting difference between bi-
nary classifiers at different levels is their learning
curves, or in other words, the amount of training
data needed to approach optimal results. I hypothe-
sized that the binary classifiers at lower levels would
need less data, because texts for beginners have lim-
ited possibilities for how they can vary without in-
creasing complexity. Texts at higher reading lev-
els, however, can vary in many different ways. To
adapt Tolstoy’s famous opening line to Anna Karen-
ina, “All [simple texts] are similar to each other, but
each [complex text] is [complex] in its own way.” If
this is true, then binary classifiers at higher reading
levels should require more data to reach the upper
limit of their classifying accuracy. This prediction
was tested by controlling the number of documents
used in the training data for each binary classifier,
while tracking the F-score on cross-validation. Re-
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sults of this experiment are given in Figure 2.

Figure 2: Learning curves of binary classifiers trained on LQ-

supp subcorpus

The results of this experiment support the hy-
pothesized difference between binary classifier lev-
els, albeit with some exceptions. The A1-A2 clas-
sifier rises quickly, and begins to level off after see-
ing about 40 documents. The A2-B1 classifier rises
more gradually, and levels off after seeing about 55
documents. The B1-B2 classifier rises even more
slowly, and does not level off within the scope of
this figure.

Up to this point, the data confirm my hypothesis
that lower levels require less training data. However,
the B2-C1 and C1-C2 classifiers buck this trend,
with learning curves that outperform the simplest
binary classifier with very little training data. One
possible explanation for this is that the increasing
complexity of CEFR levels is not linear, meaning
that the leap from A1 to A2 is much smaller than the
leap from C1 to C2. The increasing rate of change
is explicitly formalized in the official standards for
the TORFL tests. For example, the number of words
that a learner should know has the following pro-
gression: 750, 1300, 2300, 10 000, 12 000 (7 000
active), 20 000 (8 000 active). This means that dis-
tinguishing B2-C1 and C1-C2 should be easier be-
cause the distance between their respective levels is
an order of magnitude larger than the distance be-
tween the respective levels of A1-A2, A2-B1. Fur-
thermore, development of grammar should be more
or less complete by level B2, so that the the num-
ber of features that distinguish C1 from C2 should
be smaller than in lower levels, where grammar de-
velopment is a limiting factor.

6 Feature evaluation

As summarized in Section 4.5, this study makes use
of 179 features, divided into 7 categories: DISC,
LEXC, LEXF, LEXV, MORPH, SENT, and SYNT.
Many of the features used in this study are taken
from previous research of related topics, and some
features are proposed for the first time here. Pre-
vious researchers of Russian readability have not
included morphological features, so the results of
these features are of particular interest here.

In this section, I explore the extent to which the
selected corpora can support the relevance and im-
pact of these features in Russian second language
readability classification. One rough test for the
value of each category of features is to run cross-
validation with models trained on only one category
of features. In Table 7, I report the results of this
experiment using the Combined corpus.

Category # features precision recall F-score
DISC 6 0.482 0.482 0.477
LEXC 42 0.528 0.532 0.514
LEXF 38 0.581 0.573 0.567
LEXV 7 0.551 0.552 0.546
MORPH 60 0.642 0.627 0.618
SENT 10 0.478 0.479 0.474
SYNT 16 0.518 0.533 0.514
LEXC+LEXF+LEXV 87 0.652 0.645 0.639

Table 7: Precision, recall, and F-score for six-level Random

Forest models trained on the Combined corpus

The results in Table 7 show that MORPH, has the
highest F-score of any single category, with an F-
score just 0.053 below a model trained on all 179
features. True comparisons between categories are
problematic because the number of features per cat-
egory varies significantly.

In order to evaluate the usefulness of each feature
as a member of a feature set, I used the correlation-
based feature subset selection algorithm (CfsSub-
setEval) (Hall, 1999), which selects the most pre-
dictive subset of features by minimizing redundant
information, based on feature correlation.

Out of 179 features, the CfsSubsetEval algorithm
selected 32 features. Many of the features selected
for the optimal feature set are also among the top 30
most informative features according to information
gain. However, the morphological features—which
had only 7 features among the top 30 for information
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gain—now include 14 features, which indicates that
although these features are not as informative, the
information that they contribute is unique.

A classifier trained on only these 32 features with
the Combined corpus achieved precision 0.674 and
recall 0.665 (F-score 0.659), which is only 0.01
worse than the model trained on all 179 features.

7 Conclusions and Outlook

This article has presented new research in auto-
matic classification of Russian texts according to
second language readability. This technology is in-
tended to support learning activities that enhance
student engagement through online authentic mate-
rials (Erbaggio et al., 2010). I collected a new corpus
of Russian language-learning texts classified accord-
ing to CEFR proficiency levels. The corpus comes
from a broad spectrum of sources, which resulted in
a richer and more robust dataset, while also compli-
cating comparisons between subsets of the data.

Classifier performance A six-level Random For-
est classifier achieves an F-score of 0.671, with ad-
jacent accuracy of 0.919. Binary classifiers with
only two adjacent reading levels achieve F-scores
between 0.806 and 0.892. This is the first large-scale
study of this task with Russian data, and although
these results are promising, there is still room for
improvement, both in corpus quality and modeling
features.

In Section 5.1, I showed that binary classifiers at
the lowest and highest reading levels required less
training data to approach their upper limit. Begin-
ning with the lowest levels, each successive binary
classifier learned more slowly than the last until the
B2-C1 level. I interpret this as evidence that simple
texts are all similar, but complex texts can be com-
plex in many different ways.

Features Among the most informative individual
features used in this study are type-token ratios,
as well as various measures of maximum syntac-
tic dependency lengths and maximum tree depth.
However, as a category, the morphological features
are most informative. When features with over-
lapping information are removed using correlation-
based feature selection, the resulting set includes 14
MORPH features, 8 SYNT features, 4 LEXV fea-

tures, 3 LEXF features, and 2 LEXC features, and 1
DISC feature. Models trained on only one category
of features also show the importance of morphology
in this task, with the MORPH category achieving a
higher F-score than other individual categories.

Although the feature set used in this study had
fairly broad coverage, there are still a number of
possible features that could likely improve classifier
performance further. Other researchers have seen
good results using features based on semantic am-
biguity, derived from word nets. Implementing such
features would be possible with the new and growing
resources from the Yet Another RussNet project.15

Another category of features that is absent in this
study is language modeling, including the possi-
bility of calculating information-theoretic metrics,
such as surprisal, based on those models.

The syntactic features used in this study could be
expanded to capture more nuanced features of the
dependency structure. For instance, currently im-
plemented syntactic features completely ignore the
kinds of syntactic relations between words. In ad-
dition, some theoretical work in dependency syntax,
such as catenae (Osborne et al., 2012) and depen-
dency/locality (Gibson, 2000) may serve as the basis
for other potential syntactic features.

Applications One of the most promising applica-
tions of the technology discussed in this article is a
grammar-aware search engine or similar information
retrieval framework that can assist both teachers and
students to identify texts at the appropriate reading
level. Such systems have been discussed in the lit-
erature (Ott, 2009), and similar tools can be created
for Russian language learning.
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kačestvom učebnyx materialov na osnove analize trud-
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kak metod ocenki kačestva knigi [Formulae of read-
ability as a method of evaluating the quality of a book],
pages 39–48. Ukrainska akademija drukarstva, Lviv’.
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Abstract

Active learning has been shown to be effec-
tive for reducing human labeling effort in su-
pervised learning tasks, and in this work we
explore its suitability for automatic short an-
swer assessment on the ASAP corpus. We
systematically investigate a wide range of AL
settings, varying not only the item selection
method but also size and selection of seed set
items and batch size. Comparing to a random
baseline and a recently-proposed diversity-
based baseline which uses cluster centroids as
training data, we find that uncertainty-based
sampling methods can be beneficial, espe-
cially for data sets with particular properties.
The performance of AL, however, varies con-
siderably across individual prompts.

1 Introduction

Methods for automatically scoring short, written,
free-text student responses have the potential to
greatly reduce the workload of teachers. This task of
automatically assessing such student responses (as
opposed to, e.g., gap-filling questions) is widely re-
ferred to as short answer scoring (SAS), and auto-
matic methods have been developed for tasks rang-
ing from science assessments to reading comprehen-
sion, and for such varied domains as foreign lan-
guage learning, citizenship exams, and more tradi-
tional classrooms.

Most existing automatic SAS systems rely on su-
pervised machine learning techniques that require
large amounts of manually labeled training data to
achieve reasonable performance, and recent work
(Zesch et al., 2015; Heilman and Madnani, 2015;

Horbach et al., 2014; Basu et al., 2013, among oth-
ers) has begun to investigate the influence of the
quantity and quality of training data for SAS. In this
paper we take the next logical step and investigate
the applicability of active learning for teacher work-
load reduction in automatic SAS.

As for most supervised learning scenarios, au-
tomatic SAS systems perform more accurate scor-
ing as the amount of data available for learning
increases. Particularly in the educational context,
though, simply labeling more data is an unsatisfying
and often impractical recommendation. New ques-
tions or prompts with new sets of responses are gen-
erated on a regular basis, and there’s a need for au-
tomatic scoring approaches that can do accurate as-
sessment with much smaller amounts of labeled data
(‘labeling’ here generally means human grading).

One solution to this problem is to develop generic
scoring models which do not require re-training in
order to do assessment for a new data set (i.e. a
new question/prompt plus responses). Meurers et al.
(2011) apply such a model for scoring short reading
comprehension responses written by learners of Ger-
man. This system crucially relies on features which
directly compare learner responses to target answers
provided as part of the data set, and the responses
are mostly one sentence or phrase. In this work we
are concerned with longer responses generated from
a wide range of prompt types, from questions ask-
ing for list-like responses to those seeking coherent
multi-sentence texts (details in Section 3). For such
questions, there is generally no single best response,
and thus the system cannot rely on comparisons to
a single target answer per question. Rather systems
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need features which capture lexical properties of re-
sponses to the prompt at hand. In other words, a new
scoring model is built for each individual prompt.

A second solution involves focused selection of
items to be labeled, with the aim of comparable per-
formance with less labeled data. Zesch et al. (2015)
investigate whether carefully selected training data
are beneficial in an SAS task. For each prompt, they
first cluster the entire set of responses and then train
a classifier on the labeled instances that are closest
to the centroids of the clusters produced. The in-
tuition – that a training data set constructed in this
way captures the lexical diversity of the responses
– is supported by results on a data set with shorter
responses, but on the ASAP data set, the approach
fails to improve over random selection.

The natural next step is to use active learning (AL,
Settles (2012)) for informed selection of training in-
stances. In AL, training corpora are built up in-
crementally by successive selection of instances ac-
cording to the current state of the classifier (a de-
tailed description appears in Section 4). In other
words, the machine learner is queried to determine
regions of uncertainty, instances in that region are
sampled and labeled, these are added to the training
data, the classifier is retrained, and the cycle repeats.

Our approach differs from that of Zesch et al.
(2015) in two important ways. First, rather than se-
lecting instances according to the lexical diversity
of the training data, we select them according to the
output of the classifier. Second, we select instances
and retrain the classifier in an incremental, cyclical
fashion, such that each new labeled instance con-
tributes to the knowledge state which leads to selec-
tion of the next instance.

Sample selection via AL involves setting a num-
ber of parameters, and there is no single best-for-all-
tasks AL setting. Thus we explore a wide range of
AL scenarios, implementing a number of established
methods for selecting candidates. We consider three
families of methods. The first are uncertainty-based
methods, which target items about which the classi-
fier is least confident. Next, diversity-based methods
aim to cover the feature space as broadly as possi-
ble; the cluster-centroid selection method described
above is most similar to this type of sample selec-
tion. Finally, representativeness-based methods se-
lect items that are prototypical for the data set at

hand. Our results show a clear win for uncertainty-
based methods, with the caveat that performance
varies greatly across prompts.

To date, there are no clear guidelines for match-
ing AL parameter settings to particular classification
tasks or data sets. To better understand the varying
performance of different sample selection methods,
we present an initial investigation of two properties
of the various data sets. Perhaps unsurprisingly, we
see that uncertainty-based sampling brings stronger
gains for data sets with skewed class distributions, as
well as for those with more cleanly separable classes
according to language model perplexity.

In sum, active learning can be used to reduce
the amount of training data required for automatic
SAS on longer written responses without representa-
tive target answers, but the methods and parameters
need to be chosen carefully. Further investigation is
needed to formulate recommendations for matching
AL settings to individual data sets.

2 Related work

This study contributes to a recent line of work ad-
dressing the question of how to reduce workloads
for human graders in educational contexts, in both
supervised and unsupervised scoring settings.

The work most closely related to ours is Zesch et
al. (2015), which includes experiments with a form
of sample selection based on the output of cluster-
ing methods. More precisely, the set of responses
for a given prompt (using both the ASAP and Pow-
ergrading corpora) are clustered automatically, with
the number of clusters set to the number of training
instances desired. For each cluster, the item clos-
est to its centroid is labeled and added to the train-
ing data. This approach aims at building a training
set with high coverage of the lexical variation found
in the data set. The motivation for this approach is
that items with similar lexical material are expressed
by similar features, often convey the same mean-
ing and in such cases often deserve the same score.
By training on lexically-diverse instances, the clas-
sifier should learn more than if trained on very sim-
ilar instances. Of course, a potential danger is that
one cluster may (and often does) contain lexically-
similar instances that differ in small but important
details, such as the presence or absence of negation.
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For the ASAP corpus (which is also the fo-
cus of our experiments), the cluster-centroid sam-
pling method shows no improvement over a clas-
sifier trained on randomly-sampled data. An inter-
esting outcome of the experiments by Zesch et al.
(2015) is the highly-variable performance of classi-
fiers trained on a fixed number of randomly-sampled
instances; out of 1000 random trials, the difference
between the best and worst runs is considerable.
The highly-variable performance of systems trained
on randomly-selected data underscores the need for
more informed ways of selecting training data.

A related approach to human effort reduction is
the use of clustering in a computer-assisted scoring
setting (Brooks et al., 2014; Horbach et al., 2014;
Basu et al., 2013). In these studies, answers are clus-
tered through automatic means, and teachers then la-
bel clusters of similar answers instead of individual
student responses. The approaches vary in whether
human grading is actual or simulated, and also with
respect to how many items in each cluster graders in-
spect. The value of clustering in these works has no
connection with supervised classification, but rather
lies in the ability it gives teachers both to reduce
their grading effort and to discover subgroups of re-
sponses that may correspond to new correct solu-
tions or to common student misconceptions.

In the domain of educational applications, AL has
recently been used in two different settings where
reduction of human annotation cost is desirable. Ni-
raula and Rus (2015) use AL to judge the quality
of automatically generated gap-filling questions, and
Dronen et al. (2014) explore AL for essay scoring
using sampling methods for linear regression.

To the best of our knowledge, AL has not pre-
viously been applied to automatic SAS. Our task
is most closely related to studies such as Figueroa
et al. (2012), where summaries of clinical texts are
classified using AL, or Tong and Koller (2002) and
McCallum and Nigam (1998), both of which label
newspaper texts with topics. Unlike most other pre-
vious AL studies, text classification tasks need AL
methods that are suitable for data that is represented
by a large number of mostly lexical features.

3 Experimental setup

This section describes the data set, features, and
classifier used in our experiments.

3.1 Data

All experiments are performed on the ASAP 2 cor-
pus, a publicly available resource from a previous
automatic scoring competition hosted by Kaggle.1.
This corpus contains answer sets for 10 individual
short answer questions/prompts (we use the terms
interchangeably) covering a wide range of topics,
from reading comprehension questions to science
and biology questions. Each answer is labeled with
a numeric score from 0.0-2.0/3.0 (in 1.0 steps; the
number of possible scores varies from question to
question), and answer length ranges from single
phrases to several sentences. Although scores are
numeric, we treat each score as one class and model
the problem as classification rather than regression.
This approach is in line with previous related work
as well as standard AL methods.

For each prompt, we split the data set randomly
into 90% training and 10% test data. We then aug-
ment the test set with all items from the ASAP “pub-
lic leaderboard” evaluation set. Table 1 shows the
number of responses and label distributions for each
prompt. Some data sets (i.e. answer set per prompt)
are clearly much more imbalanced than others.

3.2 Classifier and features

In line with previous work on the ASAP data, clas-
sification is done using the Weka (Hall et al., 2009)
implementation of the SMO algorithm.

For feature extraction, all answers are prepro-
cessed using the OpenNLP sentence splitter2 and the
Stanford CoreNLP tokenizer and lemmatizer (Man-
ning et al., 2014). As features, we use lemma 1- to 4-
grams to capture lexical content of answers, as well
as character 2- to 4-grams to account for spelling er-
rors and morphological variation. We lowercase all
textual material before extracting ngrams, and fea-
tures are only included if they occur in at least two
answers in the complete data set.

This is a very general feature set that: (a) has
not been tuned to the specific task, and (b) is sim-

1https://www.kaggle.com/c/asap-sas
2https://opennlp.apache.org/
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training test
prompt #answers 0.0 1.0 2.0 3.0 #answers 0.0 1.0 2.0 3.0

1 1505 331 389 474 311 724 152 208 225 139
2 1150 150 289 422 289 554 86 137 190 141
3 1625 385 913 327 - 589 145 322 122 -
4 1492 571 803 118 - 460 190 232 38 -
5 1615 1259 291 37 28 778 594 138 27 19
6 1617 1369 143 60 45 779 644 73 41 21
7 1619 837 405 377 - 779 390 195 194 -
8 1619 501 418 700 - 779 224 204 351 -
9 1618 390 661 567 - 779 195 312 272 -
10 1476 261 688 527 - 710 110 348 252 -

Table 1: Data set sizes and label distributions for training and test splits. ‘-’ indicates a score does not occur for that data set.

ilar to the core feature set for most other SAS work
on the ASAP data. In preliminary classification
experiments, we also tried out features based on
skip ngrams, content-word-only ngrams, and de-
pendency subtrees of various sizes. None of these
features resulted in consistently better performance
across all data sets, so they were rejected in favor of
the simpler, smaller feature set.

4 Parameters of Active Learning

The core algorithm we use for active learning is the
standard setting for pool-based sampling (Settles,
2010); pseudocode is shown in Figure 1.

The AL algorithm

split data set into training and test
select seeds s0, s1, ..., sn ∈ training
request labels for s0, ...sn

labeled := {s0, s1, ..., sn}
unlabeled := training\{s0, s1, ..., sn}
while unlabeled 6= ∅:

select instances i0, i1, ..., im ∈ unlabeled *
unlabeled = unlabeled\{i0, i1, ..., im}
request labels for i0, i1, ..., im
labeled = labeled∪{i0, i1, ..., im}
build a classifier on labeled
run classifier on test and report performance
∗ according to some sample selection method

Figure 1: Pseudocode for general, pool-based active learning.

The process begins with a pool of unlabeled train-
ing data and a small labeled seed set. At the start of
each AL round, the algorithm selects one or more

instances whose label(s) are then requested. In sim-
ulation studies, requesting the answer means reveal-
ing a pre-annotated label; in real life, a human anno-
tator (i.e. a teacher) would provide the label. After
newly-labeled data has been added to the training
data, a new classifier is trained, run on the remain-
ing unlabeled data, and the outcomes are stored. For
uncertainty sampling methods, these are used to se-
lect the instances to be labeled in the next round.
The classifier’s performance is evaluated on a fixed
test set. The efficacy of the item selection method
is evaluated by comparing the performance of this
classifier to that of a classifier trained on the same
number of randomly-selected training instances.

In the following, we discuss the main factors that
play a role in active learning: the item selection
methods that determine which item is labeled next,
the number of seed instances for the initial classi-
fier and how they are chosen, and the number of in-
stances labeled per AL cycle.

4.1 Item selection

The heart of the AL algorithm is (arguably) item
selection. Item selection defines how the next in-
stance(s) to be labeled are selected, with the goal of
choosing instances that are maximally informative
for the classifier. We explore a number of differ-
ent item selection strategies, based on either the un-
certainty of the classifier on certain items (entropy,
margin and boosted entropy), the lexical diversity of
the selected items, or their representativeness with
respect to the unlabeled data.
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Random Baseline. We use a standard random
sampling baseline. For each seed set, the random
baseline results are averaged over 10 individual ran-
dom runs, and evaluations then average over 10 seed
sets, corresponding to 100 random runs.

Entropy Sampling is our core uncertainty-based
selection method. Following Lewis and Gale (1994),
we model the classifier’s confidence regarding a par-
ticular instance using the predicted probability (for
an item x) of the different labels y, as below.

xselected = argmaxx

(
−
∑

i

P (yi|x)logP (yi|x)

)

Classifier confidence is computed for each item in
the unlabeled data, and the one with the highest en-
tropy (lowest confidence) is selected for labeling.

Boosted Entropy Sampling Especially for very
skewed data sets, it is often favourable to aim at a
good representation of the minority class(es) in the
training data selected for AL. Tomanek and Hahn
(2009) proposed several methods for selecting the
minority class with a higher frequency. We adopt
their method of boosted entropy sampling, where
per-label weights are incorporated into the entropy
computation, in order to favor items more likely
to belong to a minority class. Tomanek and Hahn
(2009) apply this technique to named entity recog-
nition, where it is possible to estimate the true la-
bel distribution. In our case, since we don’t know
the expected true distribution of scores, for each AL
round, we instead adapt label weights using the dis-
tribution of the current labeled training data set.

Margin Sampling is a variant of entropy sam-
pling with the one difference that only the two most
likely labels (instead of all three or four) are used
in the entropy comparison. As a result, this meth-
ods tends to select instances that lie on the decision
border between two classes, instead of items at the
intersection of all clasess.

Diversity Sampling aims to select instances that
cover as much of the feature space as possible, i.e.
that are as diverse as possible. We model this by se-
lecting the item with the lowest average cosine simi-
larity between the item’s feature vector and those of
the items in the current labeled training data set.

Representativeness Sampling uses a different
intuition: this method selects items that are highly
representative of the remainder of the unlabeled
data pool. We model representativeness of an
item by the average distance (again, measures as
cosine similarity between feature vectors) between
this item and all other items in the pool. This re-
sults in selection of items near the center of the pool.

Note that these selection methods are somewhat
complimentary. While entropy and margin sampling
generally select items from the decision boundaries,
they tend to select both outliers and items from the
center of the distribution.

Representativeness sampling never selects out-
liers but only items in the center of the feature space.
Diversity sampling selects items that are as far from
all other items as possible, and in doing so covers
as much of the feature space as possible, with a ten-
dency to select outliers.

4.2 Cluster Centroid Baseline

Another interesting baseline for comparison are
classifiers trained on cluster centroids, as proposed
by Zesch et al. (2015). Following their approach, we
use Weka’s k-means clustering to cluster the data,
with k equal to the desired number of training in-
stances. From each cluster, we extract the item clos-
est to the centroid, build a training set from the ex-
tracted items, and learn a classifier from the training
data. This process is repeated with varying numbers
of training items: the first iteration has 20 labeled
items, and we add in steps of 20 until reaching 200
labeled items. We then add data in steps of 50 until
we reach 500 labeled items, and in steps of 100 un-
til all data has been labeled. Note that this approach
does not directly fit into the general AL framework.
In AL, the set of labeled data is increased incremen-
tally, while with this approach a larger training set is
not necessarily a proper superset of a smaller train-
ing set but may contain different items.

4.3 Seed selection

The seed set in AL is the initial set of labeled data
used to train the first classifier and thus to initialize
the item selection process. The quality of the seeds
has been shown to play an important role for the per-
formance of AL (Dligach and Palmer, 2011). Here
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we consider two ways of selecting seed set items.
First is the baseline of (a) random seed selec-

tion. Random selection can be suboptimal when it
produces unbalanced seed sets, especially if one or
more classes are not contained in the seed data at all
or – in the worst case – the seed set contains only
items of one class. Some of the ASAP data sets are
very skewed (e.g. questions 5 and 6, see Table 1)
and carry a high risk of producing such suboptimal
seeds via random selection.

The second condition is (b) equal seed selection,
in which seed items are selected such that all classes
are equally represented. We do this in an oracle-
like condition, but presumably teachers could pro-
duce a balanced seed set without too much difficulty
by scanning through a number of student responses.
Of course, this procedure would require more effort
than simply labeling randomly-selected responses.

The number of items in the seed set is another im-
portant AL parameter. While a larger seed set pro-
vides a more stable basis for learning, a smaller seed
set shows benefits from AL at an earlier stage and
requires less initial labeling effort. In the small seed
set condition, and for both random and equal selec-
tion methods, 10 individual seed sets per prompt are
chosen, each with either 3 or 4 seeds (corresponding
to the number of classes per prompt). We repeat this
process for the large seed set condition, this time se-
lecting 20 items per seed set.

4.4 Batch size
Batch size determines how many instances are la-
beled in each AL round. This parameter is especially
relevant with the real-world application of SAS in
mind. In real life, it may be inconvenient to have
a teacher label just one instance per step, waiting in
between labeling steps for retraining of the classifier.

On the other hand, sampling methods benefit from
smaller batch sizes, as larger batches tend to contain
a number of similar, potentially redundant instances.
To combine the benefits of the two settings, we use
varying batch sizes. To benefit from fine-grained
sample selection, we start with a batch size of one
and keep this until one hundred instances have been
labeled. We then switch to a batch size of 5 until 300
instances have been labeled, and from then on label
20 instances per batch.

For comparison, we also run experiments where

20 instances are labeled in every AL step before a
new classification model is learned, in order to in-
vestigate whether the potentially inconvenient pro-
cess of training a new model after each individual
human annotation step is really necessary.

5 Results

We now investigate to what extent active learning,
using various settings, can reduce the amount of
training data needed for SAS.

5.1 Evaluation of Active Learning
We evaluate all of our SAS systems using Cohen’s
linearly weighted kappa (Cohen, 1968). Each result
reported for a given combination of item selection
and seed selection methods is the average over 10
runs, each with a different seed set. The seed sets
remain fixed across conditions.

In order to evaluate the overall performance of an
AL method, we need to measure the performance
gain over a baseline. Rather than computing this
at one fixed point in the learning curve, we follow
Melville and Mooney (2004) in looking at averaged
performance over a set of points early in the learning
curve. This is where AL produces the biggest gains;
once many more items have been labeled, the dif-
ferences between the systems reduces. We slightly
adapt Melville and Mooney’s method and compute
the average percent error reduction (that is, error re-
duction on kappa values) over the first 300 labeled
instances (18-26% of all items, depending on the
size of the data set).

5.2 Experiment 1: Comparison of different
item selection methods

The first experiment compares the different item se-
lection methods outlined in Section 4.1, using small
seedsets and varying batch sizes.

To give a global picture of differences between
the methods, Figure 2 shows the learning curves
for all sample selection methods, averaged over all
prompt and seed sets. Especially in early parts of
the learning curve until about 500 items are labeled,
uncertainty-based methods show improvement over
the random baseline. Both representativeness and
diversity-based sampling perform far worse than
random. On average, the systems trained on cluster
centroids perform at or below the random baseline,
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Figure 2: AL performance curves compared to two baselines: random item selection and cluster centroids. All results are averaged

over all prompts and seed sets.

confirm the findings of Zesch et al. (2015) (though
in a slightly different setting).

The picture changes a bit when we look at the
performance of AL methods per prompt and with
different seed selection methods. Table 2 shows
the percent error reduction (compared to the random
baseline) per prompt and seed selection method, av-
eraged over the first 300 labeled items. Most no-
ticeable is that we see a wide variety in the perfor-
mance of the sample selection methods for the vari-
ous prompts. For some - most pronouncedly prompt
2, 5, 6 and 10 - there is a consistent improvement for
uncertainty sampling methods, while other prompts
seem to be almost completely resistent to AL. When
looking at individual averaged AL curves, we can
see some improvement for prompts 7 to 9 that peaks
only after 300 items are labeled. For prompt 3, none
of the AL methods ever beats the baseline, at any
point in the learning process. We also observe vari-
ability in the performance across seed sets for one
prompt, as can be seen from the standard deviation.

The question of which AL method is most effec-
tive for this task can be answered at least partially:
if any method yields a substantial improvement, it is
an uncertainty-based method. On average, boosted
entropy gives the highest gains in both seed selection

settings. Comparing random to equal seed selection,
performance is rather consistently better when AL
starts with a seed set that covers all classes equally.

prompt entropy margin boosted diversity represen-
& seeds entropy tativeness

1 Equal -0.58 (5.8) -0.05 (4.5) -0.51 (4.0) -30.53 (1.3) -14.04 (2.8)
2 Equal 5.61 (5.1) 3.82 (7.4) 6.75 (6.5) -24.40 (0.5) 0.88 (1.7)
3 Equal -2.42 (3.0) -2.18 (5.1) -2.32 (3.2) -27.10 (0.9) -11.34 (2.7)
4 Equal -3.40 (7.5) 1.44 (2.3) -2.41 (6.6) -14.67 (1.8) -10.15 (5.8)
5 Equal 12.67 (2.5) 15.38 (2.8) 12.25 (6.6) -15.50 (2.7) -9.44 (11.9)
6 Equal 21.49 (5.9) 22.70 (3.3) 24.39 (2.6) -16.47 (4.9) -10.29 (3.5)
7 Equal -1.49 (6.8) -2.36 (6.4) -2.97 (5.5) -4.85 (1.4) 0.65 (1.2)
8 Equal -4.41 (8.6) 0.26 (4.5) -2.31 (5.3) -9.71 (1.5) -9.16 (4.3)
9 Equal -2.91 (5.4) -0.84 (9.1) 3.32 (5.3) -0.88 (5.5) -9.10 (5.6)
10 Equal 7.97 (6.6) 8.33 (6.7) 10.88 (6.3) 10.31 (3.7) -4.92 (5.0)

avg 3.25 (5.7) 4.65 (5.2) 4.71 (5.2) -13.38 (2.4) -7.69 (4.4)

1 Random -4.24 (6.3) -2.98 (8.0) -0.33 (2.6) -30.81 (2.2) -13.10 (3.7)
2 Random 4.28 (5.7) 2.98 (7.6) 6.14 (3.2) -21.37 (1.1) -0.82 (2.4)
3 Random -11.41 (7.3) -5.82 (7.3) -5.52 (9.5) -26.13 (2.6) -11.13 (2.5)
4 Random 0.18 (7.8) -5.09 (9.8) -1.73 (7.5) -11.13 (2.2) -11.11 (2.8)
5 Random 8.92 (5.0) 12.93 (3.9) 10.86 (4.8) -41.56 (16.0) -2.20 (5.3)
6 Random 19.66 (3.9) 21.13 (3.6) 19.29 (2.1) -42.53 (26.6) -11.41 (2.9)
7 Random -4.21 (7.8) 0.39 (5.4) -4.24 (7.6) -4.22 (1.8) 0.56 (2.3)
8 Random -1.63 (7.3) -0.52 (7.0) -0.54 (4.3) -10.19 (0.5) -6.18 (3.7)
9 Random -2.78 (6.9) -4.35 (7.1) -3.53 (6.3) -3.17 (5.4) -10.46 (6.1)
10 Random 4.89 (9.6) 7.74 (7.2) 10.95 (5.0) 10.94 (3.4) -3.01 (3.2)

avg 1.37 (6.7) 2.64 (6.7) 3.13 (5.3) -18.02 (6.2) -6.89 (3.5)

all 2.31 (6.2) 3.65 (5.9) 3.92 (5.2) -15.70 (4.3) -7.29 (4.0)

Table 2: Performance for each combination of prompt and seed

selection method, reporting mean percentage error reduction on

kappa values and SD compared to the random baseline.
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Seeds entropy margin boosted

Random – large seeds 1.45 2.72 2.57
Random – small seeds 1.36 2.63 3.12
Equal – small seeds 3.25 4.65 4.71

Table 3: Error reduction rates over random sampling for differ-

ent seed set sizes, averaging over all prompts.

5.3 Experiment 2: The influence of seeds

Experiment 1 shows a clear benefit for using equal
rather than random seeds. In a real life scenario,
however, balanced seed sets are harder to produce
than purely random ones. One might argue that us-
ing a larger randomly-selected seed set increases the
likelihood of covering all classes in the seed data and
provides a better initialization for AL, without the
additional overhead of creating balanced seed sets.

This motivates the next experiment, in which
learning begins with seed sets of 20 randomly-
selected labeled items, but otherwise follows the
same procedure. We compare the performance of
systems intialized with these larger seed sets to both
random and equal small seed sets, considering only
the more promising uncertainty-based item selection
methods, and again using varying batch sizes.

Table 3 shows the results. We can see, that the
performance for margin and entropy sampling is
slightly better than the small random seed set (cu-
riously not for boosted entropy), but it is still below
that of the small equal seed set. However, the trend
across items is not completely clear. We still take it
as an indicator that seeds of good quality cannot be
outweight by quantity.

5.4 Experiment 3: The influence of batch sizes

In experiment 1 we used varying batch sizes that
learn a new model after each individual labeled item
in the beginning and allow larger batches only later
in the AL process. In a real life application, larger
batch sizes might be in general preferrable. There-
fore we test an alternative setup where we sample
and label 20 items per batch before retraining.

Table 4 presents results for uncertainty-based
sampling methods, averaged over the first 300 la-
beled instances. Compared to the varying batch size
setup (numbers in parentheses), performance goes
down, indicating that fine-grained sampling really
does provide a benefit, especially early in the learn-

Seeds entropy margin boosted

Equal -1.11 (3.25) 3.78 (4.65) 2.12 (4.71)
Random 0.04 (1.36) 2.60 (2.63) 0.93 (3.12)
All -0.53 (2.30) 3.19 (3.64) 1.53 (3.92)

Table 4: Error reduction rates over random sampling for large

batch size and small seed sets, averaging over all prompts.

Scores from the varying batch size setup appear in parentheses.

ing process. Where larger batch sizes may lead to
selection of instances in the same region of uncer-
tainty, a smaller batch size allows the system to re-
solve a certain region of uncertainty with fewer la-
beled training instances.

6 Variability of results across datasets

On average, it is clear that uncertainty-based active
learning methods are able to provide an advantage in
classification performance over random or cluster-
centroid baselines. If we look at the result for the
different prompts, though, it is equally clear that AL
performance varies tremendously across data sets
for individual prompts.

In order to deploy AL effectively for SAS, we
need to better understand why AL works so much
better for some data sets than for others.

In Table 2 we see that AL is especially effective
for prompts 5 and 6. Cross-referencing Table 1, it
becomes clear that these are the two ASAP prompts
with the highest degree of class imbalance. Figure
3 shows the changes in the distribution of the indi-
vidual classes among the labeled data for prompt 6
as AL (here with entropy item selection) proceeds.
We see clearly that uncertainty sampling at early
stages selects the different classes in a way that is
more balanced than the overall distribution for the
full data set and thus increases the classifier’s ac-
curacy in labeling minority class items. For com-
parison, a plot for random sampling would ideally
consist of four lines parallel to the x axis, and both
diversity and representativeness sampling tend to se-
lect items from the majority class, explaining their
bad performance.

Class imbalance explains some of the variable
performance of AL across prompts, but clearly there
is more to the story. Next, we use language model
(LM) perplexity (computed using the SRILM toolkit
(Stolcke, 2002)) as a measurement of how similar
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Figure 3: Distribution of individual classes among the labeled

data for prompt 6, using entropy sampling.

the classes within a prompt are to one another. We
measure this per class by training a LM on the items
from all other classes (for the same prompt) and then
compute the average perplexity of the target class
items under the “other-classes” LM. Higher average
perplexity means that the items in the class are more
readily separable from items in other classes.

prompt score 0.0 score 1.0 score 2.0 score 3.0

1 156 46 27 45
2 104 48 52 56
3 44 23 64 -
4 78 59 55 -
5 970 88 52 49
6 907 76 60 44
7 338 117 45 -
8 535 70 47 -
9 633 127 56 -
10 304 49 39 -

Table 5: Average perplexity per prompt and class under LMs

trained on all “other-class” items from the same prompt.

Table 5 shows the results. We see that for those
answers that work well under AL, again prominently
prompts 5 and 6, at least some classes separate very
well against the other classes. They show a high
average perplexity, indicating that the answer is not
well modeled by other answers with different scores.
In comparison, for some other data sets where the
uncertainty curves do not clearly beat random sam-
pling, especially 3 and 4, we see that the classes are
not well separated from each other. They are among
those with the lowest perplexity across scores.

This result, while preliminary and dependent on
knowing the true scores of the data, suggests that un-
certainty sampling profits from classes that are well
separated from one another, such that clear regions

of uncertainty can emerge. An intriguing future di-
rection is to seek out other approaches to character-
izing unlabeled data sets, in order to determine: (a)
whether AL is a suitable strategy for workload re-
duction, and (b) if so, which AL setting will give the
strongest performance gains for the data set at hand.

7 Conclusion

In this study, we have investigated the applicabil-
ity of AL methods to the task of SAS on the ASAP
corpus. Although the performance varies consider-
ably from prompt to prompt, on average we find that
uncertainty-based sample selection methods out-
perform both a random baseline and a cluster cen-
troid baseline, given the same number of labeled in-
stances. Other sample selection methods capturing
diversity and representativeness perform well below
the baselines.

In terms of seed selection, there is a clear benefit
from an equal seed set, one that covers all classes
equally. A small equal seed set is preferable even to
a larger but potentially unbalanced seedset. In ad-
dition, we see benefits from a variable batch size
setting over using a larger batch size. It is beneficial
to proceed in small steps at the beginning of learn-
ing, selecting one item per run, and only move to
larger batch sizes later on.

We see two interesting avenues for future work.
First, the influence of the quality of seed set items
with respect to the coverage of classes raises the
question of how best to select - or even generate
- equally distributed seed sets. One might argue
whether an automated approach is necessary: per-
haps an experienced teacher could easily browse
through the data in a time-efficient way to select
clear examples of low-, mid-, and high-scoring an-
swers as seeds.

The second question is the more challenging and
more important one. The variability of AL perfor-
mance across prompts clearly and strongly points to
the need for better understanding how attributes of
data sets affect the outcome of AL methods. A solu-
tion for predicting which AL settings are suitable for
a given data set is an open problem for AL in gen-
eral. Further steps in this direction need to be taken
before AL can be reliably and efficiently deployed
in real life assessment scenarios.
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